Year |
Citation |
Score |
2025 |
Gourianov N, Givi P, Jaksch D, Pope SB. Tensor networks enable the calculation of turbulence probability distributions. Science Advances. 11: eads5990. PMID 39879287 DOI: 10.1126/sciadv.ads5990 |
0.375 |
|
2020 |
Zhou H, Ren Z, Rowinski DH, Pope SB. Filtered Density Function Simulations of a Near-Limit Turbulent Lean Premixed Flame Journal of Propulsion and Power. 36: 381-399. DOI: 10.2514/1.B37707 |
0.679 |
|
2019 |
Newale AS, Liang Y, Pope SB, Pepiot P. A combined PPAC-RCCE-ISAT methodology for efficient implementation of combustion chemistry Combustion Theory and Modelling. 23: 1021-1053. DOI: 10.1080/13647830.2019.1606453 |
0.411 |
|
2019 |
Turkeri H, Pope SB, Muradoglu M. A LES/PDF simulator on block-structured meshes Combustion Theory and Modelling. 23: 1-41. DOI: 10.1080/13647830.2018.1475683 |
0.442 |
|
2019 |
Turkeri H, Zhao X, Pope SB, Muradoglu M. Large eddy simulation/probability density function simulations of the Cambridge turbulent stratified flame series Combustion and Flame. 199: 24-45. DOI: 10.1016/J.Combustflame.2018.10.018 |
0.444 |
|
2018 |
Yeung PK, Sreenivasan KR, Pope SB. Effects of finite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence Physical Review Fluids. 3. DOI: 10.1103/PHYSREVFLUIDS.3.064603 |
0.635 |
|
2017 |
You J, Yang Y, Pope SB. Effects of molecular transport in LES/PDF of piloted turbulent dimethyl ether/air jet flames Combustion and Flame. 176: 451-461. DOI: 10.1016/J.Combustflame.2016.11.007 |
0.444 |
|
2017 |
Tirunagari RR, Pettit MWA, Kempf AM, Pope SB. A Simple Approach for Specifying Velocity Inflow Boundary Conditions in Simulations of Turbulent Opposed-Jet Flows Flow Turbulence and Combustion. 98: 131-153. DOI: 10.1007/S10494-016-9743-4 |
0.472 |
|
2016 |
Tirunagari RR, Pope SB. LES/PDF for premixed combustion in the DNS limit Combustion Theory and Modelling. 20: 834-865. DOI: 10.1080/13647830.2016.1188991 |
0.456 |
|
2016 |
Tirunagari RR, Pope SB. An investigation of turbulent premixed counterflow flames using large-eddy simulations and probability density function methods Combustion and Flame. 166: 229-242. DOI: 10.1016/J.Combustflame.2016.01.024 |
0.468 |
|
2015 |
Popov PP, Wang H, Pope SB. Specific volume coupling and convergence properties in hybrid particle/finite volume algorithms for turbulent reactive flows Journal of Computational Physics. 294: 110-126. DOI: 10.1016/J.Jcp.2015.03.001 |
0.447 |
|
2015 |
Zhao XY, Bhagatwala A, Chen JH, Haworth DC, Pope SB. An a priori DNS study of the shadow-position mixing model Combustion and Flame. DOI: 10.1016/J.Combustflame.2015.12.009 |
0.67 |
|
2015 |
Pei Y, Hawkes ER, Bolla M, Kook S, Goldin GM, Yang Y, Pope SB, Som S. An analysis of the structure of an n-dodecane spray flame using TPDF modelling Combustion and Flame. DOI: 10.1016/J.Combustflame.2015.11.034 |
0.441 |
|
2015 |
Liang Y, Pope SB, Pepiot P. A pre-partitioned adaptive chemistry methodology for the efficient implementation of combustion chemistry in particle PDF methods Combustion and Flame. 162: 3236-3253. DOI: 10.1016/J.Combustflame.2015.05.012 |
0.448 |
|
2014 |
Pope SB. Ten Chapters in Turbulence Aiaa Journal. 52: 666-667. DOI: 10.2514/1.J052847 |
0.375 |
|
2014 |
Kim J, Pope SB. Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method Combustion Theory and Modelling. 18: 388-413. DOI: 10.1080/13647830.2014.919411 |
0.49 |
|
2014 |
Minier JP, Chibbaro S, Pope SB. Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows Physics of Fluids. 26. DOI: 10.1063/1.4901315 |
0.436 |
|
2014 |
Pope SB. The determination of turbulence-model statistics from the velocity–acceleration correlation Journal of Fluid Mechanics. 757. DOI: 10.1017/Jfm.2014.563 |
0.486 |
|
2014 |
Popov PP, Pope SB. Implicit and explicit schemes for mass consistency preservation in hybrid particle/finite-volume algorithms for turbulent reactive flows Journal of Computational Physics. 257: 352-373. DOI: 10.1016/J.Jcp.2013.09.005 |
0.423 |
|
2014 |
Popov PP, Pope SB. Large eddy simulation/probability density function simulations of bluff body stabilized flames Combustion and Flame. 161: 3100-3133. DOI: 10.1016/J.Combustflame.2014.05.018 |
0.402 |
|
2013 |
Rowinski DH, Pope SB. Computational study of lean premixed turbulent flames using RANSPDF and LESPDF methods Combustion Theory and Modelling. 17: 610-656. DOI: 10.1080/13647830.2013.789929 |
0.406 |
|
2013 |
Hiremath V, Pope SB. A study of the rate-controlled constrained-equilibrium dimension reduction method and its different implementations Combustion Theory and Modelling. 17: 260-293. DOI: 10.1080/13647830.2012.752109 |
