Year |
Citation |
Score |
2020 |
Luo F, Mehrotra S. Distributionally robust optimization with decision dependent ambiguity sets Optimization Letters. 1-30. DOI: 10.1007/S11590-020-01574-3 |
0.378 |
|
2019 |
Bansal M, Mehrotra S. On solving two-stage distributionally robust disjunctive programs with a general ambiguity set European Journal of Operational Research. 279: 296-307. DOI: 10.1016/J.Ejor.2019.05.033 |
0.478 |
|
2019 |
Luo F, Mehrotra S. Decomposition algorithm for distributionally robust optimization using Wasserstein metric with an application to a class of regression models European Journal of Operational Research. 278: 20-35. DOI: 10.1016/J.Ejor.2019.03.008 |
0.408 |
|
2018 |
Bansal M, Huang K, Mehrotra S. Decomposition Algorithms for Two-Stage Distributionally Robust Mixed Binary Programs Siam Journal On Optimization. 28: 2360-2383. DOI: 10.1137/17M1115046 |
0.436 |
|
2018 |
Bansal M, Huang K, Mehrotra S. Tight Second Stage Formulations in Two-Stage Stochastic Mixed Integer Programs Siam Journal On Optimization. 28: 788-819. DOI: 10.1137/16M1083955 |
0.434 |
|
2018 |
Hu J, Bansal M, Mehrotra S. Robust decision making using a general utility set European Journal of Operational Research. 269: 699-714. DOI: 10.1016/J.Ejor.2018.02.018 |
0.382 |
|
2017 |
Huang K, Mehrotra S. Solution of Monotone Complementarity and General Convex Programming Problems Using a Modified Potential Reduction Interior Point Method Informs Journal On Computing. 29: 36-53. DOI: 10.1287/Ijoc.2016.0715 |
0.434 |
|
2017 |
Koc U, Mehrotra S. Generation of feasible integer solutions on a massively parallel computer using the feasibility pump Operations Research Letters. 45: 652-658. DOI: 10.1016/J.Orl.2017.10.003 |
0.349 |
|
2016 |
Liu C, Lee C, Chen H, Mehrotra S. Stochastic robust mathematical programming model for power system optimization Ieee Transactions On Power Systems. 31: 821-822. DOI: 10.1109/Tpwrs.2015.2394320 |
0.394 |
|
2015 |
Kim K, Mehrotra S. A two-stage stochastic integer programming approach to integrated staffing and scheduling with application to nurse management Operations Research. 63: 1431-1451. DOI: 10.1287/Opre.2015.1421 |
0.653 |
|
2015 |
Lee C, Liu C, Mehrotra S, Bie Z. Robust distribution network reconfiguration Ieee Transactions On Smart Grid. 6: 836-842. DOI: 10.1109/Tsg.2014.2375160 |
0.369 |
|
2015 |
Hu J, Mehrotra S. Robust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimization Iie Transactions (Institute of Industrial Engineers). 47: 358-372. DOI: 10.1080/0740817X.2014.919045 |
0.317 |
|
2015 |
Chen M, Mehrotra S, Papp D. Scenario generation for stochastic optimization problems via the sparse grid method Computational Optimization and Applications. 62: 669-692. DOI: 10.1007/S10589-015-9751-7 |
0.353 |
|
2015 |
Huang KL, Mehrotra S. An empirical evaluation of a walk-relax-round heuristic for mixed integer convex programs Computational Optimization and Applications. 60: 559-585. DOI: 10.1007/S10589-014-9693-5 |
0.56 |
|
2014 |
Mehrotra S, Papp D. A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization Siam Journal On Optimization. 24: 1670-1697. DOI: 10.1137/130925013 |
0.439 |
|
2014 |
Lee C, Liu C, Mehrotra S, Shahidehpour M. Modeling transmission line constraints in two-stage robust unit commitment problem Ieee Transactions On Power Systems. 29: 1221-1231. DOI: 10.1109/Tpwrs.2013.2291498 |
0.395 |
|
2014 |
Hu J, Homem-De-Mello T, Mehrotra S. Stochastically weighted stochastic dominance concepts with an application in capital budgeting European Journal of Operational Research. 232: 572-583. DOI: 10.1016/J.Ejor.2013.08.007 |
0.313 |
|
2014 |
Mehrotra S, Zhang H. Models and algorithms for distributionally robust least squares problems Mathematical Programming. 146: 123-141. DOI: 10.1007/S10107-013-0681-9 |
0.418 |
|
2013 |
Turner J, Kim K, Mehrotra S, DaRosa DA, Daskin MS, Rodriguez HE. Using optimization models to demonstrate the need for structural changes in training programs for surgical medical residents. Health Care Management Science. 16: 217-27. PMID 23519945 DOI: 10.1007/S10729-013-9230-6 |
