Year |
Citation |
Score |
2017 |
Billaud-Friess M, Nouy A. Dynamical Model Reduction Method for Solving Parameter-Dependent Dynamical Systems Siam Journal On Scientific Computing. 39. DOI: 10.1137/16M1071493 |
0.399 |
|
2017 |
Zahm O, Billaud-Friess M, Nouy A. Projection based model order reduction methods for the estimation of vector-valued variables of interest Siam Journal On Scientific Computing. 39. DOI: 10.1137/16M106385X |
0.451 |
|
2016 |
Zahm O, Nouy A. Interpolation of inverse operators for preconditioning parameter-dependent equations Siam Journal On Scientific Computing. 38. DOI: 10.1137/15M1019210 |
0.34 |
|
2015 |
Chevreuil M, Lebrun R, Nouy A, Rai P. A Least-Squares Method for Sparse Low Rank Approximation of Multivariate Functions Siam/Asa Journal On Uncertainty Quantification. 3: 897-921. DOI: 10.1137/13091899X |
0.636 |
|
2014 |
Giraldi L, Litvinenko A, Liu D, Matthies HG, Nouy A. To be or not to be intrusive? The solution of parametric and stochastic equations-the "plain vanilla" Galerkin case Siam Journal On Scientific Computing. 36: A2720-A2744. DOI: 10.1137/130942802 |
0.403 |
|
2014 |
Giraldi L, Nouy A, Legrain G. Low-Rank Approximate Inverse for Preconditioning Tensor-Structured Linear Systems Siam Journal On Scientific Computing. 36. DOI: 10.1137/130918137 |
0.364 |
|
2014 |
Tamellini L, Maître OL, Nouy A. Model Reduction Based on Proper Generalized Decomposition for the Stochastic Steady Incompressible Navier--Stokes Equations Siam Journal On Scientific Computing. 36. DOI: 10.1137/120878999 |
0.48 |
|
2014 |
Billaud-Friess M, Nouy A, Zahm O. A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems ∗ Mathematical Modelling and Numerical Analysis. 48: 1777-1806. DOI: 10.1051/M2An/2014019 |
0.513 |
|
2014 |
Boucinha L, Ammar A, Gravouil A, Nouy A. Ideal minimal residual-based proper generalized decomposition for non-symmetric multi-field models - Application to transient elastodynamics in space-time domain Computer Methods in Applied Mechanics and Engineering. 273: 56-76. DOI: 10.1016/J.Cma.2014.01.019 |
0.543 |
|
2013 |
Chevreuil M, Nouy A, Safatly E. A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties Computer Methods in Applied Mechanics and Engineering. 255: 255-274. DOI: 10.1016/J.Cma.2012.12.003 |
0.513 |
|
2012 |
Falcó A, Nouy A. Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces Numerische Mathematik. 121: 503-530. DOI: 10.1007/S00211-011-0437-5 |
0.489 |
|
2012 |
Chevreuil M, Nouy A. Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics International Journal For Numerical Methods in Engineering. 89: 241-268. DOI: 10.1002/Nme.3249 |
0.421 |
|
2011 |
Falco A, Nouy A. A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach Journal of Mathematical Analysis and Applications. 376: 469-480. DOI: 10.1016/J.Jmaa.2010.12.003 |
0.459 |
|
2011 |
Nouy A, Chevreuil M, Safatly E. Fictitious domain method and separated representations for the solution of boundary value problems on uncertain parameterized domains Computer Methods in Applied Mechanics and Engineering. 200: 3066-3082. DOI: 10.1016/J.Cma.2011.07.002 |
0.494 |
|
2010 |
Nouy A. Identification of multi-modal random variables through mixtures of polynomial chaos expansions Comptes Rendus Mecanique. 338: 698-703. DOI: 10.1016/J.Crme.2010.09.003 |
0.351 |
|
2010 |
Nouy A. A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations Computer Methods in Applied Mechanics and Engineering. 199: 1603-1626. DOI: 10.1016/J.Cma.2010.01.009 |