0.715 |
|
2013 |
Rowinski DH, Pope SB. An investigation of mixing in a three-stream turbulent jet Physics of Fluids. 25: 105105. DOI: 10.1063/1.4822434 |
0.454 |
|
2013 |
Pope SB. A model for turbulent mixing based on shadow-position conditioning Physics of Fluids. 25: 110803. DOI: 10.1063/1.4818981 |
0.432 |
|
2013 |
Sawford BL, Pope SB, Yeung PK. Gaussian Lagrangian stochastic models for multi-particle dispersion Physics of Fluids. 25: 55101. DOI: 10.1063/1.4802037 |
0.667 |
|
2013 |
Ren Z, Goldin GM, Hiremath V, Pope SB. Simulations of a turbulent non-premixed flame using combined dimension reduction and tabulation for combustion chemistry Fuel. 105: 636-644. DOI: 10.1016/J.Fuel.2012.08.018 |
0.81 |
|
2013 |
Yang Y, Pope SB, Chen JH. Empirical low-dimensional manifolds in composition space Combustion and Flame. 160: 1967-1980. DOI: 10.1016/J.Combustflame.2013.04.006 |
0.448 |
|
2012 |
Klimenko AY, Pope SB. Propagation speed of combustion and invasion waves in stochastic simulations with competitive mixing Combustion Theory and Modelling. 16: 679-714. DOI: 10.1080/13647830.2011.647091 |
0.431 |
|
2012 |
Kemenov KA, Wang H, Pope SB. Modelling effects of subgrid-scale mixture fraction variance in LES of a piloted diffusion flame Combustion Theory and Modelling. 16: 611-638. DOI: 10.1080/13647830.2011.645881 |
0.456 |
|
2012 |
Hiremath V, Lantz SR, Wang H, Pope SB. Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion Combustion and Flame. 159: 3096-3109. DOI: 10.1016/J.Combustflame.2012.04.013 |
0.74 |
|
2012 |
Kemenov KA, Wang H, Pope SB. Turbulence Resolution Scale Dependence in Large-Eddy Simulations of a Jet Flame Flow Turbulence and Combustion. 88: 529-561. DOI: 10.1007/S10494-011-9380-X |
0.464 |
|
2011 |
Ren Z, Goldin GM, Hiremath V, Pope SB. Reduced description of reactive flows with tabulation of chemistry Combustion Theory and Modelling. 15: 827-848. DOI: 10.1080/13647830.2011.574156 |
0.794 |
|
2011 |
Juddoo M, Masri AR, Pope SB. Turbulent piloted partially-premixed flames with varying levels of O2/N2: stability limits and PDF calculations Combustion Theory and Modelling. 15: 773-793. DOI: 10.1080/13647830.2011.563867 |
0.347 |
|
2011 |
Rowinski DH, Pope SB. PDF calculations of piloted premixed jet flames Combustion Theory and Modelling. 15: 245-266. DOI: 10.1080/13647830.2010.535568 |
0.406 |
|
2011 |
Pope SB. Simple models of turbulent flowsa) Physics of Fluids. 23: 11301. DOI: 10.1063/1.3531744 |
0.498 |
|
2011 |
Viswanathan S, Wang H, Pope SB. Numerical implementation of mixing and molecular transport in LES/PDF studies of turbulent reacting flows Journal of Computational Physics. 230: 6916-6957. DOI: 10.1016/J.Jcp.2011.05.020 |
0.682 |
|
2011 |
Hiremath V, Ren Z, Pope SB. Combined dimension reduction and tabulation strategy using ISAT–RCCE–GALI for the efficient implementation of combustion chemistry Combustion and Flame. 158: 2113-2127. DOI: 10.1016/J.Combustflame.2011.04.010 |
0.79 |
|
2011 |
Kemenov KA, Pope SB. Molecular diffusion effects in LES of a piloted methane–air flame Combustion and Flame. 158: 240-254. DOI: 10.1016/J.Combustflame.2010.08.014 |
0.397 |
|
2011 |
Haworth DC, Pope SB. Transported probability density function methods for Reynolds-averaged and large-eddy simulations Fluid Mechanics and Its Applications. 95: 119-142. DOI: 10.1007/978-94-007-0412-1_6 |
0.646 |
|
2010 |
Nik MB, Yilmaz SL, Givi P, Sheikhi MRH, Pope SB. Simulation of sandia flame D using velocity-scalar filtered density function Aiaa Journal. 48: 1513-1522. DOI: 10.2514/1.J050154 |
0.426 |
|
2010 |
Hiremath V, Ren Z, Pope SB. A greedy algorithm for species selection in dimension reduction of combustion chemistry Combustion Theory and Modelling. 14: 619-652. DOI: 10.1080/13647830.2010.499964 |
0.782 |
|
2010 |
Pope SB. Self-conditioned fields for large-eddy simulations of turbulent flows Journal of Fluid Mechanics. 652: 139-169. DOI: 10.1017/S0022112009994174 |
0.42 |
|
2010 |
Wang H, Popov PP, Pope SB. Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations Journal of Computational Physics. 229: 1852-1878. DOI: 10.1016/J.Jcp.2009.11.012 |
0.397 |
|
2009 |
Sheikhi MR, Givi P, Pope SB. Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent flows Physics of Fluids. 21. DOI: 10.1063/1.3153907 |
0.466 |
|
2009 |
Ren Z, Pope SB. Sensitivity calculations in PDF modelling of turbulent flames Proceedings of the Combustion Institute. 32: 1629-1637. DOI: 10.1016/J.PROCI.2008.05.074 |