0.583 |
|
2013 |
Mehrotra S, Papp D. Generating moment matching scenarios using optimization techniques Siam Journal On Optimization. 23: 963-999. DOI: 10.1137/110858082 |
0.402 |
|
2013 |
Huang KL, Mehrotra S. An empirical evaluation of walk-and-round heuristics for mixed integer linear programs Computational Optimization and Applications. 55: 545-570. DOI: 10.1007/S10589-013-9540-0 |
0.522 |
|
2012 |
Mehrotra S, Huang KL. Computational experience with a modified potential reduction algorithm for linear programming Optimization Methods and Software. 27: 865-891. DOI: 10.1080/10556788.2011.634911 |
0.554 |
|
2012 |
Mehrotra S, Kim K, Liebovitz D, Goldberger J. SUDDEN CARDIAC ARREST RISK ASSESSMENT USING A MULTIVARIATE MODEL Journal of the American College of Cardiology. 59: E564. DOI: 10.1016/S0735-1097(12)60565-8 |
0.525 |
|
2012 |
Mehrotra S, Kim K, Liebovitz D. MYOPATHY PREVALENCE IN STATIN TREATED PATIENTS WITH COMORBIDITIES AND COMBINATION THERAPIES Journal of the American College of Cardiology. 59: E274. DOI: 10.1016/S0735-1097(12)60275-7 |
0.514 |
|
2012 |
Hu J, Homem-De-Mello T, Mehrotra S. Sample average approximation of stochastic dominance constrained programs Mathematical Programming. 133: 171-201. DOI: 10.1007/S10107-010-0428-9 |
0.413 |
|
2011 |
Mehrotra S, Kim K. Outcome based state budget allocation for diabetes prevention programs using multi-criteria optimization with robust weights. Health Care Management Science. 14: 324-37. PMID 21674143 DOI: 10.1007/S10729-011-9166-7 |
0.611 |
|
2011 |
Chen M, Mehrotra S. Self-concordance and Decomposition-based Interior Point Methods for the Two-stage Stochastic Convex Optimization Problem Siam Journal On Optimization. 21: 1667-1687. DOI: 10.1137/080742026 |
0.465 |
|
2011 |
Hu J, Homem-De-Mello T, Mehrotra S. Risk-adjusted budget allocation models with application in homeland security Iie Transactions (Institute of Industrial Engineers). 43: 819-839. DOI: 10.1080/0740817X.2011.578610 |
0.319 |
|
2010 |
Mehrotra S, Li Z. Segment LLL reduction of lattice bases using modular arithmetic Algorithms. 3: 224-243. DOI: 10.3390/A3030224 |
0.315 |
|
2010 |
Mehrotra S, Özevin MG. Convergence of a Weighted Barrier Decomposition Algorithm for Two-Stage Stochastic Programming with Discrete Support Siam Journal On Optimization. 20: 2474-2486. DOI: 10.1137/080741380 |
0.382 |
|
2010 |
Mehrotra S, Li Z. Branching on hyperplane methods for mixed integer linear and convex programming using adjoint lattices Journal of Global Optimization. 49: 623-649. DOI: 10.1007/S10898-010-9554-4 |
0.444 |
|
2009 |
Mehrotra S, Ozevin MG. Decomposition based interior point methods for two-stage stochastic convex quadratic programs with recourse Operations Research. 57: 964-974. DOI: 10.1287/Opre.1080.0659 |
0.606 |
|
2009 |
Homem-De-mello T, Mehrotra S. A cutting-surface method for uncertain linear programs with polyhedral stochastic dominance constraints Siam Journal On Optimization. 20: 1250-1273. DOI: 10.1137/08074009X |
0.438 |
|
2009 |
Mehrotra S, Özevin MG. On the Implementation of Interior Point Decomposition Algorithms for Two-Stage Stochastic Conic Programs Siam Journal On Optimization. 19: 1846-1880. DOI: 10.1137/050643805 |
0.474 |
|
2007 |
Mehrotra S, Özevin MG. Decomposition‐Based Interior Point Methods for Two‐Stage Stochastic Semidefinite Programming Siam Journal On Optimization. 18: 206-222. DOI: 10.1137/050622067 |
0.483 |
|
2005 |
Mehrotra S, Li Z. Convergence Conditions and Krylov Subspace--Based Corrections for Primal-Dual Interior-Point Method Siam Journal On Optimization. 15: 635-653. DOI: 10.1137/S1052623403431494 |
0.384 |
|
2005 |
Akgunduz A, Banerjee P, Mehrotra S. A linear programming solution for exact collision detection Journal of Computing and Information Science in Engineering. 5: 48-55. DOI: 10.1115/1.1846053 |
0.38 |
|
2002 |
Owen JH, Mehrotra S. On the value of binary expansions for general mixed-integer linear programs Operations Research. 50: 810-819. DOI: 10.1287/Opre.50.5.810.370 |
0.404 |
|
2002 |
