Year |
Citation |
Score |
2023 |
Chen A, Dissanayake TU, Sun J, Woehl TJ. Unraveling chemical processes during nanoparticle synthesis with liquid phase electron microscopy and correlative techniques. Chemical Communications (Cambridge, England). PMID 37807847 DOI: 10.1039/d3cc03723a |
0.34 |
|
2023 |
Sun J, Leff A, Li Y, Woehl TJ. Visualizing formation of high entropy alloy nanoparticles with liquid phase transmission electron microscopy. Nanoscale. 15: 10447-10457. PMID 37306626 DOI: 10.1039/d3nr01073b |
0.304 |
|
2023 |
Chen A, Leff AC, Forcherio GT, Boltersdorf J, Woehl TJ. Examining Silver Deposition Pathways onto Gold Nanorods with Liquid-Phase Transmission Electron Microscopy. The Journal of Physical Chemistry Letters. 14: 1379-1388. PMID 36729066 DOI: 10.1021/acs.jpclett.2c03666 |
0.318 |
|
2021 |
Wang M, Park C, Woehl TJ. Real-time imaging of metallic supraparticle assembly during nanoparticle synthesis. Nanoscale. PMID 34928292 DOI: 10.1039/d1nr05416c |
0.316 |
|
2021 |
Dissanayake TU, Wang M, Woehl TJ. Revealing Reactions between the Electron Beam and Nanoparticle Capping Ligands with Correlative Fluorescence and Liquid-Phase Electron Microscopy. Acs Applied Materials & Interfaces. 13: 37553-37562. PMID 34338503 DOI: 10.1021/acsami.1c10957 |
0.336 |
|
2020 |
Woehl TJ, Moser T, Evans JE, Ross FM. Electron-beam-driven chemical processes during liquid phase transmission electron microscopy Mrs Bulletin. 45: 746-753. DOI: 10.1557/Mrs.2020.227 |
0.465 |
|
2020 |
Woehl TJ. Metal Nanocrystal Formation during Liquid Phase Transmission Electron Microscopy: Thermodynamics and Kinetics of Precursor Conversion, Nucleation, and Growth† Chemistry of Materials. DOI: 10.1021/Acs.Chemmater.0C01360 |
0.409 |
|
2020 |
Wang M, Woehl T. Establishing Flask-Relevant Reaction Conditions for Imaging Bimetallic Nanocrystal Formation with Liquid Phase Transmission Electron Microscopy Microscopy and Microanalysis. 1-3. DOI: 10.1017/S1431927620022060 |
0.418 |
|
2019 |
Woehl T. Refocusing in Situ Electron Microscopy: Moving beyond Visualization of Nanoparticle Self-Assembly To Gain Practical Insights into Advanced Material Fabrication. Acs Nano. 13: 12272-12279. PMID 31738051 DOI: 10.1021/Acsnano.9B08281 |
0.384 |
|
2019 |
Torres L, Daristotle JL, Ayyub OB, Bellato Meinhardt BM, Garimella H, Margaronis A, Seifert S, Bedford NM, Woehl TJ, Kofinas P. Structurally colored protease responsive nanoparticle hydrogels with degradation-directed assembly. Nanoscale. PMID 31552983 DOI: 10.1039/C9Nr04624K |
0.309 |
|
2019 |
Wang M, Dissanayake TU, Park C, Gaskell KJ, Woehl TJ. Nanoscale mapping of non-uniform heterogeneous nucleation kinetics mediated by surface chemistry. Journal of the American Chemical Society. PMID 31362493 DOI: 10.1021/Jacs.9B05225 |
0.419 |
|
2019 |
Wong NA, Uchida NV, Dissanayake TU, Patel M, Iqbal M, Woehl TJ. Detection and Sizing of Submicron Particles in Biologics With Interferometric Scattering Microscopy. Journal of Pharmaceutical Sciences. PMID 31160046 DOI: 10.1016/J.Xphs.2019.05.003 |
0.313 |
|
2019 |
Wang M, Park C, Woehl TJ. Visualizing Platinum Supraparticle Formation with Liquid Cell Electron Microscopy and Correlative Investigation of Catalytic Activity Microscopy and Microanalysis. 25: 2026-2027. DOI: 10.1017/S1431927619010869 |
