Year |
Citation |
Score |
2024 |
Weerakkody EN, Dubowsky SE, Glumac NG. Emission Spectra of Uranium Particulates at High Temperature. Applied Spectroscopy. 37028241247574. PMID 38715421 DOI: 10.1177/00037028241247574 |
0.318 |
|
2019 |
Lodes R, Krier H, Glumac N. Spectrally‐ and Temporally‐Resolved Optical Depth Measurements in High Explosive Post‐Detonation Fireballs Propellants, Explosives, Pyrotechnics. 45: 406-415. DOI: 10.1002/Prep.201900225 |
0.36 |
|
2018 |
Harilal SS, Brumfield BE, Glumac N, Phillips MC. Elucidating uranium monoxide spectral features from a laser-produced plasma. Optics Express. 26: 20319-20330. PMID 30119343 DOI: 10.1364/Oe.26.020319 |
0.435 |
|
2018 |
Murzyn C, Sims A, Krier H, Glumac N. High speed temperature, pressure, and water vapor concentration measurement in explosive fireballs using tunable diode laser absorption spectroscopy Optics and Lasers in Engineering. 110: 186-192. DOI: 10.1016/J.Optlaseng.2018.06.005 |
0.395 |
|
2017 |
Soo M, Goroshin S, Glumac N, Kumashiro K, Vickery J, Frost DL, Bergthorson JM. Emission and laser absorption spectroscopy of flat flames in aluminum suspensions Combustion and Flame. 180: 230-238. DOI: 10.1016/J.Combustflame.2017.03.006 |
0.503 |
|
2016 |
Johnson S, Clemenson M, Glumac N. Simultaneous Imaging and Spectroscopy of Detonation Interaction in Reactive and Energetic Materials. Applied Spectroscopy. PMID 27864446 DOI: 10.1177/0003702816661726 |
0.395 |
|
2016 |
Allen D, Krier H, Glumac N. Nano-Alumina Accommodation Coefficient Measurement Using Time-Resolved Laser-Induced Incandescence Journal of Heat Transfer. 138. DOI: 10.1115/1.4033642 |
0.39 |
|
2016 |
Guadarrama J, Dreizin EL, Glumac N. Reactive Liners Prepared Using Powders of Aluminum and Aluminum-Magnesium Alloys Propellants, Explosives, Pyrotechnics. 41: 605-611. DOI: 10.1002/Prep.201500230 |
0.321 |
|
2015 |
Kalman J, Glumac N, Krier H. High-temperature metal oxide spectral emissivities for pyrometry applications Journal of Thermophysics and Heat Transfer. 29: 874-879. DOI: 10.2514/1.T4565 |
0.651 |
|
2015 |
Kalman J, Allen D, Glumac N, Krier H. Optical depth effects on aluminum oxide spectral emissivity Journal of Thermophysics and Heat Transfer. 29: 74-82. DOI: 10.2514/1.T4260 |
0.683 |
|
2015 |
Kalman J, Glumac NG, Krier H. Experimental study of constant volume sulfur dust explosions Journal of Combustion. 2015. DOI: 10.1155/2015/817259 |
0.586 |
|
2014 |
Soo M, Glumac N. Ultraviolet absorption spectroscopy in optically dense fireballs using broadband second-harmonic generation of a pulsed modeless dye laser. Applied Spectroscopy. 68: 517-24. PMID 25014593 DOI: 10.1366/13-07276 |
0.375 |
|
2014 |
Julien P, Soo M, Goroshin S, Frost DL, Bergthorson JM, Glumac N, Zhang F. Combustion of aluminum suspensions in hydrocarbon flame products Journal of Propulsion and Power. 30: 1047-1054. DOI: 10.2514/1.B35061 |
0.401 |
|
2014 |
Allen D, Krier H, Glumac N. Heat transfer effects in nano-aluminum combustion at high temperatures Combustion and Flame. 161: 295-302. DOI: 10.1016/J.Combustflame.2013.07.010 |
0.372 |
|
2014 |
Clemenson MD, Johnson S, Krier H, Glumac N. Explosive initiation of various forms of Ti/2B reactive materials Propellants, Explosives, Pyrotechnics. 39: 454-462. DOI: 10.1002/Prep.201300114 |
0.338 |
|
2013 |
DeBlauw B, Sanders B, Glumac N, Dutton C, Elliott G. Correlation between emission, electric, and flow properties of arc-filament plasma actuators Aiaa Journal. 51: 922-935. DOI: 10.2514/1.J051853 |
0.384 |
|
2013 |
Moore J, Gloßner C, Craig W, Dolak M, Peters M, Salk M, Glumac N, Brown RE. Quantitative evidence of reaction during hypervelocity penetration of aluminum through oxygenated fluids Procedia Engineering. 58: 157-166. DOI: 10.1016/J.Proeng.2013.05.019 |
