Year |
Citation |
Score |
2020 |
Ho DT, Park HS, Kim SY, Schwingenschlögl U. Graphene Origami with Highly Tunable Coefficient of Thermal Expansion. Acs Nano. PMID 32538615 DOI: 10.1021/Acsnano.0C03791 |
0.353 |
|
2020 |
Hong J, Oh JH, Park HS, Kim SY. Valley-dependent topologically protected elastic waves using continuous graphene membranes on patterned substrates. Nanoscale. PMID 32270795 DOI: 10.1039/C9Nr09809G |
0.317 |
|
2020 |
Wan J, Jiang J, Park HS. Machine learning-based design of porous graphene with low thermal conductivity Carbon. 157: 262-269. DOI: 10.1016/J.Carbon.2019.10.037 |
0.329 |
|
2019 |
Hanakata PZ, Cubuk ED, Campbell DK, Park HS. Erratum: Accelerated Search and Design of Stretchable Graphene Kirigami Using Machine Learning [Phys. Rev. Lett. 121, 255304 (2018)]. Physical Review Letters. 123: 069901. PMID 31491138 DOI: 10.1103/Physrevlett.123.069901 |
0.744 |
|
2019 |
Nguyen BH, Zhuang X, Park HS, Rabczuk T. Tunable topological bandgaps and frequencies in a pre-stressed soft phononic crystal Journal of Applied Physics. 125: 95106. DOI: 10.1063/1.5066088 |
0.303 |
|
2019 |
Jiang J, Park HS. Strain tunable phononic topological bandgaps in two-dimensional hexagonal boron nitride Journal of Applied Physics. 125: 82511. DOI: 10.1063/1.5040009 |
0.358 |
|
2019 |
Vu-Bac N, Duong T, Lahmer T, Areias P, Sauer R, Park H, Rabczuk T. A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells Computer Methods in Applied Mechanics and Engineering. 350: 480-510. DOI: 10.1016/J.Cma.2019.03.011 |
0.306 |
|
2018 |
Hanakata PZ, Cubuk ED, Campbell DK, Park HS. Accelerated Search and Design of Stretchable Graphene Kirigami Using Machine Learning. Physical Review Letters. 121: 255304. PMID 30608812 DOI: 10.1103/Physrevlett.121.255304 |
0.76 |
|
2018 |
Jiang JW, Wang BS, Park HS. Topologically protected interface phonons in two-dimensional nanomaterials: hexagonal boron nitride and silicon carbide. Nanoscale. PMID 29999511 DOI: 10.1039/C8Nr04314K |
0.32 |
|
2018 |
Tao W, Cao P, Park HS. Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition. Acs Nano. PMID 29708727 DOI: 10.1021/Acsnano.8B02199 |
0.304 |
|
2018 |
Tao W, Cao P, Park HS. Atomistic Simulation of the Rate-Dependent Ductile-to-Brittle Failure Transition in Bicrystalline Metal Nanowires. Nano Letters. PMID 29298076 DOI: 10.1021/Acs.Nanolett.7B04972 |
0.325 |
|
2018 |
Ho DT, Park HS, Kim SY. Intrinsic rippling enhances static non-reciprocity in a graphene metamaterial. Nanoscale. PMID 29292438 DOI: 10.1039/C7Nr07651G |
0.37 |
|
2018 |
Hanakata PZ, Rodin AS, Park HS, Campbell DK, Neto AHC. Strain-induced gauge and Rashba fields in ferroelectric Rashba lead chalcogenide PbX monolayers (X = S, Se, Te) Physical Review B. 97. DOI: 10.1103/Physrevb.97.235312 |
0.469 |
|
2018 |
Cao P, Dahmen KA, Kushima A, Wright WJ, Park HS, Short MP, Yip S. Nanomechanics of slip avalanches in amorphous plasticity Journal of the Mechanics and Physics of Solids. 114: 158-171. DOI: 10.1016/J.Jmps.2018.02.012 |
0.325 |
|
2017 |
Sun JS, Jiang JW, Park HS, Zhang S. Self-cleaning by harnessing wrinkles in two-dimensional layered crystals. Nanoscale. 10: 312-318. PMID 29211077 DOI: 10.1039/C7Nr06553A |
