Year |
Citation |
Score |
2023 |
Hulin MT, Hill L, Jones JDG, Ma W. Pangenomic analysis reveals plant NAD manipulation as an important virulence activity of bacterial pathogen effectors. Proceedings of the National Academy of Sciences of the United States of America. 120: e2217114120. PMID 36753463 DOI: 10.1073/pnas.2217114120 |
0.477 |
|
2022 |
De Francesco A, Lovelace AH, Shaw D, Qiu M, Wang Y, Gurung F, Ancona V, Wang C, Levy A, Jiang T, Ma W. Transcriptome Profiling of ' Liberibacter asiaticus' in Citrus and Psyllids. Phytopathology. PHYTO08210327FI. PMID 35025694 DOI: 10.1094/PHYTO-08-21-0327-FI |
0.301 |
|
2021 |
Derevnina L, Contreras MP, Adachi H, Upson J, Vergara Cruces A, Xie R, Skłenar J, Menke FLH, Mugford ST, MacLean D, Ma W, Hogenhout S, Goverse A, Maqbool A, Wu CH, et al. Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. Plos Biology. 19: e3001136. PMID 34424903 DOI: 10.1371/journal.pbio.3001136 |
0.34 |
|
2021 |
Qiao Y, Xia R, Zhai J, Hou Y, Feng L, Zhai Y, Ma W. Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens. Annual Review of Phytopathology. PMID 34077241 DOI: 10.1146/annurev-phyto-121520-023514 |
0.367 |
|
2021 |
Dong S, Ma W. How to win a tug-of-war: the adaptive evolution of Phytophthora effectors. Current Opinion in Plant Biology. 62: 102027. PMID 33684881 DOI: 10.1016/j.pbi.2021.102027 |
0.45 |
|
2020 |
Pang Z, Zhang L, Coaker G, Ma W, He SY, Wang N. Citrus CsACD2 Is a Target of Candidatus Liberibacter Asiaticus in Huanglongbing Disease. Plant Physiology. 184: 792-805. PMID 33890048 DOI: 10.1104/pp.20.00348 |
0.395 |
|
2020 |
Hudzik C, Hou Y, Ma W, Axtell MJ. Exchange of Small Regulatory RNAs between Plants and Their Pests1[OPEN]. Plant Physiology. 182: 51-62. PMID 33887003 DOI: 10.1104/pp.19.00931 |
0.346 |
|
2020 |
Pang Z, Zhang L, Coaker GL, Ma W, He SY, Wang N. Citrus CsACD2 is a target of Candidatus Liberibacter asiaticus in Huanglongbing disease. Plant Physiology. PMID 32759268 DOI: 10.1104/Pp.20.00348 |
0.486 |
|
2020 |
Thapa SP, De Francesco A, Trinh J, Gurung FB, Pang Z, Vidalakis G, Wang N, Ancona V, Ma W, Coaker G. Genome-wide analyses of Liberibacter species provides insights into evolution, phylogenetic relationships, and virulence factors. Molecular Plant Pathology. PMID 32108417 DOI: 10.1111/Mpp.12925 |
0.377 |
|
2019 |
Hudzik C, Hou Y, Ma W, Axtell MJ. Exchange of small regulatory RNAs between plants and their pests. Plant Physiology. PMID 31636103 DOI: 10.1104/Pp.19.00931 |
0.446 |
|
2019 |
Hou Y, Ma W. Natural Host-Induced Gene Silencing Offers New Opportunities to Engineer Disease Resistance. Trends in Microbiology. PMID 31606358 DOI: 10.1016/j.tim.2019.08.009 |
0.374 |
|
2019 |
Zhang P, Jia Y, Shi J, Chen C, Ye W, Wang Y, Ma W, Qiao Y. The WY domain in the Phytophthora effector PSR1 is required for infection and RNA silencing suppression activity. The New Phytologist. PMID 30963588 DOI: 10.1111/Nph.15836 |
0.46 |
|
2019 |
He J, Ye W, Choi DS, Wu B, Zhai Y, Guo B, Duan S, Wang Y, Gan J, Ma W, Ma J. Structural analysis of suppressor of RNA silencing 2 (PSR2) reveals a conserved modular fold contributing to virulence. Proceedings of the National Academy of Sciences of the United States of America. PMID 30926664 DOI: 10.1073/Pnas.1819481116 |
0.376 |
|
2019 |
Chen XR, Zhang Y, Li H, Zhang ZH, Sheng GL, Li YP, Xing YP, Huang SX, Tao H, Kuan T, Zhai Y, Ma W. The RXLR effector PcAvh1 is required for full virulence of Phytophthora capsici. Molecular Plant-Microbe Interactions : Mpmi. PMID 30811314 DOI: 10.1094/Mpmi-09-18-0251-R |
0.54 |
|
2018 |
Hou Y, Zhai Y, Feng L, Karimi HZ, Rutter BD, Zeng L, Choi DS, Zhang B, Gu W, Chen X, Ye W, Innes RW, Zhai J, Ma W. A Phytophthora Effector Suppresses Trans-Kingdom RNAi to Promote Disease Susceptibility. Cell Host & Microbe. PMID 30595554 DOI: 10.1016/J.Chom.2018.11.007 |
0.51 |
|
2018 |