0.32 |
|
2013 |
Peuker JM, Krier H, Glumac N. Particle size and gas environment effects on blast and overpressure enhancement in aluminized explosives Proceedings of the Combustion Institute. 34: 2205-2212. DOI: 10.1016/j.proci.2012.05.069 |
0.745 |
|
2013 |
Glumac N. Early time spectroscopic measurements during high-explosive detonation breakout into air Shock Waves. 23: 131-138. DOI: 10.1007/S00193-012-0421-8 |
0.401 |
|
2013 |
Peuker JM, Lynch P, Krier H, Glumac N. On AlO emission spectroscopy as a diagnostic in energetic materials testing Propellants, Explosives, Pyrotechnics. 38: 577-585. DOI: 10.1002/Prep.201200144 |
0.754 |
|
2012 |
Sanders B, Deblauw B, Elliott G, Dutton C, Glumac N. Temporally and spatially resolved spectroscopic measurements of plasma actuator thermal properties 50th Aiaa Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. DOI: 10.2514/1.J052982 |
0.337 |
|
2012 |
Lynch P, Krier H, Glumac N. Micro-alumina particle volatilization temperature measurements in a heterogeneous shock tube Combustion and Flame. 159: 793-801. DOI: 10.1016/J.Combustflame.2011.07.023 |
0.378 |
|
2010 |
Lazar E, Elliott G, Glumac N. Energy deposition applied to a transverse jet in a supersonic crossflow Aiaa Journal. 48: 1662-1672. DOI: 10.2514/1.J050050 |
0.756 |
|
2010 |
Lynch P, Krier H, Glumac N. Emissivity of aluminum-oxide particle clouds: Application to pyrometry of explosive fireballs Journal of Thermophysics and Heat Transfer. 24: 301-308. DOI: 10.2514/1.43853 |
0.425 |
|
2010 |
Lynch P, Fiore G, Krier H, Glumac N. Gas-phase reaction in nanoaluminum combustion Combustion Science and Technology. 182: 842-857. DOI: 10.1080/00102200903341561 |
0.337 |
|
2010 |
Bazyn T, Lynch P, Krier H, Glumac N. Correction: Combustion Measurements of Fuel-Rich Aluminum and Molybdenum Oxide Nano-Composite Mixtures Propellants, Explosives, Pyrotechnics. 35: n/a-n/a. DOI: 10.1002/Prep.201000016 |
0.362 |
|
2010 |
Peuker JM, Krier H, Glumac N. Interpretations of emission measurements from aluminized explosive fireballs Proceedings - 14th International Detonation Symposium, Ids 2010. 730-739. |
0.775 |
|
2010 |
Glumac N, Krier H, Lynch P, Peuker JM. Optical spectroscopy of fireballs from metallized reactive materials 48th Aiaa Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. |
0.759 |
|
2009 |
Glumac N. Absorption spectroscopy measurements in optically dense explosive fireballs using a modeless broadband dye laser. Applied Spectroscopy. 63: 1075-80. PMID 19796492 DOI: 10.1366/000370209789379268 |
0.389 |
|
2009 |
Lynch P, Krier H, Glumac N. A correlation for burn time of aluminum particles in the transition regime Proceedings of the Combustion Institute. 32: 1887-1893. DOI: 10.1016/j.proci.2008.06.205 |
0.304 |
|
2009 |
Peuker JM, Lynch P, Krier H, Glumac N. Optical depth measurements of fireballs from aluminized high explosives Optics and Lasers in Engineering. 47: 1009-1015. DOI: 10.1016/J.Optlaseng.2009.04.011 |
0.74 |
|
2008 |
Lazar E, Elliotts G, Glumac N. Control of the shear layer above a supersonic cavity using energy deposition Aiaa Journal. 46: 2987-2997. DOI: 10.2514/1.32835 |
0.751 |
|
2008 |
Shankar N, Glumac NG, Yu MF, Vanka SP. Growth of nanodiamond/carbon-nanotube composites with hot filament chemical vapor deposition Diamond and Related Materials. 17: 79-83. DOI: 10.1016/J.Diamond.2007.10.031 |
0.483 |
|
2008 |
Lynch P, Glumac N, Krier H. Combustion of Aluminum particles in the transition regime between the diffusion and kinetic limits 44th Aiaa/Asme/Sae/Asee Joint Propulsion Conference and Exhibit. |
0.308 |
|
2007 |