0.307 |
|
2017 |
Dias MA, McCarron MP, Rayneau-Kirkhope D, Hanakata PZ, Campbell DK, Park HS, Holmes DP. Kirigami actuators. Soft Matter. PMID 28972621 DOI: 10.1039/c7sm01693j |
0.776 |
|
2017 |
Ho DT, Kwon SY, Park HS, Kim SY. Negative thermal expansion of ultra-thin Metal nanowires: A Computational Study. Nano Letters. PMID 28678511 DOI: 10.1021/Acs.Nanolett.7B02468 |
0.338 |
|
2017 |
Hanakata PZ, Rodin AS, Carvalho A, Park HS, Campbell DK, Neto AHC. Two-dimensional square buckled Rashba lead chalcogenides Physical Review B. 96: 161401. DOI: 10.1103/Physrevb.96.161401 |
0.503 |
|
2017 |
Rodin AS, Hanakata PZ, Carvalho A, Park HS, Campbell DK, Neto AHC. Rashba-like dispersion in buckled square lattices Physical Review B. 96: 115450. DOI: 10.1103/Physrevb.96.115450 |
0.515 |
|
2017 |
Wan J, Jiang J, Park HS. Irreversible crumpling of graphene from hydrostatic and biaxial compression Journal of Physics D: Applied Physics. 51: 015302. DOI: 10.1088/1361-6463/Aa99Af |
0.302 |
|
2017 |
Osmani B, Seifi S, Park HS, Leung V, Töpper T, Müller B. Nanomechanical probing of thin-film dielectric elastomer transducers Applied Physics Letters. 111: 93104. DOI: 10.1063/1.5000736 |
0.303 |
|
2017 |
He Z, Wang F, Zhu Y, Wu H, Park HS. Mechanical properties of copper octet-truss nanolattices Journal of the Mechanics and Physics of Solids. 101: 133-149. DOI: 10.1016/J.Jmps.2017.01.019 |
0.335 |
|
2017 |
Akinwande D, Brennan CJ, Bunch JS, Egberts P, Felts JR, Gao H, Huang R, Kim J, Li T, Li Y, Liechti KM, Lu N, Park HS, Reed EJ, Wang P, et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond Extreme Mechanics Letters. 13: 42-77. DOI: 10.1016/J.Eml.2017.01.008 |
0.344 |
|
2016 |
Jiang JW, Chang T, Guo X, Park HS. Intrinsic Negative Poisson's Ratio for Single-Layer Graphene. Nano Letters. PMID 27408994 DOI: 10.1021/Acs.Nanolett.6B02538 |
0.356 |
|
2016 |
Jiang JW, Park HS. Negative Poisson's Ratio in Single-Layer Graphene Ribbons. Nano Letters. PMID 26986994 DOI: 10.1021/Acs.Nanolett.6B00311 |
0.369 |
|
2016 |
Park H. Computational modeling of electromechanical instabilities in dielectric elastomers(Conference Presentation) Proceedings of Spie. 9798. DOI: 10.1117/12.2207460 |
0.323 |
|
2016 |
Hanakata PZ, Carvalho A, Campbell DK, Park HS. Polarization and valley switching in monolayer group-IV monochalcogenides Physical Review B - Condensed Matter and Materials Physics. 94. DOI: 10.1103/Physrevb.94.035304 |
0.477 |
|
2016 |
Bahamon DA, Qi Z, Park HS, Pereira VM, Campbell DK. Graphene kirigami as a platform for stretchable and tunable quantum dot arrays Physical Review B - Condensed Matter and Materials Physics. 93. DOI: 10.1103/Physrevb.93.235408 |
0.527 |
|
2016 |
Yan X, Cao P, Tao W, Sharma P, Park HS. Atomistic modeling at experimental strain rates and timescales Journal of Physics D. 49: 493002. DOI: 10.1088/0022-3727/49/49/493002 |
0.341 |
|
2016 |
Jiang JW, Kim SY, Park HS. Auxetic nanomaterials: Recent progress and future development Applied Physics Reviews. 3. DOI: 10.1063/1.4964479 |
0.308 |
|
2016 |