0.635 |
|
2009 |
Lu L, Lantz SR, Ren Z, Pope SB. Computationally efficient implementation of combustion chemistry in parallel PDF calculations Journal of Computational Physics. 228: 5490-5525. DOI: 10.1016/J.Jcp.2009.04.037 |
0.734 |
|
2009 |
Lu L, Pope SB. An improved algorithm for in situ adaptive tabulation Journal of Computational Physics. 228: 361-386. DOI: 10.1016/J.Jcp.2008.09.015 |
0.609 |
|
2009 |
Pope SB, Ren Z. Efficient Implementation of Chemistry in Computational Combustion Flow Turbulence and Combustion. 82: 437-453. DOI: 10.1007/S10494-008-9145-3 |
0.683 |
|
2008 |
Arnèodo A, Benzi R, Berg J, Biferale L, Bodenschatz E, Busse A, Calzavarini E, Castaing B, Cencini M, Chevillard L, Fisher RT, Grauer R, Homann H, Lamb D, Lanotte AS, ... ... Pope SB, et al. Universal intermittent properties of particle trajectories in highly turbulent flows. Physical Review Letters. 100: 254504. PMID 18643666 DOI: 10.1103/Physrevlett.100.254504 |
0.714 |
|
2008 |
Arnèodo A, Benzi R, Berg J, Biferale L, Bodenschatz E, Busse A, Calzavarini E, Castaing B, Cencini M, Chevillard L, Fisher RT, Grauer R, Homann H, Lamb D, Lanotte AS, ... ... Pope SB, et al. Universal intermittent properties of particle trajectories in highly turbulent flows Physical Review Letters. 100. DOI: 10.1103/PhysRevLett.100.254504 |
0.652 |
|
2008 |
Lamorgese AG, Pope SB, Yeung PK. Analysis of the conditionally cubic-Gaussian stochastic Lagrangian model Physica Scripta. 2008: 14044. DOI: 10.1088/0031-8949/2008/T132/014044 |
0.65 |
|
2008 |
Wang H, Pope SB. Lagrangian investigation of local extinction, re-ignition and auto-ignition in turbulent flames Combustion Theory and Modelling. 12: 857-882. DOI: 10.1080/13647830802056137 |
0.405 |
|
2008 |
Wang H, Pope SB. Time-averaging strategies in the finite-volume/particle hybrid algorithm for the joint PDF equation of turbulent reactive flows Combustion Theory and Modelling. 12: 529-544. DOI: 10.1080/13647830701847875 |
0.475 |
|
2008 |
Viswanathan S, Pope SB. Turbulent dispersion from line sources in grid turbulence Physics of Fluids. 20. DOI: 10.1063/1.3006069 |
0.692 |
|
2008 |
Popov PP, McDermott R, Pope SB. An accurate time advancement algorithm for particle tracking Journal of Computational Physics. 227: 8792-8806. DOI: 10.1016/J.Jcp.2008.06.021 |
0.36 |
|
2008 |
Ren Z, Pope SB. Second-order splitting schemes for a class of reactive systems Journal of Computational Physics. 227: 8165-8176. DOI: 10.1016/J.Jcp.2008.05.019 |
0.644 |
|
2008 |
McDermott R, Pope SB. The parabolic edge reconstruction method (PERM) for Lagrangian particle advection Journal of Computational Physics. 227: 5447-5491. DOI: 10.1016/J.Jcp.2008.01.045 |
0.4 |
|
2008 |
Ren Z, Pope SB. Sensitivity calculations in PDF particle methods Combustion and Flame. 153: 202-215. DOI: 10.1016/J.Combustflame.2007.10.017 |
0.647 |
|
2007 |
Ren Z, Pope SB. Reduced description of complex dynamics in reactive systems. The Journal of Physical Chemistry. A. 111: 8464-74. PMID 17685592 DOI: 10.1021/Jp0717950 |
0.679 |
|
2007 |
Ren Z, Pope S. Transport-chemistry coupling in the reduced description of reactive flows Combustion Theory and Modelling. 11: 715-739. DOI: 10.1080/13647830701200000 |
0.654 |
|
2007 |
Gordon RL, Masri AR, Pope SB, Goldin GM. A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow Combustion Theory and Modelling. 11: 351-376. DOI: 10.1080/13647830600903472 |
0.499 |
|
2007 |
Sheikhi MRH, Givi P, Pope SB. Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows Physics of Fluids. 19. DOI: 10.1063/1.2768953 |
0.456 |
|
2007 |
Yeung PK, Pope SB, Kurth EA, Lamorgese A. Lagrangian conditional statistics, acceleration and local relative motion in numerically simulated isotropic turbulence Journal of Fluid Mechanics. 582: 399-422. DOI: 10.1017/S0022112007006064 |
0.796 |
|
2007 |
Lamorgese AG, Pope SB, Yeung PK, Sawford BL. A conditionally cubic-Gaussian stochastic Lagrangian model for acceleration in isotropic turbulence Journal of Fluid Mechanics. 582: 423-448. DOI: 10.1017/S0022112007006052 |
0.477 |
|
2007 |
Ren Z, Pope SB, Vladimirsky A, Guckenheimer JM. Application of the ICE-PIC method for the dimension reduction of chemical kinetics coupled with transport Proceedings of the Combustion Institute. 31: 473-481. DOI: 10.1016/j.proci.2006.07.106 |
0.557 |
|
2007 |
McDermott R, Pope SB. A particle formulation for treating differential diffusion in filtered density function methods Journal of Computational Physics. 226: 947-993. DOI: 10.1016/J.Jcp.2007.05.006 |
0.435 |
|
2007 |
