Year |
Citation |
Score |
2019 |
Matthew O, Nieh S. Effects of ORC Working Fluids on Combined Cycle Integrated with SOFC and ORC for Stationary Power Generation Energy and Power Engineering. 11: 167-185. DOI: 10.4236/Epe.2019.114010 |
0.504 |
|
2018 |
Matthew O, Nieh S. Modeling of natural gas fueled quadruple cycle for power applications International Journal of Hydrogen Energy. 43: 10004-10015. DOI: 10.1016/J.Ijhydene.2018.04.008 |
0.469 |
|
2017 |
Seibert M, Nieh S. Measurements of Hydrogen-Enriched Combustion of JP-8 in Open Flame Journal of Energy Resources Technology-Transactions of the Asme. 139: 12205. DOI: 10.1115/1.4035255 |
0.462 |
|
2017 |
Seibert M, Nieh S. Comparison of hydrogen and hydrogen-rich reformate enrichment of JP-8 in an open flame Fuel. 210: 91-97. DOI: 10.1016/J.Fuel.2017.08.056 |
0.584 |
|
2016 |
Seibert ML, Nieh S. Control of an air siphon nozzle using hydrogen and gases other than air International Journal of Hydrogen Energy. 41: 683-689. DOI: 10.1016/J.Ijhydene.2015.10.068 |
0.515 |
|
2013 |
Seibert M, Nieh S. Simulation of dual firing of hydrogen-rich reformate and JP-8 surrogate in a swirling combustor International Journal of Hydrogen Energy. 38: 5911-5917. DOI: 10.1016/J.Ijhydene.2013.02.072 |
0.549 |
|
2013 |
Scenna R, DuBois TG, Nieh S. Autothermal reforming of synthetic JP-8 derived from a coal syngas stream Fuel. 108: 731-739. DOI: 10.1016/J.Fuel.2013.02.022 |
0.637 |
|
2011 |
Dubois TG, Nieh S. Selection and performance comparison of jet fuel surrogates for autothermal reforming Fuel. 90: 1439-1448. DOI: 10.1016/J.Fuel.2010.12.040 |
0.635 |
|
2007 |
Coombe HS, Nieh S. Polymer membrane air separation performance for portable oxygen enriched combustion applications Energy Conversion and Management. 48: 1499-1505. DOI: 10.1016/j.enconman.2006.11.021 |
0.61 |
|
2000 |
Zhang J, Nieh S. Swirling, reacting, turbulent gas-particle flow in a vortex combustor Powder Technology. 112: 70-78. DOI: 10.1016/S0032-5910(99)00307-1 |
0.31 |
|
1998 |
Zhang J, Nieh S. Numerical simulation of gas particle flow in vortex combustor under co-(counter-) tangential air injection Ranshao Kexue Yu Jishu/Journal of Combustion Science and Technology. 4: 327-333. |
0.303 |
|
1997 |
Zhang J, Nieh S. Comprehensive modelling of pulverized coal combustion in a vortex combustor Fuel. 76: 123-131. DOI: 10.1016/S0016-2361(96)00187-1 |
0.41 |
|
1995 |
Zhang J, Nieh S. Mathematical model of strongly swirling gas-particle turbulent flow and pulverized coal combustion and its application to vortex combustor (II) Application Huagong Xuebao/Journal of Chemical Industry and Engineering (China). 46: 552-556. |
0.33 |
|
1992 |
Nieh S, Yang G, Zhu AQ, Zhao CS. Measurements of gas-particle flows and elutriation of an 18 inch i.d. cold vortexing fluidized-bed combustion model Powder Technology. 69: 139-146. DOI: 10.1016/0032-5910(92)85067-6 |
0.331 |
|
1991 |
Nieh S, Zhang J. Numerical simulation of a vortex combustor firing dry ultrafine coal at 0.6 MW thermal input Combustion Science and Technology. 77: 59-71. DOI: 10.1080/00102209108951720 |
0.371 |
|
1991 |
Yang G, Zhu A, Zhao C, Nieh S. Experimental study on a full-scale cold model of vortexing fluidized-bed combustor (VFBC) Asme/Jsme Thermal Engineering Joint Conference. 521-527. |
0.327 |
|
Show low-probability matches. |