Zhang H, Jiang J, Chang T, Guo X, Park HS. The effects of free edge interaction-induced knotting on the buckling of monolayer graphene International Journal of Solids and Structures. 446-455. DOI: 10.1016/J.Ijsolstr.2016.09.017 |
0.35 |
|
2016 |
Seifi S, Park HS. Computational modeling of electro-elasto-capillary phenomena in dielectric elastomers International Journal of Solids and Structures. 87: 236-244. DOI: 10.1016/J.Ijsolstr.2016.02.004 |
0.303 |
|
2015 |
Wang CX, Zhang C, Jiang JW, Park HS, Rabczuk T. Mechanical strain effects on black phosphorus nanoresonators. Nanoscale. PMID 26649476 DOI: 10.1039/C5Nr06441D |
0.301 |
|
2015 |
Hanakata PZ, Qi Z, Campbell DK, Park HS. Highly stretchable MoS2 kirigami. Nanoscale. PMID 26628005 DOI: 10.1039/C5Nr06431G |
0.77 |
|
2015 |
Bahamon DA, Qi Z, Park HS, Pereira VM, Campbell DK. Conductance signatures of electron confinement induced by strained nanobubbles in graphene. Nanoscale. PMID 26325579 DOI: 10.1039/C5Nr03393D |
0.536 |
|
2015 |
Jiang JW, Wang BS, Wang JS, Park HS. A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance. Journal of Physics. Condensed Matter : An Institute of Physics Journal. 27: 083001. PMID 25612615 DOI: 10.1088/0953-8984/27/8/083001 |
0.308 |
|
2015 |
Qi Z, Zhang J, Zhang G, Park HS. Coupling tension and shear for highly sensitive graphene-based strain sensors Arxiv: Mesoscale and Nanoscale Physics. 2: 35002. DOI: 10.1088/2053-1583/2/3/035002 |
0.331 |
|
2015 |
Jiang JW, Park HS. A Gaussian treatment for the friction issue of Lennard-Jones potential in layered materials: Application to friction between graphene, MoS2, and black phosphorus Journal of Applied Physics. 117. DOI: 10.1063/1.4916538 |
0.325 |
|
2014 |
Ben X, Park HS. Atomistic simulations of electric field effects on the Young's modulus of metal nanowires. Nanotechnology. 25: 455704. PMID 25337694 DOI: 10.1088/0957-4484/25/45/455704 |
0.311 |
|
2014 |
Jiang JW, Park HS. Negative poisson's ratio in single-layer black phosphorus. Nature Communications. 5: 4727. PMID 25131569 DOI: 10.1038/Ncomms5727 |
0.317 |
|
2014 |
Cao P, Lin X, Park HS. Surface shear-transformation zones in amorphous solids. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 90: 012311. PMID 25122307 DOI: 10.1103/Physreve.90.012311 |
0.33 |
|
2014 |
Midtvedt D, Croy A, Isacsson A, Qi Z, Park HS. Fermi-Pasta-Ulam physics with nanomechanical graphene resonators: intrinsic relaxation and thermalization from flexural mode coupling. Physical Review Letters. 112: 145503. PMID 24765986 DOI: 10.1103/Physrevlett.112.145503 |
0.327 |
|
2014 |
Jiang JW, Park HS, Rabczuk T. MoS2 nanoresonators: intrinsically better than graphene? Nanoscale. 6: 3618-25. PMID 24556934 DOI: 10.1039/C3Nr05991J |
0.349 |
|
2014 |
Jiang JW, Wang BS, Park HS, Rabczuk T. Adsorbate migration effects on continuous and discontinuous temperature-dependent transitions in the quality factors of graphene nanoresonators. Nanotechnology. 25: 025501. PMID 24334407 DOI: 10.1088/0957-4484/25/2/025501 |
0.317 |
|
2014 |
Wang J, Nguyen TD, Park HS. Electrostatically Driven Creep in Viscoelastic Dielectric Elastomers Journal of Applied Mechanics. 81: 51006. DOI: 10.1115/1.4025999 |