Gordon RL, Masri AR, Pope SB, Goldin GM. Transport budgets in turbulent lifted flames of methane autoigniting in a vitiated co-flow Combustion and Flame. 151: 495-511. DOI: 10.1016/J.Combustflame.2007.07.001 |
0.418 |
|
2006 |
Ren Z, Pope SB, Vladimirsky A, Guckenheimer JM. The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics. The Journal of Chemical Physics. 124: 114111. PMID 16555878 DOI: 10.1063/1.2177243 |
0.647 |
|
2006 |
Yeung PK, Pope SB, Sawford BL. Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence Journal of Turbulence. 7: 58. DOI: 10.1080/14685240600868272 |
0.697 |
|
2006 |
Ren Z, Pope SB. The geometry of reaction trajectories and attracting manifolds in composition space Combustion Theory and Modelling. 10: 361-388. DOI: 10.1080/13647830500448297 |
0.645 |
|
2006 |
Singer MA, Pope SB, Najm HN. Operator-splitting with ISAT to model reacting flow with detailed chemistry Combustion Theory and Modelling. 10: 199-217. DOI: 10.1080/13647830500307501 |
0.412 |
|
2006 |
Yeung PK, Pope SB, Lamorgese AG, Donzis DA. Acceleration and dissipation statistics of numerically simulated isotropic turbulence Physics of Fluids. 18: 65103. DOI: 10.1063/1.2204053 |
0.802 |
|
2006 |
Ren Z, Pope SB. The use of slow manifolds in reactive flows Combustion and Flame. 147: 243-261. DOI: 10.1016/J.Combustflame.2006.09.002 |
0.689 |
|
2006 |
Singer MA, Pope SB, Najm HN. Modeling unsteady reacting flow with operator splitting and ISAT Combustion and Flame. 147: 150-162. DOI: 10.1016/J.Combustflame.2006.06.007 |
0.424 |
|
2006 |
Merci B, Roekaerts D, Naud B, Pope SB. Comparative study of micromixing models in transported scalar PDF simulations of turbulent nonpremixed bluff body flames Combustion and Flame. 146: 109-130. DOI: 10.1016/J.Combustflame.2006.04.010 |
0.491 |
|
2005 |
Liu BJD, Pope SB. The performance of in situ adaptive tabulation in computations of turbulent flames Combustion Theory and Modelling. 9: 549-568. DOI: 10.1080/13647830500307436 |
0.378 |
|
2005 |
Lamorgese AG, Caughey DA, Pope SB. Direct numerical simulation of homogeneous turbulence with hyperviscosity Physics of Fluids. 17. DOI: 10.1063/1.1833415 |
0.785 |
|
2005 |
Sheikhi MRH, Drozda TG, Givi P, Jaberi FA, Pope SB. Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D) Proceedings of the Combustion Institute. 30: 549-556. DOI: 10.1016/j.proci.2004.08.028 |
0.374 |
|
2005 |
Ren Z, Pope SB. Species reconstruction using pre-image curves Proceedings of the Combustion Institute. 30: 1293-1300. DOI: 10.1016/J.PROCI.2004.07.017 |
0.543 |
|
2005 |
Cao RR, Pope SB. The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flames Combustion and Flame. 143: 450-470. DOI: 10.1016/J.Combustflame.2005.08.018 |
0.431 |
|
2005 |
Cao RR, Pope SB, Masri AR. Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations Combustion and Flame. 142: 438-453. DOI: 10.1016/J.Combustflame.2005.04.005 |
0.45 |
|
2005 |
Liu K, Pope SB, Caughey DA. Calculations of bluff-body stabilized flames using a joint probability density function model with detailed chemistry Combustion and Flame. 141: 89-117. DOI: 10.1016/J.Combustflame.2004.12.018 |
0.426 |
|
2004 |
Pope SB. Ten questions concerning the large-eddy simulation of turbulent flows New Journal of Physics. 6: 35-35. DOI: 10.1088/1367-2630/6/1/035 |
0.429 |
|
2004 |
Singer MA, Pope SB. Exploiting ISAT to solve the reaction-diffusion equation Combustion Theory and Modelling. 8: 361-383. DOI: 10.1088/1364-7830/8/2/009 |
0.379 |
|
2004 |
Tang Q, Pope SB. A more accurate projection in the rate-controlled constrained-equilibrium method for dimension reduction of combustion chemistry Combustion Theory and Modelling. 8: 255-279. DOI: 10.1088/1364-7830/8/2/004 |
0.325 |
|
2004 |
Masri AR, Cao R, Pope SB, Goldin GM. PDF calculations of turbulent lifted flames of H 2 /N 2 fuel issuing into a vitiated co-flow Combustion Theory and Modelling. 8: 1-22. DOI: 10.1088/1364-7830/8/1/001 |
0.475 |
|
2004 |
Wang D, Tong C, Pope SB. Experimental study of velocity filtered joint density function for large eddy simulation Physics of Fluids. 16: 3599-3613. DOI: 10.1063/1.1776194 |
0.407 |
|
2004 |
Pope SB. Accessed Compositions in Turbulent Reactive Flows Flow Turbulence and Combustion. 72: 219-243. DOI: 10.1023/B:Appl.0000044413.11251.D9 |
0.449 |
|
2004 |
Pope SB. Computational Models for Turbulent Reacting Flows. By R. O. FOX. Cambridge University Press, 2003. 438 pp. ISBN 0521 650496, £80 or 120 (hardback); ISBN 0521 6590780, £39.95 or 55 (paperback) Journal of Fluid Mechanics. 504: 407-409. DOI: 10.1017/S0022112004238678 |
