Year |
Citation |
Score |
2022 |
Hobson JJ, Li Z, Hu H, Carter CW. A Leucyl-tRNA Synthetase Urzyme: Authenticity of tRNA Synthetase Catalytic Activities and Promiscuous Phosphorylation of Leucyl-5'AMP. International Journal of Molecular Sciences. 23. PMID 35457045 DOI: 10.3390/ijms23084229 |
0.308 |
|
2019 |
Carter CW, Wills PR. Class I and II Aminoacyl-tRNA Synthetase tRNA Groove Discrimination Created the First Synthetase-tRNA Cognate Pairs and Was Therefore Essential to the Origin of Genetic Coding. Iubmb Life. PMID 31190358 DOI: 10.1002/Iub.2094 |
0.378 |
|
2019 |
Carter CW, Wills PR. Experimental Solutions to Problems Defining the Origin of Codon-Directed Protein Synthesis: Running Head: Whence the Genetic Code? Bio Systems. 103979. PMID 31176803 DOI: 10.1016/J.Biosystems.2019.103979 |
0.379 |
|
2019 |
Li Z, Carter C. Aminoacyl-tRNA synthetases may have evolved from molten globular precursors Acta Crystallographica Section a Foundations and Advances. 75: a98-a98. DOI: 10.1107/S010876731909901X |
0.317 |
|
2018 |
Carter CW, Wills PR. Hierarchical groove discrimination by Class I and II aminoacyl-tRNA synthetases reveals a palimpsest of the operational RNA code in the tRNA acceptor-stem bases. Nucleic Acids Research. PMID 30016476 DOI: 10.1093/Nar/Gky600 |
0.33 |
|
2017 |
Carter CW, Wills PR. Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding. Molecular Biology and Evolution. PMID 29077934 DOI: 10.1093/Molbev/Msx265 |
0.36 |
|
2017 |
Carter CW. Coding of Class I and II Aminoacyl-tRNA Synthetases. Advances in Experimental Medicine and Biology. PMID 28828732 DOI: 10.1007/5584_2017_93 |
0.372 |
|
2017 |
Chandrasekaran SN, Carter CW. Augmenting the anisotropic network model with torsional potentials improves PATH performance, enabling detailed comparison with experimental rate data. Structural Dynamics (Melville, N.Y.). 4: 032103. PMID 28289692 DOI: 10.1063/1.4976142 |
0.308 |
|
2017 |
Carter CW, Chandrasekaran SN, Weinreb V, Li L, Williams T. Combining multi-mutant and modular thermodynamic cycles to measure energetic coupling networks in enzyme catalysis. Structural Dynamics (Melville, N.Y.). 4: 032101. PMID 28191480 DOI: 10.1063/1.4974218 |
0.35 |
|
2016 |
Sapienza PJ, Li L, Williams T, Lee AL, Carter CW. An Ancestral Tryptophanyl-tRNA Synthetase Precursor Achieves High Catalytic Rate Enhancement Without Ordered Ground-State Tertiary Structures. Acs Chemical Biology. PMID 27008438 DOI: 10.1021/Acschembio.5B01011 |
0.419 |
|
2016 |
Chandrasekaran SN, Das J, Dokholyan NV, Carter CW. A modified PATH algorithm rapidly generates transition states comparable to those found by other well established algorithms. Structural Dynamics (Melville, N.Y.). 3: 012101. PMID 26958584 DOI: 10.1063/1.4941599 |
0.3 |
|
2015 |
Carter CW, Wolfenden R. tRNA Acceptor-stem and anticodon bases embed separate features of amino acid chemistry. Rna Biology. 0. PMID 26595350 DOI: 10.1080/15476286.2015.1112488 |
0.336 |
|
2015 |
Williams TL, Yin WY, Carter CW. Selective Inhibition of Bacterial Tryptophanyl-tRNA Synthetases by Indolmycin is Mechanism-Based. The Journal of Biological Chemistry. PMID 26555258 DOI: 10.1074/Jbc.M115.690321 |
0.388 |
|
2015 |
Martinez-Rodriguez L, Erdogan O, Jimenez-Rodriguez M, Gonzalez-Rivera K, Williams T, Li L, Weinreb V, Collier M, Chandrasekaran SN, Ambroggio X, Kuhlman B, Carter CW. Functional Class I and II Amino Acid Activating Enzymes Can Be Coded by Opposite Strands of the Same Gene. The Journal of Biological Chemistry. PMID 26088142 DOI: 10.1074/Jbc.M115.642876 |