0.304 |
|
2014 |
Qi Z, Campbell DK, Park HS. Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami Physical Review B - Condensed Matter and Materials Physics. 90. DOI: 10.1103/Physrevb.90.245437 |
0.535 |
|
2014 |
Qi Z, Kitt AL, Park HS, Pereira VM, Campbell DK, Castro Neto AH. Pseudomagnetic fields in graphene nanobubbles of constrained geometry: A molecular dynamics study Physical Review B - Condensed Matter and Materials Physics. 90. DOI: 10.1103/Physrevb.90.125419 |
0.537 |
|
2014 |
Jiang JW, Park HS. Mechanical properties of single-layer black phosphorus Journal of Physics D: Applied Physics. 47. DOI: 10.1088/0022-3727/47/38/385304 |
0.322 |
|
2014 |
Jiang JW, Park HS. Mechanical properties of MoS2/graphene heterostructures Applied Physics Letters. 105. DOI: 10.1063/1.4891342 |
0.361 |
|
2013 |
Cao P, Park HS, Lin X. Strain-rate and temperature-driven transition in the shear transformation zone for two-dimensional amorphous solids. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 88: 042404. PMID 24229186 DOI: 10.1103/Physreve.88.042404 |
0.302 |
|
2013 |
Jiang JW, Qi Z, Park HS, Rabczuk T. Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect. Nanotechnology. 24: 435705. PMID 24084656 DOI: 10.1088/0957-4484/24/43/435705 |
0.351 |
|
2013 |
Qi Z, Bahamon DA, Pereira VM, Park HS, Campbell DK, Neto AH. Resonant tunneling in graphene pseudomagnetic quantum dots. Nano Letters. 13: 2692-7. PMID 23659203 DOI: 10.1021/Nl400872Q |
0.499 |
|
2013 |
Kitt AL, Qi Z, Rémi S, Park HS, Swan AK, Goldberg BB. How graphene slides: measurement and theory of strain-dependent frictional forces between graphene and SiO2. Nano Letters. 13: 2605-10. PMID 23627605 DOI: 10.1021/Nl4007112 |
0.321 |
|
2013 |
Jiang JW, Park HS, Rabczuk T. Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity Journal of Applied Physics. 114: 64307. DOI: 10.1063/1.4818414 |
0.335 |
|
2013 |
Liu XY, Wang FC, Park HS, Wu HA. Defecting controllability of bombarding graphene with different energetic atoms via reactive force field model Journal of Applied Physics. 114: 54313. DOI: 10.1063/1.4817790 |
0.307 |
|
2013 |
Jayawardana K, Mordacq C, Ortner C, Park HS. An Analysis Of The Boundary Layer In The 1D Surface Cauchy-Born Model ∗ Mathematical Modelling and Numerical Analysis. 47: 109-123. DOI: 10.1051/M2An/2012021 |
0.311 |
|
2013 |
Park HS, Nguyen TD. Viscoelastic effects on electromechanical instabilities in dielectric elastomers Soft Matter. 9: 1031-1042. DOI: 10.1039/C2Sm27375F |
0.305 |
|
2013 |
Jiang JW, Leach AM, Gall K, Park HS, Rabczuk T. A surface stacking fault energy approach to predicting defect nucleation in surface-dominated nanostructures Journal of the Mechanics and Physics of Solids. 61: 1915-1934. DOI: 10.1016/J.Jmps.2013.04.008 |
0.309 |
|
2012 |
Jiang JW, Park HS, Rabczuk T. Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: the effective strain mechanism. Nanotechnology. 23: 475501. PMID 23117225 DOI: 10.1088/0957-4484/23/47/475501 |
0.331 |
|
2012 |