0.344 |
|
2004 |
Pope SB. Gibbs function continuation for the stable computation of chemical equilibrium Combustion and Flame. 139: 222-226. DOI: 10.1016/J.Combustflame.2004.07.008 |
0.313 |
|
2004 |
Ren Z, Pope SB. Entropy production and element conservation in the quasi-steady-state approximation Combustion and Flame. 137: 251-254. DOI: 10.1016/J.Combustflame.2004.02.002 |
0.573 |
|
2004 |
Ren Z, Pope SB. An investigation of the performance of turbulent mixing models Combustion and Flame. 136: 208-216. DOI: 10.1016/J.Combustflame.2003.09.014 |
0.684 |
|
2003 |
Klimenko AY, Pope SB. The modeling of turbulent reactive flows based on multiple mapping conditioning Physics of Fluids. 15: 1907-1925. DOI: 10.1063/1.1575754 |
0.423 |
|
2003 |
Pope SB. Erratum: “A stochastic Lagrangian model for acceleration in turbulent flows” [Phys. Fluids 14, 2360 (2002)] Physics of Fluids. 15: 269-269. DOI: 10.1063/1.1524190 |
0.409 |
|
2003 |
Minier JP, Cao R, Pope SB, Li G, Modest MF. Comment on the article "An effective particle tracing scheme on structured/unstructured grids in hybrid finite volume/PDF Monte Carlo methods" by Li an Modest (multiple letters) Journal of Computational Physics. 186: 356-358. DOI: 10.1016/S0021-9991(03)00006-8 |
0.357 |
|
2003 |
Cao R, Pope SB. Numerical integration of stochastic differential equations: weak second-order mid-point scheme for application in the composition PDF method Journal of Computational Physics. 185: 194-212. DOI: 10.1016/S0021-9991(02)00054-2 |
0.337 |
|
2003 |
Muradoglu M, Liu K, Pope SB. PDF modeling of a bluff-body stabilized turbulent flame Combustion and Flame. 132: 115-137. DOI: 10.1016/S0010-2180(02)00430-3 |
0.461 |
|
2002 |
Muradoglu M, Pope SB. Local time-stepping algorithm for solving probability density function turbulence model equations Aiaa Journal. 40: 1755-1763. DOI: 10.2514/2.1880 |
0.434 |
|
2002 |
Pope SB. A stochastic Lagrangian model for acceleration in turbulent flows Physics of Fluids. 14: 2360-2375. DOI: 10.1063/1.1483876 |
0.457 |
|
2002 |
Koch DL, Pope SB. Coagulation-induced particle-concentration fluctuations in homogeneous, isotropic trubulence Physics of Fluids. 14: 2447-2455. DOI: 10.1063/1.1478562 |
0.413 |
|
2002 |
Pope SB. Stochastic Lagrangian models of velocity in homogeneous turbulent shear flow Physics of Fluids. 14: 1696-1702. DOI: 10.1063/1.1465421 |
0.484 |
|
2002 |
Gicquel LYM, Givi P, Jaberi FA, Pope SB. Velocity filtered density function for large eddy simulation of turbulent flows Physics of Fluids. 14: 1196-1213. DOI: 10.1063/1.1436496 |
0.483 |
|
2002 |
Muradoglu M, Pope SB, Caughey DA. The Hybrid Method for the PDF Equations of Turbulent Reactive Flows Journal of Computational Physics. 178: 260. DOI: 10.1006/Jcph.2002.7042 |
0.403 |
|
2001 |
James S, Anand MS, Razdan MK, Pope SB. In Situ Detailed Chemistry Calculations in Combustor Flow Analyses Journal of Engineering For Gas Turbines and Power-Transactions of the Asme. 123: 747-756. DOI: 10.1115/1.1384878 |
0.468 |
|
2001 |
Muradoglu M, Pope SB, Caughey DA. The hybrid method for the PDF equations of turbulent reactive flows: Consistency conditions and correction algorithms Journal of Computational Physics. 172: 841-878. DOI: 10.1006/Jcph.2001.6861 |
0.441 |
|
2001 |
Jenny P, Muradoglu M, Liu K, Pope SB, Caughey DA. PDF Simulations of a Bluff-Body Stabilized Flow Journal of Computational Physics. 169: 1-23. DOI: 10.1006/Jcph.2001.6704 |
0.405 |
|
2001 |
Jenny P, Pope SB, Muradoglu M, Caughey DA. A Hybrid Algorithm for the Joint PDF Equation of Turbulent Reactive Flows Journal of Computational Physics. 166: 218-252. DOI: 10.1006/Jcph.2000.6646 |
0.443 |
|
2000 |
Xu J, Pope SB. PDF calculations of turbulent nonpremixed flames with local extinction Combustion and Flame. 123: 281-307. DOI: 10.1016/S0010-2180(00)00155-3 |
0.466 |
|
1999 |
Overholt MR, Pope SB. Direct numerical simulation of a statistically stationary, turbulent reacting flow Combustion Theory and Modelling. 3: 371-408. DOI: 10.1088/1364-7830/3/2/310 |
0.479 |
|
1999 |
Slooten PRV, Pope SB. Application of PDF modeling to swirling and nonswirling turbulent jets Flow Turbulence and Combustion. 62: 295-333. DOI: 10.1023/A:1009993003851 |
0.44 |
|
1999 |
Jaberi FA, Colucci PJ, James S, Givi P, Pope SB. Filtered mass density function for large-eddy simulation of turbulent reacting flows Journal of Fluid Mechanics. 401: 85-121. DOI: 10.1017/S0022112099006643 |
0.47 |
|
1999 |