Bazyn T, Krier H, Glumac N, Shankar N, Wang X, Jackson TL. Decomposition of aluminum hydride under solid rocket motor conditions Journal of Propulsion and Power. 23: 457-464. DOI: 10.2514/1.22920 |
0.6 |
|
2007 |
Bazyn T, Glumac N, Krier H, Ward TS, Schoenitz M, Dreizin EL. Reflected shock ignition and combustion of aluminum and nanocomposite thermite powders Combustion Science and Technology. 179: 457-476. DOI: 10.1080/00102200600637261 |
0.317 |
|
2007 |
Goroshin S, Mamen J, Higgins A, Bazyn T, Glumac N, Krier H. Emission spectroscopy of flame fronts in aluminum suspensions Proceedings of the Combustion Institute. 31: 2011-2019. DOI: 10.1016/j.proci.2006.07.175 |
0.357 |
|
2007 |
Bazyn T, Krier H, Glumac N. Evidence for the transition from the diffusion-limit in aluminum particle combustion Proceedings of the Combustion Institute. 31: 2021-2028. DOI: 10.1016/j.proci.2006.07.161 |
0.317 |
|
2007 |
Lynch P, Glumac N, Krier H. Combustion of 5-μim aluminum particles in high temperature, high pressure, water vapor environments Collection of Technical Papers - 43rd Aiaa/Asme/Sae/Asee Joint Propulsion Conference. 6: 6264-6270. |
0.317 |
|
2006 |
Glumac N, Elliott G. The effect of ambient pressure on laser-induced plasmas in air Collection of Technical Papers - 44th Aiaa Aerospace Sciences Meeting. 7: 4676-4686. DOI: 10.1016/J.Optlaseng.2006.04.002 |
0.343 |
|
2006 |
Shankar N, Yu MF, Vanka SP, Glumac NG. Synthesis of tungsten oxide (WO3) nanorods using carbon nanotubes as templates by hot filament chemical vapor deposition Materials Letters. 60: 771-774. DOI: 10.1016/J.Matlet.2005.10.009 |
0.517 |
|
2006 |
Bazyn T, Krier H, Glumac N. Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves Combustion and Flame. 145: 703-713. DOI: 10.1016/J.Combustflame.2005.12.017 |
0.468 |
|
2006 |
Bazyn T, Krier H, Glumac N. Shock tube measurements of combustion of nano-aluminum Collection of Technical Papers - 44th Aiaa Aerospace Sciences Meeting. 19: 14046-14053. |
0.381 |
|
2005 |
Bazyn T, Krier H, Glumac N. Oxidizer and pressure effects on the combustion of 10-μm aluminum particles Journal of Propulsion and Power. 21: 577-582. DOI: 10.2514/1.12732 |
0.435 |
|
2005 |
Prakash S, Glumac NG, Shankar N, Shannon MA. OH concentration profiles over alumina, quartz, and platinum surfaces using laser-induced fluorescence spectroscopy in low-pressure hydrogen/oxygen flames Combustion Science and Technology. 177: 793-817. DOI: 10.1080/00102200590917275 |
0.541 |
|
2005 |
Glumac N, Krier H, Bazyn T, Ever R. Temperature measurements of aluminum particles burning in carbon dioxide Combustion Science and Technology. 177: 485-511. DOI: 10.1080/00102200590909030 |
0.415 |
|
2005 |
Glumac N. Aluminum nitride emission from a laser-induced plasma in a dispersed aerosol Journal of Applied Physics. 98. DOI: 10.1063/1.2034086 |
0.417 |
|
2005 |
Lemke B, Roodhouse C, Glumac N, Krier H. Hydrogen synthesis via combustion of fuel-rich natural gas/air mixtures at elevated pressure International Journal of Hydrogen Energy. 30: 893-902. DOI: 10.1016/J.Ijhydene.2004.09.004 |
0.613 |
|
2005 |
Bazyn T, Glumac N, Krier H. The combustion characteristics of 10-micron aluminum particles at elevated temperature and pressure 41st Aiaa/Asme/Sae/Asee Joint Propulsion Conference and Exhibit. |
0.345 |
|
2004 |
Bazyn T, Eyer R, Krier H, Glumac N. Combustion characteristics of aluminum hydride at elevated pressure and temperature Journal of Propulsion and Power. 20: 427-431. DOI: 10.2514/1.3160 |
0.469 |
|
2004 |
Roy S, Dubois J, Lucht RP, Glumac NG. Hydroxyl radical concentration measurements near the deposition substrate in low-pressure diamond-forming flames Combustion and Flame. 138: 285-294. DOI: 10.1016/J.Combustflame.2004.05.005 |
0.312 |
|
2004 |