0.345 |
|
2015 |
Carter CW, Wolfenden R. tRNA acceptor stem and anticodon bases form independent codes related to protein folding. Proceedings of the National Academy of Sciences of the United States of America. 112: 7489-94. PMID 26034281 DOI: 10.1073/Pnas.1507569112 |
0.338 |
|
2015 |
Wolfenden R, Lewis CA, Yuan Y, Carter CW. Temperature dependence of amino acid hydrophobicities. Proceedings of the National Academy of Sciences of the United States of America. 112: 7484-8. PMID 26034278 DOI: 10.1073/Pnas.1507565112 |
0.325 |
|
2015 |
Carter CW. What RNA World? Why a Peptide/RNA Partnership Merits Renewed Experimental Attention. Life (Basel, Switzerland). 5: 294-320. PMID 25625599 DOI: 10.3390/Life5010294 |
0.342 |
|
2014 |
Carter CW. Urzymology: experimental access to a key transition in the appearance of enzymes. The Journal of Biological Chemistry. 289: 30213-20. PMID 25210034 DOI: 10.1074/Jbc.R114.567495 |
0.404 |
|
2014 |
Carter CW, Li L, Weinreb V, Collier M, Gonzalez-Rivera K, Jimenez-Rodriguez M, Erdogan O, Kuhlman B, Ambroggio X, Williams T, Chandrasekharan SN. The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed. Biology Direct. 9: 11. PMID 24927791 DOI: 10.1186/1745-6150-9-11 |
0.413 |
|
2014 |
Weinreb V, Li L, Chandrasekaran SN, Koehl P, Delarue M, Carter CW. Enhanced amino acid selection in fully evolved tryptophanyl-tRNA synthetase, relative to its urzyme, requires domain motion sensed by the D1 switch, a remote dynamic packing motif. The Journal of Biological Chemistry. 289: 4367-76. PMID 24394410 DOI: 10.1074/Jbc.M113.538660 |
0.379 |
|
2014 |
Jimenez M, Williams T, González-Rivera AK, Li L, Erdogan O, Carter CW. Did Class 1 and Class 2 Aminoacyl Trna Synthetases Descend from Genetically Complimentary, Catalytically Active ATP-Binding Motifs? Biophysical Journal. 106: 675a. DOI: 10.1016/J.Bpj.2013.11.3740 |
0.369 |
|
2013 |
Li L, Carter CW. Full implementation of the genetic code by tryptophanyl-tRNA synthetase requires intermodular coupling. The Journal of Biological Chemistry. 288: 34736-45. PMID 24142809 DOI: 10.1074/Jbc.M113.510958 |
0.41 |
|
2013 |
Li L, Francklyn C, Carter CW. Aminoacylating urzymes challenge the RNA world hypothesis. The Journal of Biological Chemistry. 288: 26856-63. PMID 23867455 DOI: 10.1074/Jbc.M113.496125 |
0.381 |
|
2013 |
Chandrasekaran SN, Yardimci GG, Erdogan O, Roach J, Carter CW. Statistical evaluation of the Rodin-Ohno hypothesis: sense/antisense coding of ancestral class I and II aminoacyl-tRNA synthetases. Molecular Biology and Evolution. 30: 1588-604. PMID 23576570 DOI: 10.1093/Molbev/Mst070 |
0.339 |
|
2013 |
Carter CW, Li L, Chandrasekaran SN, Rivera KG, Collier ML. 14 What RNA world ?? Ancestral polypeptides likely participated in the origins of translation Journal of Biomolecular Structure & Dynamics. 31: 8-8. DOI: 10.1080/07391102.2013.786322 |
0.353 |
|
2012 |
Weinreb V, Li L, Carter CW. A master switch couples Mg²⁺-assisted catalysis to domain motion in B. stearothermophilus tryptophanyl-tRNA Synthetase. Structure (London, England : 1993). 20: 128-38. PMID 22244762 DOI: 10.1016/J.Str.2011.10.020 |
0.326 |
|
2011 |
Li L, Weinreb V, Francklyn C, Carter CW. Histidyl-tRNA synthetase urzymes: Class I and II aminoacyl tRNA synthetase urzymes have comparable catalytic activities for cognate amino acid activation. The Journal of Biological Chemistry. 286: 10387-95. PMID 21270472 DOI: 10.1074/Jbc.M110.198929 |
0.405 |
|
2011 |