Subramaniam S, Pope SB. Comparison of mixing model performance for nonpremixed turbulent reactive flow Combustion and Flame. 117: 732-754. DOI: 10.1016/S0010-2180(98)00135-7 |
0.444 |
|
1999 |
Saxena V, Pope SB. PDF simulations of turbulent combustion incorporating detailed chemistry Combustion and Flame. 117: 340-350. DOI: 10.1016/S0010-2180(98)00081-9 |
0.48 |
|
1999 |
Muradoglu M, Jenny P, Pope SB, Caughey DA. Regular Article: A Consistent Hybrid Finite-Volume/Particle Method for the PDF Equations of Turbulent Reactive Flows Journal of Computational Physics. 154: 342-371. DOI: 10.1006/Jcph.1999.6316 |
0.453 |
|
1999 |
Xu J, Pope SB. Assessment of Numerical Accuracy of PDF/Monte Carlo Methods for Turbulent Reacting Flows Journal of Computational Physics. 152: 192-230. DOI: 10.1006/Jcph.1999.6241 |
0.425 |
|
1998 |
Slooten PRV, Jayesh, Pope SB. Advances in PDF modeling for inhomogeneous turbulent flows Physics of Fluids. 10: 246-265. DOI: 10.1063/1.869564 |
0.452 |
|
1998 |
Colucci PJ, Jaberi FA, Givi P, Pope SB. Filtered density function for large eddy simulation of turbulent reacting flows Physics of Fluids. 10: 499-515. DOI: 10.1063/1.869537 |
0.454 |
|
1998 |
Delarue BJ, Pope SB. Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods Physics of Fluids. 10: 487-498. DOI: 10.1063/1.869536 |
0.491 |
|
1998 |
Pope SB. The vanishing effect of molecular diffusivity on turbulent dispersion : implications for turbulent mixing and the scalar flux Journal of Fluid Mechanics. 359: 299-312. DOI: 10.1017/S0022112097008380 |
0.46 |
|
1998 |
Dreeben TD, Pope SB. Probability density function/Monte Carlo simulation of near-wall turbulent flows Journal of Fluid Mechanics. 357: 141-166. DOI: 10.1017/S0022112097008008 |
0.429 |
|
1998 |
Overholt MR, Pope SB. A deterministic forcing scheme for direct numerical simulations of turbulence Computers & Fluids. 27: 11-28. DOI: 10.1016/S0045-7930(97)00019-4 |
0.398 |
|
1998 |
Subramaniam S, Pope SB. A mixing model for turbulent reactive flows based on euclidean minimum spanning trees Combustion and Flame. 115: 487-514. DOI: 10.1016/S0010-2180(98)00023-6 |
0.46 |
|
1998 |
Yang B, Pope S. Treating chemistry in combustion with detailed mechanisms—In situ adaptive tabulation in principal directions—Premixed combustion Combustion and Flame. 112: 85-112. DOI: 10.1016/S0010-2180(97)81759-2 |
0.385 |
|
1998 |
Yang B, Pope S. An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry Combustion and Flame. 112: 16-32. DOI: 10.1016/S0010-2180(97)81754-3 |
0.369 |
|
1997 |
Anand MS, Hsu AT, Pope SB. Calculations of Swirl Combustors Using Joint Velocity-Scalar Probability Density Function Method Aiaa Journal. 35: 1143-1150. DOI: 10.2514/2.237 |
0.443 |
|
1997 |
Pope SB. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation Combustion Theory and Modelling. 1: 41-63. DOI: 10.1080/713665229 |
0.429 |
|
1997 |
Delarue BJ, Pope SB. Application of PDF methods to compressible turbulent flows Physics of Fluids. 9: 2704-2715. DOI: 10.1063/1.869382 |
0.481 |
|
1997 |
Dreeben TD, Pope SB. Wall-function treatment in pdf methods for turbulent flows Physics of Fluids. 9: 2692-2703. DOI: 10.1063/1.869381 |
0.368 |
|
1997 |
Slooten PRV, Pope SB. PDF modeling for inhomogeneous turbulence with exact representation of rapid distortions Physics of Fluids. 9: 1085-1105. DOI: 10.1063/1.869195 |
0.441 |
|
1997 |
Dreeben TD, Pope SB. Probability density function and Reynolds‐stress modeling of near‐wall turbulent flows Physics of Fluids. 9: 154-163. DOI: 10.1063/1.869157 |
0.428 |
|
1997 |
Welton WC, Pope SB. PDF Model Calculations of Compressible Turbulent Flows Using Smoothed Particle Hydrodynamics Journal of Computational Physics. 134: 150-168. DOI: 10.1006/Jcph.1997.5680 |
0.455 |
|
1996 |
Overholt MR, Pope SB. Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence Physics of Fluids. 8: 3128-3148. DOI: 10.1063/1.869099 |
0.458 |
|
1996 |
Juneja A, Pope SB. A DNS study of turbulent mixing of two passive scalars Physics of Fluids. 8: 2161-2184. DOI: 10.1063/1.868990 |
0.412 |
|
1995 |
Lee YY, Pope SB. Nonpremixed turbulent reacting flow near extinction Combustion and Flame. 101: 501-528. DOI: 10.1016/0010-2180(94)00240-S |
0.466 |
|
1995 |
Norris AT, Pope SB. Modeling of extinction in turbulent diffusion flames by the velocity-dissipation-composition PDF method☆ Combustion and Flame. 100: 211-220. DOI: 10.1016/0010-2180(94)00092-7 |
0.457 |
|
1995 |
Pope SB. Particle method for turbulent flows: integration of stochastic model equations Journal of Computational Physics. 117: 332-349. DOI: 10.1006/Jcph.1995.1070 |
0.412 |