0.392 |
|
2019 |
Dissanayake TU, Wang M, Woehl TJ. A Fluorescence Microscopy Assay for Assessing Beam Damage to Nanoparticle Capping Ligands During Liquid Cell Electron Microscopy Microscopy and Microanalysis. 25: 1672-1673. DOI: 10.1017/S1431927619009097 |
0.465 |
|
2019 |
Wang M, Dissanayake TU, Park C, Woehl TJ. Spatially Mapping Heterogeneous Nucleation Kinetics of Silver Nanocrystals with Liquid Cell Scanning Transmission Electron Microscopy Microscopy and Microanalysis. 25: 1422-1423. DOI: 10.1017/S1431927619007840 |
0.42 |
|
2019 |
Wang M, Park C, Woehl T. Toward Quantitative Liquid Cell Electron Microscopy through Kinetic Control of Solution Chemistry Microscopy and Microanalysis. 25: 23-24. DOI: 10.1017/S1431927618015854 |
0.413 |
|
2018 |
Ferrick A, Wang M, Woehl TJ. Direct Visualization of Planar Assembly of Plasmonic Nanoparticles Adjacent to Electrodes in Oscillatory Electric Fields. Langmuir : the Acs Journal of Surfaces and Colloids. PMID 29727566 DOI: 10.1021/Acs.Langmuir.8B00992 |
0.313 |
|
2018 |
Sikaroudi AE, Welch DA, Woehl TJ, Faller R, Evans JE, Browning ND, Park C. Directional Statistics of Preferential Orientations of Two Shapes in Their Aggregate and Its Application to Nanoparticle Aggregation Technometrics. 60: 332-344. DOI: 10.1080/00401706.2017.1366949 |
0.493 |
|
2018 |
Wang M, Park C, Woehl TJ. Quantifying the Nucleation and Growth Kinetics of Electron Beam Nanochemistry with Liquid Cell Scanning Transmission Electron Microscopy Chemistry of Materials. 30: 7727-7736. DOI: 10.1021/Acs.Chemmater.8B03050 |
0.481 |
|
2018 |
Woehl TJ. Utilizing Electron Beam Control and Radiation Chemistry during Liquid Cell Electron Microscopy to Image Protein Aggregates in their Native Hydrated State Microscopy and Microanalysis. 24: 1976-1977. DOI: 10.1017/S143192761801036X |
0.456 |
|
2018 |
Wang M, Woehl TJ, Park C. Quantitative Modeling of Kinetically Controlled Nanocrystal Synthesis with Liquid Cell Electron Microscopy Microscopy and Microanalysis. 24: 280-281. DOI: 10.1017/S1431927618001897 |
0.433 |
|
2017 |
Ramezani-Dakhel H, Bedford NM, Woehl TJ, Knecht MR, Naik RR, Heinz H. Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control. Nanoscale. PMID 28604905 DOI: 10.1039/C7Nr02813J |
0.32 |
|
2017 |
Woehl TJ, Abellan P. Defining the radiation chemistry during liquid cell electron microscopy to enable visualization of nanomaterial growth and degradation dynamics. Journal of Microscopy. 265: 135-147. PMID 27918613 DOI: 10.1111/Jmi.12508 |
0.508 |
|
2017 |
Woehl TJ. Control of Radiation Chemistry during Liquid Cell TEM to Synthesize Transition Metal and Bimetallic Nanoparticles Microscopy and Microanalysis. 23: 854-855. DOI: 10.1017/S1431927617004937 |
0.338 |
|
2016 |
Briggs BD, Palafox-Hernandez JP, Li Y, Lim CK, Woehl TJ, Bedford NM, Seifert S, Swihart MT, Prasad PN, Walsh TR, Knecht MR. Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: bifunctional peptides for linking Au and Ag nanomaterials. Physical Chemistry Chemical Physics : Pccp. PMID 27801441 DOI: 10.1039/C6Cp06135D |
0.312 |
|
2016 |
Wagner R, Woehl TJ, Keller RR, Killgore JP. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam. Applied Physics Letters. 109. PMID 27746481 DOI: 10.1063/1.4960192 |
0.435 |
|
2016 |