Carter CW, Weinreb V, Li L, Kuhlman B. Conditional Mg2+-Assisted Catalysis: A Master Switching Motif Responsible for Differential Stability Suggests a General Transducing Mechanism Biophysical Journal. 100: 536a. DOI: 10.1016/J.Bpj.2010.12.3128 |
0.345 |
|
2010 |
Pham Y, Kuhlman B, Butterfoss GL, Hu H, Weinreb V, Carter CW. Tryptophanyl-tRNA synthetase Urzyme: a model to recapitulate molecular evolution and investigate intramolecular complementation. The Journal of Biological Chemistry. 285: 38590-601. PMID 20864539 DOI: 10.1074/Jbc.M110.136911 |
0.703 |
|
2010 |
Cammer S, Carter CW. Six Rossmannoid folds, including the Class I aminoacyl-tRNA synthetases, share a partial core with the anti-codon-binding domain of a Class II aminoacyl-tRNA synthetase. Bioinformatics (Oxford, England). 26: 709-14. PMID 20130031 DOI: 10.1093/Bioinformatics/Btq039 |
0.348 |
|
2009 |
Rodin AS, Rodin SN, Carter CW. On primordial sense-antisense coding. Journal of Molecular Evolution. 69: 555-67. PMID 19956936 DOI: 10.1007/S00239-009-9288-4 |
0.32 |
|
2009 |
Weinreb V, Li L, Campbell CL, Kaguni LS, Carter CW. Mg2+-assisted catalysis by B. stearothermophilus TrpRS is promoted by allosteric effects. Structure (London, England : 1993). 17: 952-64. PMID 19604475 DOI: 10.1016/J.Str.2009.05.007 |
0.306 |
|
2009 |
Laowanapiban P, Kapustina M, Vonrhein C, Delarue M, Koehl P, Carter CW. Independent saturation of three TrpRS subsites generates a partially assembled state similar to those observed in molecular simulations. Proceedings of the National Academy of Sciences of the United States of America. 106: 1790-5. PMID 19174517 DOI: 10.1073/Pnas.0812752106 |
0.348 |
|
2008 |
Weinreb V, Carter CW. Mg2+-free Bacillus stearothermophilus tryptophanyl-tRNA synthetase retains a major fraction of the overall rate enhancement for tryptophan activation. Journal of the American Chemical Society. 130: 1488-94. PMID 18173270 DOI: 10.1021/Ja076557X |
0.324 |
|
2007 |
Kapustina M, Weinreb V, Li L, Kuhlman B, Carter CW. A conformational transition state accompanies tryptophan activation by B. stearothermophilus tryptophanyl-tRNA synthetase. Structure (London, England : 1993). 15: 1272-84. PMID 17937916 DOI: 10.1016/J.Str.2007.08.010 |
0.347 |
|
2007 |
Retailleau P, Weinreb V, Hu M, Carter CW. Crystal structure of tryptophanyl-tRNA synthetase complexed with adenosine-5' tetraphosphate: evidence for distributed use of catalytic binding energy in amino acid activation by class I aminoacyl-tRNA synthetases. Journal of Molecular Biology. 369: 108-28. PMID 17428498 DOI: 10.1016/J.Jmb.2007.01.091 |
0.406 |
|
2007 |
Pham Y, Li L, Kim A, Erdogan O, Weinreb V, Butterfoss GL, Kuhlman B, Carter CW. A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Molecular Cell. 25: 851-62. PMID 17386262 DOI: 10.1016/J.Molcel.2007.02.010 |
0.688 |
|
2007 |
Carter CW, Kapustina M, Pham Y, Li L, Weinreb V. Catalytic Use of the Allosteric Constant by B. stearothermophilus TrpRS The Faseb Journal. 21. DOI: 10.1096/Fasebj.21.5.A646-B |
0.63 |
|
2006 |
Kapustina M, Carter CW. Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit. Journal of Molecular Biology. 362: 1159-80. PMID 16949606 DOI: 10.1016/J.Jmb.2006.06.078 |
0.369 |
|
2005 |
Roach J, Sharma S, Kapustina M, Carter CW. Structure alignment via Delaunay tetrahedralization. Proteins. 60: 66-81. PMID 15856481 DOI: 10.1002/Prot.20479 |
0.371 |
|
2003 |
Tropsha A, Carter CW, Cammer S, Vaisman II. Simplicial neighborhood analysis of protein packing (SNAPP): a computational geometry approach to studying proteins. Methods in Enzymology. 374: 509-44. PMID 14696387 DOI: 10.1016/S0076-6879(03)74022-1 |