Stubbs RA, Mehrotra S. Journal of Global Optimization. 24: 311-332. DOI: 10.1023/A:1020351410169 |
0.375 |
|
2001 |
Owen JH, Mehrotra S. Experimental results on using general disjunctions in branch-and-bound for general-integer linear programs Computational Optimization and Applications. 20: 159-170. DOI: 10.1023/A:1011207119557 |
0.402 |
|
2001 |
Owen JH, Mehrotra S. A disjunctive cutting plane procedure for general mixed-integer linear programs Mathematical Programming. 89: 437-448. DOI: 10.1007/Pl00011407 |
0.436 |
|
1999 |
Czyzyk J, Mehrotra S, Wagner M, Wright SJ. PCx: an interior-point code for linear programming Optimization Methods and Software. 11: 397-430. DOI: 10.1080/10556789908805757 |
0.36 |
|
1999 |
Stubbs RA, Mehrotra S. A branch-and-cut method for 0-1 mixed convex programming Mathematical Programming. 86: 515-532. DOI: 10.1007/S101070050103 |
0.415 |
|
1998 |
Czyzyk J, Fourer R, Mehrotra S. Using a Massively Parallel Processor to Solve Large Sparse Linear Programs by an Interior-Point Method Siam Journal On Scientific Computing. 19: 553-565. DOI: 10.1137/S1064827594272086 |
0.4 |
|
1996 |
Monteiro RDC, Mehrotra S. A general parametric analysis approach and its implication to sensitivity analysis in interior point methods Mathematical Programming, Series B. 72: 65-82. DOI: 10.1007/Bf02592332 |
0.336 |
|
1996 |
Mehrotra S. Asymptotic convergence in a generalized predictor-corrector method Mathematical Programming, Series B. 74: 11-28. DOI: 10.1007/Bf02592143 |
0.302 |
|
1995 |
Czyzyk J, Fourer R, Mehrotra S. A Study of the Augmented System and Column-Splitting Approaches for Solving Two-Stage Stochastic Linear Programs by Interior-Point Methods Orsa Journal On Computing. 7: 474-490. DOI: 10.1287/Ijoc.7.4.474 |
0.429 |
|
1994 |
Mehrotra S, Stubbs RA. Predictor-corrector Methods for a Class of Linear Complementarity Problems Siam Journal On Optimization. 4: 441-453. DOI: 10.1137/0804024 |
0.369 |
|
1993 |
Mehrotra S. Quadratic Convergence in a Primal-Dual Method Mathematics of Operations Research. 18: 741-751. DOI: 10.1287/Moor.18.3.741 |
0.426 |
|
1993 |
Mehrotra S, Ye Y. Finding an interior point in the optimal face of linear programs Mathematical Programming. 62: 497-515. DOI: 10.1007/Bf01585180 |
0.43 |
|
1993 |
Fourer R, Mehrotra S. Solving symmetric indefinite systems in an interior-point method for linear programming Mathematical Programming. 62: 15-39. DOI: 10.1007/Bf01585158 |
0.328 |
|
1992 |
Mehrotra S. Implementations of Affine Scaling Methods: Approximate Solutions of Systems of Linear Equations Using Preconditioned Conjugate Gradient Methods Orsa Journal On Computing. 4: 103-118. DOI: 10.1287/Ijoc.4.2.103 |
0.334 |
|
1992 |
Mehrotra S. On the Implementation of a Primal-Dual Interior Point Method Siam Journal On Optimization. 2: 575-601. DOI: 10.1137/0802028 |
0.345 |
|
1991 |
Mehrotra S, Sun J. A method of Analytic Centers for Quadratically Constrained Convex Quadratic Programs Siam Journal On Numerical Analysis. 28: 529-544. DOI: 10.1137/0728029 |
0.406 |
|
1991 |
Mehrotra S. On finding a vertex solution using interior point methods Linear Algebra and Its Applications. 152: 233-253. DOI: 10.1016/0024-3795(91)90277-4 |
0.394 |
|
1991 |
Mehrotra S, Sun J. On computing the center of a convex quadratically constrained set Mathematical Programming. 50: 81-89. DOI: 10.1007/Bf01594926 |
0.447 |
|
1990 |
Mehrotra S, Sun J. An Algorithm for Convex Quadratic Programming That RequiresO(n3.5L) Arithmetic Operations Mathematics of Operations Research. 15: 342-363. DOI: 10.1287/Moor.15.2.342 |
0.352 |
|
1989 |
Goldfarb D, Mehrotra S. A Self-Correcting Version of Karmarkar’s Algorithm Siam Journal On Numerical Analysis. 26: 1006-1015. DOI: 10.1137/0726056 |
0.595 |
|
1988 |
Goldfarb D, Mehrotra S. A relaxed version of Karmarkar's method Mathematical Programming. 40: 289-315. DOI: 10.1007/Bf01580737 |
0.558 |
|
1988 |
Goldfarb D, Mehrotra S. Relaxed variants of Karmarkar's algorithm for linear programs with unknown optimal objective value Mathematical Programming. 40: 183-195. DOI: 10.1007/Bf01580729 |
0.639 |
|
Show low-probability matches. |