Woehl T, Keller R. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle. Ultramicroscopy. 171: 166-176. PMID 27690347 DOI: 10.1016/J.Ultramic.2016.08.008 |
0.605 |
|
2016 |
Bedford NM, Showalter AR, Woehl TJ, Hughes ZE, Lee S, Reinhart B, Ertem SP, Coughlin EB, Ren Y, Walsh TR, Bunker BA. Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials. Acs Nano. PMID 27583654 DOI: 10.1021/Acsnano.6B03963 |
0.357 |
|
2016 |
Woehl TJ, White RM, Keller RR. Dark-Field Scanning Transmission Ion Microscopy via Detection of Forward-Scattered Helium Ions with a Microchannel Plate. Microscopy and Microanalysis : the Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada. 1-7. PMID 27153003 DOI: 10.1017/S1431927616000775 |
0.553 |
|
2016 |
Wagner R, Woehl TJ, Keller RR, Killgore JP. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam Applied Physics Letters. 109. DOI: 10.1063/1.4960192 |
0.557 |
|
2016 |
Candelaria SL, Bedford NM, Woehl TJ, Rentz NS, Showalter AR, Pylypenko S, Bunker BA, Lee S, Reinhart B, Ren Y, Ertem SP, Coughlin EB, Sather NA, Horan JL, Herring AM, et al. Multi-Component Fe–Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions Acs Catalysis. 7: 365-379. DOI: 10.1021/Acscatal.6B02552 |
0.319 |
|
2016 |
Woehl TJ, Abellan P. Harnessing Control of Radiolysis during Liquid Cell Electron Microscopy to Enable Visualization of Nanomaterial Transformation Dynamics Microscopy and Microanalysis. 22: 40-41. DOI: 10.1017/S1431927616012228 |
0.39 |
|
2016 |
Woehl T, Welch D, Park C, Faller R, Evans J, Browning N. The Mechanisms for Preferential Attachment of Nanoparticles in Liquid Determined Using Liquid Cell Electron Microscopy, Machine Learning, and Molecular Dynamics Microscopy and Microanalysis. 22: 812-813. DOI: 10.1017/S1431927616004918 |
0.54 |
|
2015 |
Welch DA, Woehl TJ, Park C, Faller R, Evans JE, Browning ND. Understanding the Role of Solvation Forces on the Preferential Attachment of Nanoparticles in Liquid. Acs Nano. PMID 26588243 DOI: 10.1021/Acsnano.5B06632 |
0.577 |
|
2015 |
Park C, Woehl TJ, Evans JE, Browning ND. Minimum Cost Multi-Way Data Association for Optimizing Multitarget Tracking of Interacting Objects. Ieee Transactions On Pattern Analysis and Machine Intelligence. 37: 611-24. PMID 26353265 DOI: 10.1109/Tpami.2014.2346202 |
0.428 |
|
2015 |
Woehl TJ, Prozorov T. The Mechanisms for Nanoparticle Surface Diffusion and Chain Self-Assembly Determined from Real-Time Nanoscale Kinetics in Liquid Journal of Physical Chemistry C. 119: 21261-21269. DOI: 10.1021/Acs.Jpcc.5B07164 |
0.369 |
|
2015 |
Woehl T, Holm J, Keller R. An Analytical Scattering Model for Low Energy Annular Dark Field Transmission Scanning Electron Microscopy Microscopy and Microanalysis. 21: 1263-1264. DOI: 10.1017/S1431927615007102 |
0.723 |
|
2015 |
Woehl TJ, Prozorov T. Visualization of Gold Nanoparticle Self-assembly Kinetics Microscopy and Microanalysis. 21: 945-946. DOI: 10.1017/S1431927615005528 |
0.31 |
|
2014 |
Woehl TJ, Kashyap S, Firlar E, Perez-Gonzalez T, Faivre D, Trubitsyn D, Bazylinski DA, Prozorov T. Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: toward in vivo imaging. Scientific Reports. 4: 6854. PMID 25358460 DOI: 10.1017/S1431927615008272 |
0.378 |
|
2014 |