Zhan H, Gu Y, Park HS. Beat phenomena in metal nanowires, and their implications for resonance-based elastic property measurements. Nanoscale. 4: 6779-85. PMID 22996047 DOI: 10.1039/C2Nr31545A |
0.336 |
|
2012 |
Qi Z, Park HS. Intrinsic energy dissipation in CVD-grown graphene nanoresonators. Nanoscale. 4: 3460-5. PMID 22538383 DOI: 10.1039/C2Nr30493G |
0.323 |
|
2012 |
Olsson PAT, Park HS. On the importance of surface elastic contributions to the flexural rigidity of nanowires Journal of the Mechanics and Physics of Solids. 60: 2064-2083. DOI: 10.1016/J.Jmps.2012.07.009 |
0.326 |
|
2012 |
Yun G, Park HS. Bridging the gap between experimental measurements and atomistic predictions of the elastic properties of silicon nanowires using multiscale modeling Finite Elements in Analysis and Design. 49: 3-12. DOI: 10.1016/J.Finel.2011.08.014 |
0.353 |
|
2012 |
Park HS. Surface stress effects on the critical buckling strains of silicon nanowires Computational Materials Science. 51: 396-401. DOI: 10.1016/J.Commatsci.2011.07.059 |
0.315 |
|
2011 |
Jun S, Tashi T, Park HS. Size dependence of the nonlinear elastic softening of nanoscale graphene monolayers under plane-strain bulge tests: a molecular dynamics study Journal of Nanomaterials. 2011: 15. DOI: 10.1155/2011/380286 |
0.35 |
|
2011 |
Dai S, Gharbi M, Sharma P, Park HS. Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials Journal of Applied Physics. 110: 104305. DOI: 10.1063/1.3660431 |
0.322 |
|
2011 |
Eom K, Park HS, Yoon DS, Kwon T. Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles Physics Reports. 503: 115-163. DOI: 10.1016/J.Physrep.2011.03.002 |
0.316 |
|
2011 |
Park HS, Devel M, Wang Z. A new multiscale formulation for the electromechanical behavior of nanomaterials Computer Methods in Applied Mechanics and Engineering. 200: 2447-2457. DOI: 10.1016/J.Cma.2011.04.003 |
0.303 |
|
2011 |
Olsson PAT, Park HS. Atomistic study of the buckling of gold nanowires Acta Materialia. 59: 3883-3894. DOI: 10.1016/J.Actamat.2011.03.012 |
0.327 |
|
2010 |
Dai S, Dunn ML, Park HS. Piezoelectric constants for ZnO calculated using classical polarizable core-shell potentials. Nanotechnology. 21: 445707. PMID 20935348 DOI: 10.1088/0957-4484/21/44/445707 |
0.304 |
|
2010 |
Qi Z, Zhao F, Zhou X, Sun Z, Park HS, Wu H. A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons. Nanotechnology. 21: 265702. PMID 20522927 DOI: 10.1088/0957-4484/21/26/265702 |
0.304 |
|
2010 |
Kim SY, Park HS. On the utility of vacancies and tensile strain-induced quality factor enhancement for mass sensing using graphene monolayers. Nanotechnology. 21: 105710. PMID 20160344 DOI: 10.1088/0957-4484/21/10/105710 |
0.319 |
|
2010 |
Farsad M, Vernerey FJ, Park HS. An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials International Journal For Numerical Methods in Engineering. 84: 1466-1489. DOI: 10.1002/Nme.2946 |
0.325 |
|
2010 |
Park HS. A multiscale finite element method for the dynamic analysis of surface-dominated nanomaterials International Journal For Numerical Methods in Engineering. 83: 1237-1254. DOI: 10.1002/Nme.2856 |
0.352 |
|
2009 |