|
1994 |
Pope SB. Lagrangian PDF Methods for Turbulent Flows Annual Review of Fluid Mechanics. 26: 23-63. DOI: 10.1146/Annurev.Fl.26.010194.000323 |
0.474 |
|
1994 |
Pope SB. On the relationship between stochastic Lagrangian models of turbulence and second‐moment closures Physics of Fluids. 6: 973-985. DOI: 10.1063/1.868329 |
0.373 |
|
1994 |
Song F, Pope SB. Computation of recirculating swirling flow with the GLM Reynolds stress closure Acta Mechanica Sinica. 10: 110-120. DOI: 10.1007/Bf02486581 |
0.423 |
|
1993 |
Pope SB, Ching ESC. Stationary probability density functions: An exact result Physics of Fluids. 5: 1529-1531. DOI: 10.1063/1.858830 |
0.356 |
|
1993 |
Yeung PK, Pope SB. Differential diffusion of passive scalars in isotropic turbulence Physics of Fluids. 5: 2467-2478. DOI: 10.1063/1.858760 |
0.671 |
|
1993 |
Taing S, Masri AR, Pope SB. PDF calculations of turbulent nonpremixed flames of using reduced chemical mechanisms Combustion and Flame. 95: 133-150. DOI: 10.1016/0010-2180(93)90057-A |
0.466 |
|
1992 |
Girimaji SS, Pope SB. Propagating surfaces in isotropic turbulence Journal of Fluid Mechanics. 234: 247-277. DOI: 10.1017/S0022112092000776 |
0.376 |
|
1992 |
Maas U, Pope SB. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space Combustion and Flame. 88: 239-264. DOI: 10.1016/0010-2180(92)90034-M |
0.357 |
|
1991 |
Pope SB. Application of the velocity‐dissipation probability density function model to inhomogeneous turbulent flows Physics of Fluids. 3: 1947-1957. DOI: 10.1063/1.857925 |
0.48 |
|
1991 |
Norris AT, Pope SB. Turbulent mixing model based on ordered pairing Combustion and Flame. 83: 27-42. DOI: 10.1016/0010-2180(91)90201-L |
0.459 |
|
1991 |
Pope SB. Mapping closures for turbulent mixing and reaction Theoretical and Computational Fluid Dynamics. 2: 152-153. DOI: 10.1007/978-1-4612-2792-2_9 |
0.393 |
|
1990 |
Pope SB. Lagrangian Microscales in Turbulence Philosophical Transactions of the Royal Society A. 333: 309-319. DOI: 10.1098/Rsta.1990.0163 |
0.34 |
|
1990 |
Girimaji SS, Pope SB. A diffusion model for velocity gradients in turbulence Physics of Fluids A. 2: 242-256. DOI: 10.1063/1.857773 |
0.478 |
|
1990 |
Pope SB, Chen YL. The velocity‐dissipation probability density function model for turbulent flows Physics of Fluids. 2: 1437-1449. DOI: 10.1063/1.857592 |
0.461 |
|
1990 |
Girimaji SS, Pope SB. Material-element deformation in isotropic turbulence Journal of Fluid Mechanics. 220: 427-458. DOI: 10.1017/S0022112090003330 |
0.356 |
|
1990 |
Yeung PK, Girimaji SS, Pope SB. Straining and scalar dissipation on material surfaces in turbulence: Implications for flamelets Combustion and Flame. 79: 340-365. DOI: 10.1016/0010-2180(90)90145-H |
0.682 |
|
1990 |
Masri AR, Pope SB. PDF calculations of piloted turbulent nonpremixed flames of methane Combustion and Flame. 81: 13-29. DOI: 10.1016/0010-2180(90)90066-Z |
0.481 |
|
1989 |
Pope SB, Yeung PK, Girimaji SS. The curvature of material surfaces in isotropic turbulence Physics of Fluids A. 1: 2010-2018. DOI: 10.1063/1.857474 |
0.633 |
|
1989 |
Yeung PK, Pope SB. Lagrangian statistics from direct numerical simulations of isotropic turbulence Journal of Fluid Mechanics. 207: 531-586. DOI: 10.1017/S0022112089002697 |
0.717 |
|
1989 |
Pope SB, Cheng WK. The stochastic flamelet model of turbulent premixed combustion Symposium (International) On Combustion. 22: 781-789. DOI: 10.1016/S0082-0784(89)80087-6 |
0.344 |
|
1989 |
Haworth DC, Drake MC, Pope SB, Blint RJ. The importance of time-dependent flame structures in stretched laminar flamelet models for turbulent jet diffusion flames Symposium (International) On Combustion. 22: 589-597. DOI: 10.1016/S0082-0784(89)80066-9 |
0.64 |
|
1988 |
Eswaran V, Pope SB. Direct numerical simulations of the turbulent mixing of a passive scalar Physics of Fluids. 31: 506-520. DOI: 10.1063/1.866832 |
0.404 |
|
1988 |
Eswaran V, Pope SB. An examination of forcing in direct numerical simulations of turbulence Computers & Fluids. 16: 257-278. DOI: 10.1016/0045-7930(88)90013-8 |
0.395 |
|
1988 |
Yeung PK, Pope SB. An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence Journal of Computational Physics. 79: 373-416. DOI: 10.1016/0021-9991(88)90022-8 |
0.708 |
|
1988 |
Pope SB. The evolution of surfaces in turbulence International Journal of Engineering Science. 26: 445-469. DOI: 10.1016/0020-7225(88)90004-3 |
0.318 |
|
1988 |
Correa SM, Gulati A, Pope SB. Assessment of a partial-equilibrium/monte carlo model for turbulent syngas flames Combustion and Flame. 72: 159-173. DOI: 10.1016/0010-2180(88)90116-2 |