Kashyap S, Woehl TJ, Liu X, Mallapragada SK, Prozorov T. Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ. Acs Nano. 8: 9097-106. PMID 25162493 DOI: 10.1021/Nn502551Y |
0.367 |
|
2014 |
Abellan P, Woehl TJ, Parent LR, Browning ND, Evans JE, Arslan I. Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chemical Communications (Cambridge, England). 50: 4873-80. PMID 24643324 DOI: 10.1039/C3Cc48479C |
0.69 |
|
2014 |
Woehl TJ, Park C, Evans JE, Arslan I, Ristenpart WD, Browning ND. Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate Nano Letters. 14: 373-378. PMID 24325680 DOI: 10.1021/Nl4043328 |
0.662 |
|
2014 |
Abellan P, Woehl TJ, Tonkyn RG, Andreas Schroeder W, Evans JE, Browning ND. Implementing in situ experiments in liquids in the (scanning) transmission electron microscope ((S)TEM) and dynamic TEM (DTEM) Microscopy and Microanalysis. 20: 1648-1649. DOI: 10.1017/S1431927614009970 |
0.562 |
|
2014 |
Kashyap S, Woehl T, Sanchez-Quesada MS, Valverde-Tercedor C, Jimenez-Lopez C, Mallapragada SK, Prozorov T. Protein-mediated nucleation of nanoparticles in-situ Microscopy and Microanalysis. 20: 1604-1605. DOI: 10.1017/S1431927614009751 |
0.301 |
|
2014 |
Woehl T, Kashap S, Sánchez-Quesada M, Jiménez López C, Perez-Gonzalez T, Faivre D, Trubytsyn D, Bazylinski D, Prozorov T. Correlative fluorescence and liquid cell STEM of live magnetotactic bacteria Microscopy and Microanalysis. 20: 1510-1511. DOI: 10.1017/S1431927614009283 |
0.451 |
|
2013 |
Woehl TJ, Jungjohann KL, Evans JE, Arslan I, Ristenpart WD, Browning ND. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials Ultramicroscopy. 127: 53-63. PMID 22951261 DOI: 10.1016/J.Ultramic.2012.07.018 |
0.746 |
|
2013 |
Woehl T, Park C, Evans J, Arslan I, Ristenpart W, Browning N. Analysis of Single Nanoparticle Growth Environments to Explain Abnormal Ostwald Ripening of Nanoparticle Ensembles Microscopy and Microanalysis. 19: 500-501. DOI: 10.1017/S1431927613004492 |
0.527 |
|
2013 |
Abellan P, Evans J, Woehl T, Ristenpart W, Arslan I, Browning N. Controlling the Electron-Beam Interaction with Liquids for In Situ STEM Imaging Microscopy and Microanalysis. 19: 410-411. DOI: 10.1017/S1431927613004042 |
0.584 |
|
2012 |
Woehl TJ, Evans JE, Arslan I, Ristenpart WD, Browning ND. Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth Acs Nano. 6: 8599-8610. PMID 22957797 DOI: 10.1021/Nn303371Y |
0.683 |
|
2012 |
Parent LR, Robinson DB, Woehl TJ, Ristenpart WD, Evans JE, Browning ND, Arslan I. Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. Acs Nano. 6: 3589-96. PMID 22439964 DOI: 10.1021/Nn300671G |
0.672 |
|
2012 |
Evans J, Arslan I, Browning N, Jungjohann K, Woehl T. In situ liquid STEM for observing the interface between biology and nanotechnology Microscopy and Microanalysis. 18: 1130-1131. DOI: 10.1017/S1431927612007507 |
0.667 |
|
2012 |
Woehl T, Ristenpart W, Evans J, Arslan I, Browning N. The effect of electron dose on beam induced silver nanocrystal growth kinetics and morphology Microscopy and Microanalysis. 18: 1100-1101. DOI: 10.1017/S1431927612007350 |
0.683 |
|
2011 |
Woehl T, Evans J, Arslan I, Browning N, Ristenpart W. A Quantitative Description of Electron Beam Induced Phenomena During in situ Fluid Stage STEM Experiments Microscopy and Microanalysis. 17: 460-461. DOI: 10.1017/S1431927611003175 |
0.675 |
|
Show low-probability matches. |