Kim SY, Park HS. The importance of edge effects on the intrinsic loss mechanisms of graphene nanoresonators. Nano Letters. 9: 969-74. PMID 19239202 DOI: 10.1021/Nl802853E |
0.352 |
|
2009 |
Park HS, Cai W, Espinosa HD, Huang H. Mechanics of Crystalline Nanowires Mrs Bulletin. 34: 178-183. DOI: 10.1557/Mrs2009.49 |
0.325 |
|
2009 |
Jun S, Pendurti S, Lee I-, Kim SY, Park HS, Kim Y-. Action-Derived Ab Initio Molecular Dynamics International Journal of Applied Mechanics. 1: 469-482. DOI: 10.1142/S1758825109000277 |
0.316 |
|
2009 |
Yun G, Park HS. Surface stress effects on the bending properties of fcc metal nanowires Physical Review B - Condensed Matter and Materials Physics. 79. DOI: 10.1103/Physrevb.79.195421 |
0.317 |
|
2009 |
Kim SY, Park HS. Multilayer friction and attachment effects on energy dissipation in graphene nanoresonators Applied Physics Letters. 94: 101918. DOI: 10.1063/1.3099932 |
0.324 |
|
2008 |
Park HS. Strain sensing through the resonant properties of deformed metal nanowires Journal of Applied Physics. 104. DOI: 10.1063/1.2953086 |
0.305 |
|
2008 |
Park HS, Klein PA. Surface stress effects on the resonant properties of metal nanowires: The importance of finite deformation kinematics and the impact of the residual surface stress Journal of the Mechanics and Physics of Solids. 56: 3144-3166. DOI: 10.1016/J.Jmps.2008.08.003 |
0.308 |
|
2008 |
Yun G, Park HS. A multiscale, finite deformation formulation for surface stress effects on the coupled thermomechanical behavior of nanomaterials Computer Methods in Applied Mechanics and Engineering. 197: 3337-3350. DOI: 10.1016/J.Cma.2008.02.001 |
0.304 |
|
2008 |
Yun G, Park HS. A finite element formulation for nanoscale resonant mass sensing using the surface Cauchy-Born model Computer Methods in Applied Mechanics and Engineering. 197: 3324-3336. DOI: 10.1016/J.Cma.2008.01.010 |
0.315 |
|
2008 |
Park HS, Klein PA. A Surface Cauchy-Born model for silicon nanostructures Computer Methods in Applied Mechanics and Engineering. 197: 3249-3260. DOI: 10.1016/J.Cma.2007.12.004 |
0.308 |
|
2007 |
Pu Q, Leng Y, Tsetseris L, Park HS, Pantelides ST, Cummings PT. Molecular dynamics simulations of stretched gold nanowires: the relative utility of different semiempirical potentials. The Journal of Chemical Physics. 126: 144707. PMID 17444732 DOI: 10.1063/1.2717162 |
0.309 |
|
2007 |
Park HS, Klein PA. Surface Cauchy-Born analysis of surface stress effects on metallic nanowires Physical Review B - Condensed Matter and Materials Physics. 75. DOI: 10.1103/Physrevb.75.085408 |
0.306 |
|
2007 |
Ji C, Park HS. The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires Nanotechnology. 18: 305704. DOI: 10.1088/0957-4484/18/30/305704 |
0.34 |
|
2007 |
Ji C, Park HS. Characterizing the elasticity of hollow metal nanowires Nanotechnology. 18: 115707. DOI: 10.1088/0957-4484/18/11/115707 |
0.332 |
|
2007 |
Farrell DE, Park HS, Liu WK. Implementation aspects of the bridging scale method and application to intersonic crack propagation International Journal For Numerical Methods in Engineering. 71: 583-605. DOI: 10.1002/Nme.1981 |
0.654 |
|
2007 |
