Year |
Citation |
Score |
2024 |
Wanzenböck R, Heid E, Riva M, Franceschi G, Imre AM, Carrete J, Diebold U, Madsen GKH. Exploring inhomogeneous surfaces: Ti-rich SrTiO(110) reconstructions active learning. Digital Discovery. PMID 39364117 DOI: 10.1039/d4dd00231h |
0.32 |
|
2024 |
Heid E, Schörghuber J, Wanzenböck R, Madsen GKH. Spatially Resolved Uncertainties for Machine Learning Potentials. Journal of Chemical Information and Modeling. 64: 6377-6387. PMID 39110874 DOI: 10.1021/acs.jcim.4c00904 |
0.477 |
|
2023 |
Heid E, Greenman KP, Chung Y, Li SC, Graff DE, Vermeire FH, Wu H, Green WH, McGill CJ. Chemprop: A Machine Learning Package for Chemical Property Prediction. Journal of Chemical Information and Modeling. 64: 9-17. PMID 38147829 DOI: 10.1021/acs.jcim.3c01250 |
0.565 |
|
2023 |
Heid E, Probst D, Green WH, Madsen GKH. EnzymeMap: curation, validation and data-driven prediction of enzymatic reactions. Chemical Science. 14: 14229-14242. PMID 38098707 DOI: 10.1039/d3sc02048g |
0.727 |
|
2023 |
Heid E, McGill CJ, Vermeire FH, Green WH. Characterizing Uncertainty in Machine Learning for Chemistry. Journal of Chemical Information and Modeling. PMID 37338239 DOI: 10.1021/acs.jcim.3c00373 |
0.651 |
|
2023 |
Carrete J, Montes-Campos H, Wanzenböck R, Heid E, Madsen GKH. Deep ensembles vs committees for uncertainty estimation in neural-network force fields: Comparison and application to active learning. The Journal of Chemical Physics. 158. PMID 37212411 DOI: 10.1063/5.0146905 |
0.372 |
|
2022 |
Zahrt AF, Mo Y, Nandiwale KY, Shprints R, Heid E, Jensen KF. Machine-Learning-Guided Discovery of Electrochemical Reactions. Journal of the American Chemical Society. PMID 36459170 DOI: 10.1021/jacs.2c08997 |
0.599 |
|
2022 |
Sankaranarayanan K, Heid E, Coley CW, Verma D, Green WH, Jensen KF. Similarity based enzymatic retrosynthesis. Chemical Science. 13: 6039-6053. PMID 35685792 DOI: 10.1039/d2sc01588a |
0.689 |
|
2022 |
Bolcato G, Heid E, Boström J. On the Value of Using 3D Shape and Electrostatic Similarities in Deep Generative Methods. Journal of Chemical Information and Modeling. 62: 1388-1398. PMID 35271260 DOI: 10.1021/acs.jcim.1c01535 |
0.313 |
|
2021 |
Heid E, Liu J, Aude A, Green WH. Influence of Template Size, Canonicalization, and Exclusivity for Retrosynthesis and Reaction Prediction Applications. Journal of Chemical Information and Modeling. PMID 34939786 DOI: 10.1021/acs.jcim.1c01192 |
0.686 |
|
2021 |
Heid E, Green WH. Machine Learning of Reaction Properties via Learned Representations of the Condensed Graph of Reaction. Journal of Chemical Information and Modeling. PMID 34734699 DOI: 10.1021/acs.jcim.1c00975 |
0.683 |
|
2021 |
Heid E, Goldman S, Sankaranarayanan K, Coley CW, Flamm C, Green WH. EHreact: Extended Hasse Diagrams for the Extraction and Scoring of Enzymatic Reaction Templates. Journal of Chemical Information and Modeling. PMID 34587449 DOI: 10.1021/acs.jcim.1c00921 |
0.702 |
|
2020 |
Guan Y, Coley CW, Wu H, Ranasinghe D, Heid E, Struble TJ, Pattanaik L, Green WH, Jensen KF. Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors. Chemical Science. 12: 2198-2208. PMID 34163985 DOI: 10.1039/d0sc04823b |
0.667 |
|
Show low-probability matches. |