0.315 |
|
2003 |
Retailleau P, Huang X, Yin Y, Hu M, Weinreb V, Vachette P, Vonrhein C, Bricogne G, Roversi P, Ilyin V, Carter CW. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations. Journal of Molecular Biology. 325: 39-63. PMID 12473451 DOI: 10.1016/S0022-2836(02)01156-7 |
0.396 |
|
2002 |
Carter CW, Duax WL. Did tRNA synthetase classes arise on opposite strands of the same gene? Molecular Cell. 10: 705-8. PMID 12419215 DOI: 10.1016/S1097-2765(02)00688-3 |
0.308 |
|
2001 |
Retailleau P, Yin Y, Hu M, Roach J, Bricogne G, Vonrhein C, Roversi P, Blanc E, Sweet RM, Carter CW. High-resolution experimental phases for tryptophanyl-tRNA synthetase (TrpRS) complexed with tryptophanyl-5'AMP. Acta Crystallographica. Section D, Biological Crystallography. 57: 1595-608. PMID 11679724 DOI: 10.1107/S090744490101215X |
0.342 |
|
2001 |
Carter CW, LeFebvre BC, Cammer SA, Tropsha A, Edgell MH. Four-body potentials reveal protein-specific correlations to stability changes caused by hydrophobic core mutations. Journal of Molecular Biology. 311: 625-38. PMID 11518520 DOI: 10.1006/Jmbi.2001.4906 |
0.318 |
|
2001 |
Deerfield DW, Carter CW, Pedersen LG. Models for protein-zinc ion binding sites. II. The catalytic sites International Journal of Quantum Chemistry. 83: 150-165. DOI: 10.1002/Qua.1207 |
0.523 |
|
2000 |
Ilyin VA, Temple B, Hu M, Li G, Yin Y, Vachette P, Carter CW. 2.9 A crystal structure of ligand-free tryptophanyl-tRNA synthetase: domain movements fragment the adenine nucleotide binding site. Protein Science : a Publication of the Protein Society. 9: 218-31. PMID 10716174 DOI: 10.1110/Ps.9.2.218 |
0.402 |
|
1999 |
Lahr SJ, Broadwater A, Carter CW, Collier ML, Hensley L, Waldner JC, Pielak GJ, Edgell MH. Patterned library analysis: a method for the quantitative assessment of hypotheses concerning the determinants of protein structure. Proceedings of the National Academy of Sciences of the United States of America. 96: 14860-5. PMID 10611303 DOI: 10.1073/Pnas.96.26.14860 |
0.373 |
|
1999 |
Carlow DC, Carter CW, Mejlhede N, Neuhard J, Wolfenden R. Cytidine deaminases from B. subtilis and E. coli: compensating effects of changing zinc coordination and quaternary structure. Biochemistry. 38: 12258-65. PMID 10493793 DOI: 10.1021/Bi990819T |
0.391 |
|
1999 |
Scott J, Navaratnam N, Carter C. Molecular Modelling Of The Biosynthesis Of The Rna-Editing Enzyme Apobec-1, Responsible For Generating The Alternative Forms Of Apolipoprotein B Experimental Physiology. 84: 791-800. DOI: 10.1111/J.1469-445X.1999.01805.X |
0.385 |
|
1998 |
Scott J, Navaratnam N, Carter C. Molecular modelling and the biosynthesis of apolipoprotein B containing lipoproteins. Atherosclerosis. 141: S17-24. PMID 9888637 DOI: 10.1016/S0021-9150(98)00213-5 |
0.387 |
|
1998 |
Kakuta Y, Pedersen LC, Chae K, Song WC, Leblanc D, London R, Carter CW, Negishi M. Mouse steroid sulfotransferases: substrate specificity and preliminary X-ray crystallographic analysis. Biochemical Pharmacology. 55: 313-7. PMID 9484797 DOI: 10.1016/S0006-2952(97)00465-6 |
0.328 |
|
1998 |
Navaratnam N, Fujino T, Bayliss J, Jarmuz A, How A, Richardson N, Somasekaram A, Bhattacharya S, Carter C, Scott J. Escherichia coli cytidine deaminase provides a molecular model for ApoB RNA editing and a mechanism for RNA substrate recognition. Journal of Molecular Biology. 275: 695-714. PMID 9466941 DOI: 10.1006/Jmbi.1997.1506 |
0.343 |
|
1998 |