Bazyn T, Eyer R, Krier H, Glumac N. Dehydrogenation and burning of aluminum hydride at elevated pressures Aiaa Paper. 9009-9017. |
0.328 |
|
2004 |
Lemke B, Roodhouse C, Glumac N, Krier H. Hydrogen synthesis via combustion of fuel rich methane/air mixtures at elevated pressure International Symposium On Combustion, Abstracts of Works-in-Progress Posters. 115. |
0.558 |
|
2002 |
Roy S, Kulatilaka WD, Lucht RP, Glumac NG, Hu T. Temperature profile measurements in the near-substrate region of low-pressure diamond-forming flames Combustion and Flame. 130: 261-276. DOI: 10.1016/S0010-2180(02)00379-6 |
0.547 |
|
2001 |
Elliott GS, Glumac N, Carter CD. Molecular filtered Rayleigh scattering applied to combustion Measurement Science and Technology. 12: 452-466. DOI: 10.1088/0957-0233/12/4/309 |
0.396 |
|
2001 |
Singhal A, Skandan G, Glumac N, Kear BH. Minimizing aggregation effects in flame synthesized nanoparticles Scripta Materialia. 44: 2203-2207. DOI: 10.1016/S1359-6462(01)00905-8 |
0.348 |
|
2001 |
Glumac NG. Formation and consumption of SiO in powder synthesis flames Combustion and Flame. 124: 702-711. DOI: 10.1016/S0010-2180(00)00247-9 |
0.346 |
|
2000 |
Colibaba-Evulet A, Singhal A, Glumac N. Detection of AlO and TiO by laser-induced fluorescence in powder synthesis flames Combustion Science and Technology. 157: 129-139. DOI: 10.1080/00102200008947313 |
0.361 |
|
1999 |
Singhal A, Skandan G, Wang A, Glumac N, Kear BH, Hunt RD. On nanoparticle aggregation during vapor phase synthesis Nanostructured Materials. 11: 545-552. DOI: 10.1016/S0965-9773(99)00343-8 |
0.353 |
|
1999 |
Elliott GS, Glumac N, Carter CD. Molecular filtered rayleigh scattering applied to combustion and turbulence 37th Aerospace Sciences Meeting and Exhibit. |
0.32 |
|
1998 |
Chen YJ, Glumac NG, Skandan G, Kear BH. High-Rate Production of High-Purity, Nonagglomerated Oxide Nanopowders in Flames Acs Symposium Series. 681: 158-169. |
0.301 |
|
1998 |
Sandrowitz AK, Cooke JM, Glumac NG. Flame emission spectroscopy for equivalence ratio monitoring Applied Spectroscopy. 52: 658-662. |
0.31 |
|
1998 |
Glumac NG, Chen YJ, Skandan G. Diagnostics and modeling of nanopowder synthesis in low pressure flames Journal of Materials Research. 13: 2572-2579. |
0.332 |
|
1997 |
Elliott GS, Glumac N, Carter CD, Nejad AS. Two-dimensional temperature field measurements using a molecular filter based technique Combustion Science and Technology. 125: 351-369. DOI: 10.1080/00102209708935663 |
0.371 |
|
1997 |
Chen Y, Glumac N, Kear BH, Skandan G. High rate synthesis of nanophase materials Nanostructured Materials. 9: 101-104. DOI: 10.1016/S0965-9773(97)00028-7 |
0.335 |
|
1996 |
Goodwin DG, Glumac NG, Shin HS. Diamond thin film deposition in low-pressure premixed flames Symposium (International) On Combustion. 26: 1817-1824. DOI: 10.1016/S0082-0784(96)80002-6 |
0.593 |
|
1996 |
Glumac NG, Goodwin DG. Diagnostics and modeling of strained fuel-rich acetylene/oxygen flames used for diamond deposition Combustion and Flame. 105: 321-331. DOI: 10.1016/0010-2180(95)00214-6 |
0.575 |
|
1993 |
Glumac NG, Corat EJ, Goodwin DG. Diamond growth by methane injection into hydrogen-oxygen flames Diamond and Related Materials. 2: 169-173. DOI: 10.1016/0925-9635(93)90048-7 |
0.593 |
|
1993 |
Glumac NG, Goodwin DG. Large-area diamond film growth in a low-pressure flame Materials Letters. 18: 119-122. DOI: 10.1016/0167-577X(93)90109-B |
0.541 |
|
1992 |
Glumac NG, Goodwin DG. Diamond growth in a novel low pressure flame Applied Physics Letters. 60: 2695-2696. DOI: 10.1063/1.106876 |
0.558 |
|
1992 |
Glumac NG, Goodwin DG. Diamond synthesis in a low-pressure flat flame Thin Solid Films. 212: 122-126. DOI: 10.1016/0040-6090(92)90508-9 |
0.58 |
|
Show low-probability matches. |