Karpov EG, Park HS, Liu WK. A phonon heat bath approach for the atomistic and multiscale simulation of solids International Journal For Numerical Methods in Engineering. 70: 351-378. DOI: 10.1002/Nme.1884 |
0.504 |
|
2006 |
Ji C, Park HS. Geometric effects on the inelastic deformation of metal nanowires Applied Physics Letters. 89: 181916. DOI: 10.1063/1.2372748 |
0.32 |
|
2006 |
Park HS, Zimmerman JA. Stable nanobridge formation in 〈1 1 0〉 gold nanowires under tensile deformation Scripta Materialia. 54: 1127-1132. DOI: 10.1016/J.Scriptamat.2005.11.064 |
0.303 |
|
2006 |
Park HS, Gall K, Zimmerman JA. Deformation of FCC nanowires by twinning and slip Journal of the Mechanics and Physics of Solids. 54: 1862-1881. DOI: 10.1016/J.Jmps.2006.03.006 |
0.332 |
|
2006 |
Karpov EG, Yu H, Park HS, Liu WK, Wang QJ, Qian D. Multiscale boundary conditions in crystalline solids: Theory and application to nanoindentation International Journal of Solids and Structures. 43: 6359-6379. DOI: 10.1016/J.Ijsolstr.2005.10.003 |
0.621 |
|
2006 |
Liu WK, Park HS, Qian D, Karpov EG, Kadowaki H, Wagner GJ. Bridging scale methods for nanomechanics and materials Computer Methods in Applied Mechanics and Engineering. 195: 1407-1421. DOI: 10.1016/J.Cma.2005.05.042 |
0.751 |
|
2006 |
Park HS, Klein PA, Wagner GJ. A surface Cauchy-Born model for nanoscale materials International Journal For Numerical Methods in Engineering. 68: 1072-1095. DOI: 10.1002/Nme.1754 |
0.636 |
|
2005 |
Park HS, Zimmerman JA. Modeling inelasticity and failure in gold nanowires Physical Review B - Condensed Matter and Materials Physics. 72. DOI: 10.1103/Physrevb.72.054106 |
0.327 |
|
2005 |
Park HS, Karpov EG, Wing KL, Klein PA. The bridging scale for two-dimensional atomistic/continuum coupling Philosophical Magazine. 85: 79-113. DOI: 10.1080/14786430412331300163 |
0.336 |
|
2005 |
Park HS, Karpov EG, Klein PA, Liu WK. Three-dimensional bridging scale analysis of dynamic fracture Journal of Computational Physics. 207: 588-609. DOI: 10.1016/J.Jcp.2005.01.028 |
0.534 |
|
2005 |
Park HS, Karpov EG, Liu WK. Non-reflecting boundary conditions for atomistic, continuum and coupled atomistic/continuum simulations International Journal For Numerical Methods in Engineering. 64: 237-259. DOI: 10.1002/Nme.1357 |
0.516 |
|
2004 |
Park HS, Liu WK. An introduction and tutorial on multiple-scale analysis in solids Computer Methods in Applied Mechanics and Engineering. 193: 1733-1772. DOI: 10.1016/J.Cma.2003.12.054 |
0.528 |
|
2004 |
Park HS, Karpov EG, Liu WK. A temperature equation for coupled atomistic/continuum simulations Computer Methods in Applied Mechanics and Engineering. 193: 1713-1732. DOI: 10.1016/J.Cma.2003.12.023 |
0.529 |
|
2004 |
Liu WK, Karpov EG, Zhang S, Park HS. An introduction to computational nanomechanics and materials Computer Methods in Applied Mechanics and Engineering. 193: 1529-1578. DOI: 10.1016/J.Cma.2003.12.008 |
0.53 |
|
2002 |
Hao S, Park HS, Liu WK. Moving particle finite element method International Journal For Numerical Methods in Engineering. 53: 1937-1958. DOI: 10.1002/Nme.368 |
0.472 |
|
Show low-probability matches. |