Year |
Citation |
Score |
2020 |
Chee GJ, Agosta REF, Bae JW, Flanagan RR, Scopatz AM, Huff KD. Demand-Driven Deployment Capabilities in Cyclus, a Fuel Cycle Simulator Nuclear Technology. 1-22. DOI: 10.1080/00295450.2020.1753444 |
0.415 |
|
2020 |
Kamuda M, Zhao J, Huff K. A comparison of machine learning methods for automated gamma-ray spectroscopy Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment. 954: 161385. DOI: 10.1016/J.Nima.2018.10.063 |
0.71 |
|
2020 |
Miernicki EA, Heald AL, Huff KD, Brooks CS, Margenot AJ. Nuclear waste heat use in agriculture: History and opportunities in the United States Journal of Cleaner Production. 267: 121918. DOI: 10.1016/J.Jclepro.2020.121918 |
0.332 |
|
2020 |
Ashraf O, Rykhlevskii A, Tikhomirov GV, Huff KD. Strategies for thorium fuel cycle transition in the SD-TMSR Annals of Nuclear Energy. 148: 107656. DOI: 10.1016/J.Anucene.2020.107656 |
0.759 |
|
2020 |
Bae JW, Rykhlevskii A, Chee G, Huff KD. Deep learning approach to nuclear fuel transmutation in a fuel cycle simulator Annals of Nuclear Energy. 139: 107230. DOI: 10.1016/J.Anucene.2019.107230 |
0.76 |
|
2020 |
Ashraf O, Rykhlevskii A, Tikhomirov GV, Huff KD. Whole core analysis of the single-fluid double-zone thorium molten salt reactor (SD-TMSR) Annals of Nuclear Energy. 137: 107115. DOI: 10.1016/J.Anucene.2019.107115 |
0.754 |
|
2019 |
Bae JW, Singer CE, Huff KD. Synergistic spent nuclear fuel dynamics within the European Union Progress in Nuclear Energy. 114: 1-12. DOI: 10.1016/J.Pnucene.2019.02.001 |
0.422 |
|
2019 |
Rykhlevskii A, Bae JW, Huff KD. Modeling and simulation of online reprocessing in the thorium-fueled molten salt breeder reactor Annals of Nuclear Energy. 128: 366-379. DOI: 10.1016/J.Anucene.2019.01.030 |
0.772 |
|
2019 |
Bae JW, Peterson-Droogh JL, Huff KD. Standardized verification of the Cyclus fuel cycle simulator Annals of Nuclear Energy. 128: 288-291. DOI: 10.1016/J.Anucene.2019.01.014 |
0.427 |
|
2018 |
Lindsay AD, Huff KD. Moltres: finite element based simulation of molten salt reactors The Journal of Open Source Software. 3: 298. DOI: 10.21105/Joss.00298 |
0.369 |
|
2018 |
Lindsay A, Ridley G, Rykhlevskii A, Huff K. Introduction to Moltres: An application for simulation of Molten Salt Reactors Annals of Nuclear Energy. 114: 530-540. DOI: 10.1016/J.Anucene.2017.12.025 |
0.746 |
|
2017 |
Huff KD. Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation Advances in Engineering Software. 114: 268-281. DOI: 10.1016/J.Advengsoft.2017.07.006 |
0.489 |
|
2016 |
Huff KD, Gidden MJ, Carlsen RW, Flanagan RR, McGarry MB, Opotowsky AC, Schneider EA, Scopatz AM, Wilson PPH. Fundamental concepts in the Cyclus nuclear fuel cycle simulation framework Advances in Engineering Software. 94: 46-59. DOI: 10.1016/J.Advengsoft.2016.01.014 |
0.755 |
|
2014 |
Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, Haddock SH, Huff KD, Mitchell IM, Plumbley MD, Waugh B, White EP, Wilson P. Best practices for scientific computing. Plos Biology. 12: e1001745. PMID 24415924 DOI: 10.1371/Journal.Pbio.1001745 |
0.534 |
|
2014 |
Bates CR, Biondo E, Huff KD, Kiesling K, Scopatz A, Carlsen R, Davis A, Gidden M, Haines T, Howland J, Huff B, Manalo K, Opotowsky A, Slaybaugh R, Relson E, et al. PyNE Progress Report Transactions of the American Nuclear Society. 111: 1165-1168. DOI: 10.6084/M9.Figshare.1250143.V1 |
0.534 |
|
Show low-probability matches. |