0.444 |
|
1987 |
Pope SB. Turbulent Premixed Flames Annual Review of Fluid Mechanics. 19: 237-270. DOI: 10.1146/Annurev.Fl.19.010187.001321 |
0.345 |
|
1987 |
Haworth DC, Pope SB. A pdf modeling study of self-similar turbulent free shear flows Phys. Fluids. 30: 1026-1044. DOI: 10.1063/1.866301 |
0.697 |
|
1987 |
Pope SB. Consistency conditions for random‐walk models of turbulent dispersion Physics of Fluids. 30: 2374-2379. DOI: 10.1063/1.866127 |
0.448 |
|
1987 |
Haworth DC, Pope SB. Monte Carlo solutions of a joint PDF equation for turbulent flows in general orthogonal coordinates Journal of Computational Physics. 72: 311-346. DOI: 10.1016/0021-9991(87)90086-6 |
0.697 |
|
1987 |
Anand MS, Pope SB. Calculations of premixed turbulent flames by PDF methods Combustion and Flame. 67: 127-142. DOI: 10.1016/0010-2180(87)90146-5 |
0.485 |
|
1986 |
Haworth DC, Pope SB. A second-order Monte Carlo method for the solution of the Ito stochastic differential equation Stochastic Analysis and Applications. 4: 151-186. DOI: 10.1080/07362998608809086 |
0.608 |
|
1986 |
Haworth DC, Pope SB. A generalized Langevin model for turbulent flows Phys. Fluids. 29: 387-405. DOI: 10.1063/1.865723 |
0.698 |
|
1985 |
Pope SB, Anand MS. Flamelet and distributed combustion in premixed turbulent flames Symposium (International) On Combustion. 20: 403-410. DOI: 10.1016/S0082-0784(85)80527-0 |
0.351 |
|
1985 |
Pope SB. PDF methods for turbulent reactive flows Progress in Energy and Combustion Science. 11: 119-192. DOI: 10.1016/0360-1285(85)90002-4 |
0.46 |
|
1984 |
Nguyen TV, Pope SB. Monte carlo calculations of turbulent diffusion flames Combustion Science and Technology. 42: 13-45. DOI: 10.1080/00102208408960367 |
0.46 |
|
1984 |
Givi P, Pope SB, Sirignano WA. Probability Calculations for Turbulent Jet Flows with Mixing and Reaction of NO and O3 Combustion Science and Technology. 37: 59-78. DOI: 10.1080/00102208408923746 |
0.426 |
|
1983 |
Pope SB. Consistent modeling of scalars in turbulent flows Physics of Fluids. 26: 404-408. DOI: 10.1063/1.864151 |
0.434 |
|
1983 |
Pope SB. A Lagrangian two‐time probability density function equation for inhomogeneous turbulent flows Physics of Fluids. 26: 3448-3450. DOI: 10.1063/1.864125 |
0.398 |
|
1982 |
Pope SB. The Application of PDF Transport Equations to Turbulent Reactive Flows Journal of Non-Equilibrium Thermodynamics. 7: 1-14. DOI: 10.1515/Jnet.1982.7.1.1 |
0.39 |
|
1982 |
Pope SB. An Improved Turbulent Mixing Model Combustion Science and Technology. 28: 131-145. DOI: 10.1080/00102208208952549 |
0.428 |
|
1981 |
Pope SB. A Monte Carlo Method for the PDF Equations of Turbulent Reactive Flow Combustion Science and Technology. 25: 159-174. DOI: 10.1080/00102208108547500 |
0.472 |
|
1981 |
Pope SB. Transport equation for the joint probability density function of velocity and scalars in turbulent flow Physics of Fluids. 24: 588-596. DOI: 10.1063/1.863425 |
0.444 |
|
1979 |
Pope SB. A Rational Method of Determining Probability Distributions in Turbulent Reacting Flows Journal of Non-Equilibrium Thermodynamics. 4: 309-320. DOI: 10.1515/Jnet.1979.4.5.309 |
0.382 |
|
1979 |
Pope SB. The Statistical Theory of Turbulent Flames Philosophical Transactions of the Royal Society A. 291: 529-568. DOI: 10.1098/Rsta.1979.0041 |
0.389 |
|
1979 |
Pope SB. The relationship between the probability approach and particle models for reaction in homogeneous turbulence Combustion and Flame. 35: 41-45. DOI: 10.1016/0010-2180(79)90005-1 |
0.396 |
|
1978 |
Pope SB. An explanation of the turbulent round-jet/plane-jet anomaly Aiaa Journal. 16: 279-281. DOI: 10.2514/3.7521 |
0.348 |
|
1978 |
Pope SB. The calculation of turbulent recirculating flows in general orthogonal coordinates Journal of Computational Physics. 26: 197-217. DOI: 10.1016/0021-9991(78)90091-8 |
0.391 |
|
1977 |
Pope SB. The implications of the probability equations for turbulent combustion models Combustion and Flame. 29: 235-246. DOI: 10.1016/0010-2180(77)90114-6 |
0.444 |
|
1976 |
Pope SB, Whitelaw JH. The calculation of near-wake flows Journal of Fluid Mechanics. 73: 9-32. DOI: 10.1017/S0022112076001213 |
0.635 |
|
1976 |
Pope SB. The probability approach to the modelling of turbulent reacting flows Combustion and Flame. 27: 299-312. DOI: 10.1016/0010-2180(76)90035-3 |
0.429 |
|
1975 |
Pope SB. A more general effective-viscosity hypothesis Journal of Fluid Mechanics. 72: 331-340. DOI: 10.1017/S0022112075003382 |
0.407 |
|
Show low-probability matches. |