Lewis JP, Carter CW, Hermans J, Pan W, Lee TS, Yang W. Active species for the ground-state complex of cytidine deaminase: A linear-scaling quantum mechanical investigation Journal of the American Chemical Society. 120: 5407-5410. DOI: 10.1021/Ja973522W |
0.338 |
|
1997 |
Xue H, Xue Y, Doublié S, Carter CW. Chemical modifications of Bacillus subtilis tryptophanyl-tRNA synthetase. Biochemistry and Cell Biology = Biochimie Et Biologie Cellulaire. 75: 709-15. PMID 9599659 DOI: 10.1139/O97-054 |
0.647 |
|
1997 |
Kakuta Y, Pedersen LG, Carter CW, Negishi M, Pedersen LC. Crystal structure of estrogen sulphotransferase. Nature Structural Biology. 4: 904-8. PMID 9360604 DOI: 10.1038/Nsb1197-904 |
0.526 |
|
1997 |
Xiang S, Short SA, Wolfenden R, Carter CW. The structure of the cytidine deaminase-product complex provides evidence for efficient proton transfer and ground-state destabilization. Biochemistry. 36: 4768-74. PMID 9125497 DOI: 10.1021/Bi963091E |
0.332 |
|
1996 |
Hogue CW, Doublié S, Xue H, Wong JT, Carter CW, Szabo AG. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92. Journal of Molecular Biology. 260: 446-66. PMID 8757806 DOI: 10.1006/Jmbi.1996.0413 |
0.371 |
|
1996 |
Xiang S, Short SA, Wolfenden R, Carter CW. Cytidine deaminase complexed to 3-deazacytidine: a "valence buffer" in zinc enzyme catalysis. Biochemistry. 35: 1335-41. PMID 8634261 DOI: 10.1021/Bi9525583 |
0.352 |
|
1996 |
Sever S, Rogers K, Rogers MJ, Carter C, Söll D. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding. Biochemistry. 35: 32-40. PMID 8555191 DOI: 10.1021/Bi952103D |
0.417 |
|
1995 |
Doublié S, Bricogne G, Gilmore C, Carter CW. Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase. Structure (London, England : 1993). 3: 17-31. PMID 7743129 DOI: 10.1016/S0969-2126(01)00132-0 |
0.678 |
|
1995 |
Xiang S, Short SA, Wolfenden R, Carter CW. Transition-state selectivity for a single hydroxyl group during catalysis by cytidine deaminase. Biochemistry. 34: 4516-23. PMID 7718553 DOI: 10.1021/Bi00014A003 |
0.324 |
|
1995 |
Carter CW. The nucleoside deaminases for cytidine and adenosine: structure, transition state stabilization, mechanism, and evolution. Biochimie. 77: 92-8. PMID 7599282 DOI: 10.1016/0300-9084(96)88110-7 |
0.394 |
|
1994 |
Carter CW, Yin Y. Quantitative analysis in the characterization and optimization of protein crystal growth. Acta Crystallographica. Section D, Biological Crystallography. 50: 572-90. PMID 15299421 DOI: 10.1107/S0907444994001228 |
0.321 |
|
1994 |
Betts L, Xiang S, Short SA, Wolfenden R, Carter CW. Cytidine deaminase. The 2.3 A crystal structure of an enzyme: transition-state analog complex. Journal of Molecular Biology. 235: 635-56. PMID 8289286 DOI: 10.1006/Jmbi.1994.1018 |
0.407 |
|
1994 |
Carter CW, Doublié S, Coleman DE. Quantitative analysis of crystal growth. Tryptophanyl-tRNA synthetase crystal polymorphism and its relationship to catalysis. Journal of Molecular Biology. 238: 346-65. PMID 8176729 DOI: 10.1006/Jmbi.1994.1297 |
0.639 |
|
1994 |
Doublié S, Xiang S, Gilmore CJ, Bricogne G, Carter CW. Overcoming non-isomorphism by phase permutation and likelihood scoring: solution of the TrpRS crystal structure. Acta Crystallographica. Section a, Foundations of Crystallography. 50: 164-82. PMID 8166950 DOI: 10.1107/S0108767393010037 |
0.611 |
|
1993 |
Xiang S, Carter CW, Bricogne G, Gilmore CJ. Entropy maximization constrained by solvent flatness: a new method for macromolecular phase extension and map improvement. Acta Crystallographica. Section D, Biological Crystallography. 49: 193-212. PMID 15299561 DOI: 10.1107/S0907444992008540 |