0.511 |
|
2010 |
Nouy A. Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems Archives of Computational Methods in Engineering. 17: 403-434. DOI: 10.1007/S11831-010-9054-1 |
0.553 |
|
2010 |
Nouy A, Clement A. eXtended Stochastic Finite Element Method for the numerical simulation of heterogeneous materials with random material interfaces International Journal For Numerical Methods in Engineering. 83: 1312-1344. DOI: 10.1002/Nme.2865 |
0.488 |
|
2009 |
Nouy A, Ladevèze P. On a Computational Strategy with Time-Space Homogenization for Heterogeneous Materials Journal of the Mechanical Behavior of Materials. 19: 151-158. DOI: 10.1515/Jmbm.2009.19.2-3.151 |
0.633 |
|
2009 |
Schoefs F, Clément A, Nouy A. Assessment of ROC curves for inspection of random fields Structural Safety. 31: 409-419. DOI: 10.1016/J.Strusafe.2009.01.004 |
0.314 |
|
2009 |
Nouy A, Maıtre OPL. Generalized spectral decomposition for stochastic nonlinear problems Journal of Computational Physics. 228: 202-235. DOI: 10.1016/J.Jcp.2008.09.010 |
0.515 |
|
2009 |
Nouy A. Recent Developments in Spectral Stochastic Methods for the Numerical Solution of Stochastic Partial Differential Equations Archives of Computational Methods in Engineering. 16: 251-285. DOI: 10.1007/S11831-009-9034-5 |
0.489 |
|
2009 |
Stefanou G, Nouy A, Clement A. Identification of random shapes from images through polynomial chaos expansion of random level set functions International Journal For Numerical Methods in Engineering. 79: 127-155. DOI: 10.1002/Nme.2546 |
0.437 |
|
2008 |
Nouy A. Generalized spectral decomposition method for solving stochastic finite element equations : Invariant subspace problem and dedicated algorithms Computer Methods in Applied Mechanics and Engineering. 197: 4718-4736. DOI: 10.1016/J.Cma.2008.06.012 |
0.556 |
|
2008 |
Nouy A, Clement A, Schoefs F, Moes N. An extended stochastic finite element method for solving stochastic partial differential equations on random domains Computer Methods in Applied Mechanics and Engineering. 197: 4663-4682. DOI: 10.1016/J.Cma.2008.06.010 |
0.491 |
|
2007 |
Nouy A, Schoefs F, Moës N. X-SFEM, a computational technique based on X-FEM to deal with random shapes European Journal of Computational Mechanics. 16: 277-293. DOI: 10.3166/Remn.16.277-293 |
0.453 |
|
2007 |
Nouy A. A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations Computer Methods in Applied Mechanics and Engineering. 196: 4521-4537. DOI: 10.1016/J.Cma.2007.05.016 |
0.501 |
|
2004 |
Nouy A, Ladevèze P. Multiscale Computational Strategy With Time and Space Homogenization: A Radial-Type Approximation Technique for Solving Microproblems International Journal For Multiscale Computational Engineering. 2: 557-574. DOI: 10.1615/Intjmultcompeng.V2.I4.40 |
0.642 |
|
2003 |
Ladevèze P, Nouy A. On a Multiscale Computational Strategy with Time and Space Homogenization for Structural Mechanics Computer Methods in Applied Mechanics and Engineering. 192: 3061-3087. DOI: 10.1016/S0045-7825(03)00341-4 |
0.636 |
|
2002 |
Ladeveze P, Nouy A. Une stratégie de calcul multiéchelle avec homogénéisation en espace et en temps Comptes Rendus Mecanique. 330: 683-689. DOI: 10.1016/S1631-0721(02)01514-0 |
0.488 |
|
2002 |
Ladevèze P, Nouy A, Loiseau O. A multiscale computational approach for contact problems Computer Methods in Applied Mechanics and Engineering. 191: 4869-4891. DOI: 10.1016/S0045-7825(02)00406-1 |
0.601 |
|
Show low-probability matches. |