0.307 |
|
1991 |
Bell JB, Jones ME, Carter CW. Crystallization of yeast orotidine 5'-monophosphate decarboxylase complexed with 1-(5'-phospho-beta-D-ribofuranosyl) barbituric acid. Proteins. 9: 143-51. PMID 2008434 DOI: 10.1002/Prot.340090208 |
0.306 |
|
1991 |
Smith FR, Lattman EE, Carter CW. The mutation beta 99 Asp-Tyr stabilizes Y--a new, composite quaternary state of human hemoglobin. Proteins. 10: 81-91. PMID 1896430 DOI: 10.1002/Prot.340100202 |
0.32 |
|
1990 |
Carter CW, Crumley KV, Coleman DE, Hage F, Bricogne G. Direct phase determination for the molecular envelope of tryptophanyl-tRNA synthetase from Bacillus stearothermophilus by X-ray contrast variation. Acta Crystallographica. Section a, Foundations of Crystallography. 46: 57-68. PMID 2310535 DOI: 10.1107/S0108767389009682 |
0.383 |
|
1988 |
Carter CW. Cloning heterologous genes into E. Coli for enzyme production and crystal growth: Problems of expression and microheterogeneity Journal of Crystal Growth. 90: 168-179. DOI: 10.1016/0022-0248(88)90312-0 |
0.354 |
|
1988 |
Carter CW, Baldwin ET, Frick L. Statistical design of experiments for protein crystal growth and the use of a precrystallization assay Journal of Crystal Growth. 90: 60-73. DOI: 10.1016/0022-0248(88)90299-0 |
0.318 |
|
1984 |
Coleman DE, Carter CW. Crystals of Bacillus stearothermophilus tryptophanyl-tRNA synthetase containing enzymatically formed acyl transfer product tryptophanyl-ATP, an active site maker for the 3' CCA terminus of tryptophanyl-tRNATrp. Biochemistry. 23: 381-5. PMID 6559601 DOI: 10.1021/Bi00297A030 |
0.383 |
|
1982 |
Carter CW, Green DC. Use of chromatofocusing in the purification of tryptophanyl-tRNA synthetase from Bacillus stearothermophilus. Analytical Biochemistry. 124: 327-32. PMID 7149233 DOI: 10.1016/0003-2697(82)90047-1 |
0.313 |
|
1975 |
Freer ST, Alden RA, Carter CW, Kraut J. Crystallographic structure refinement of Chromatium high potential iron protein at two Angstroms resolution. The Journal of Biological Chemistry. 250: 46-54. PMID 1141211 |
0.502 |
|
1974 |
Carter CW, Kraut J, Freer ST, Nguyen-Huu-Xuong, Alden RA, Bartsch RG. Two-Angstrom crystal structure of oxidized Chromatium high potential iron protein. The Journal of Biological Chemistry. 249: 4212-25. PMID 4855287 DOI: 10.2210/Pdb1Hip/Pdb |
0.578 |
|
1974 |
Carter CW, Kraut J. A proposed model for interaction of polypeptides with RNA. Proceedings of the National Academy of Sciences of the United States of America. 71: 283-7. PMID 4521801 DOI: 10.1073/Pnas.71.2.283 |
0.559 |
|
1974 |
Carter CW, Kraut J, Freer ST, Alden RA. Comparison of oxidation-reduction site geometries in oxidized and reduced Chromatium high potential iron protein and oxidized Peptococcus aerogenes ferredoxin. The Journal of Biological Chemistry. 249: 6339-46. PMID 4417854 |
0.436 |
|
1972 |
Carter CW, Kraut J, Freer ST, Alden RA, Sieker LC, Adman E, Jensen LH. A comparison of Fe 4 S 4 clusters in high-potential iron protein and in ferredoxin. Proceedings of the National Academy of Sciences of the United States of America. 69: 3526-9. PMID 4509310 DOI: 10.1073/Pnas.69.12.3526 |
0.519 |
|
1972 |
Carter CW, Freer ST, Xuong NH, Alden RA, Kraut J. Structure of the iron-sulfur cluster in the Chromatius iron protein at 2.25 Angstrom resolution. Cold Spring Harbor Symposia On Quantitative Biology. 36: 381-5. PMID 4508152 DOI: 10.1101/Sqb.1972.036.01.049 |
0.5 |
|
Show low-probability matches. |