Cai Q, Liang C, Wang S, Hou Y, Gao L, Liu L, He W, Ma W, Mo B, Chen X. The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs. Nature Communications. 9: 5080. PMID 30498229 DOI: 10.1038/S41467-018-07516-Z |
0.331 |
|
2018 |
Zhao Y, Li Y, Qiu M, Ma W, Wang Y. Generating Gene Silenced Mutants in Phytophthora sojae. Methods in Molecular Biology (Clifton, N.J.). 1848: 275-286. PMID 30182241 DOI: 10.1007/978-1-4939-8724-5_18 |
0.368 |
|
2018 |
Clark K, Franco JY, Schwizer S, Pang Z, Hawara E, Liebrand TWH, Pagliaccia D, Zeng L, Gurung FB, Wang P, Shi J, Wang Y, Ancona V, van der Hoorn RAL, Wang N, ... ... Ma W, et al. An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nature Communications. 9: 1718. PMID 29712915 DOI: 10.1038/S41467-018-04140-9 |
0.478 |
|
2017 |
Pagliaccia D, Shi J, Pang Z, Hawara E, Clark K, Thapa SP, De Francesco AD, Liu J, Tran TT, Bodaghi S, Folimonova SY, Ancona V, Mulchandani A, Coaker G, Wang N, ... ... Ma W, et al. A Pathogen Secreted Protein as a Detection Marker for Citrus Huanglongbing. Frontiers in Microbiology. 8: 2041. PMID 29403441 DOI: 10.3389/Fmicb.2017.02041 |
0.36 |
|
2017 |
Ma W, Wang Y, McDowell JM. Effector biology exhibits diversity at every level. Molecular Plant-Microbe Interactions : Mpmi. PMID 29161216 DOI: 10.1094/Mpmi-11-17-0275-Le |
0.488 |
|
2017 |
Zhang ZM, Ma KW, Gao L, Hu Z, Schwizer S, Ma W, Song J. Mechanism of host substrate acetylation by a YopJ family effector. Nature Plants. 3: 17115. PMID 28737762 DOI: 10.1038/Nplants.2017.115 |
0.523 |
|
2017 |
Bailey-Serres J, Ma W. Plant biology: An immunity boost combats crop disease. Nature. PMID 28514444 DOI: 10.1038/Nature22497 |
0.392 |
|
2017 |
Michelmore RW, Coaker G, Bart R, Beattie GA, Bent A, Bruce T, Cameron D, Dangl J, Dinesh-Kumar S, Edwards R, Eves-van den Akker S, Gassmann W, Greenberg J, Harrison R, He P, ... ... Ma W, et al. Foundational and translational research opportunities to improve plant health. Molecular Plant-Microbe Interactions : Mpmi. PMID 28398839 DOI: 10.1094/Mpmi-01-17-0010-Cr |
0.665 |
|
2017 |
Kong L, Qiu X, Kang J, Wang Y, Chen H, Huang J, Qiu M, Zhao Y, Kong G, Ma Z, Wang Y, Ye W, Dong S, Ma W, Wang Y. A Phytophthora Effector Manipulates Host Histone Acetylation and Reprograms Defense Gene Expression to Promote Infection. Current Biology : Cb. PMID 28318979 DOI: 10.1016/J.Cub.2017.02.044 |
0.466 |
|
2017 |
Hou Y, Ma W. Small RNA and mRNA Profiling of Arabidopsis in Response to Phytophthora Infection and PAMP Treatment. Methods in Molecular Biology (Clifton, N.J.). 1578: 273-283. PMID 28220433 DOI: 10.1007/978-1-4939-6859-6_23 |
0.354 |
|
2016 |
Ma KW, Ma W. YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity. Microbiology and Molecular Biology Reviews : Mmbr. 80: 1011-1027. PMID 27784797 DOI: 10.1128/MMBR.00032-16 |
0.512 |
|
2016 |
Zhang ZM, Ma KW, Yuan S, Luo Y, Jiang S, Hawara E, Pan S, Ma W, Song J. Structure of a pathogen effector reveals the enzymatic mechanism of a novel acetyltransferase family. Nature Structural & Molecular Biology. PMID 27525589 DOI: 10.1038/Nsmb.3279 |
0.624 |
|
2016 |
Whitham SA, Qi M, Innes RW, Ma W, Lopes-Caitar V, Hewezi T. Molecular Soybean-Pathogen Interactions. Annual Review of Phytopathology. PMID 27359370 DOI: 10.1146/Annurev-Phyto-080615-100156 |
0.462 |
|
2016 |
Jing M, Guo B, Li H, Yang B, Wang H, Kong G, Zhao Y, Xu H, Wang Y, Ye W, Dong S, Qiao Y, Tyler BM, Ma W, Wang Y. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. Nature Communications. 7: 11685. PMID 27256489 DOI: 10.1038/Ncomms11685 |
0.487 |
|
2016 |
Kuan T, Zhai Y, Ma W. Small RNAs regulate plant responses to filamentous pathogens. Seminars in Cell & Developmental Biology. PMID 27208726 DOI: 10.1016/J.Semcdb.2016.05.013 |
0.368 |
|
2016 |
Ye W, Ma W. Filamentous pathogen effectors interfering with small RNA silencing in plant hosts. Current Opinion in Microbiology. 32: 1-6. PMID 27104934 DOI: 10.1016/J.Mib.2016.04.003 |
0.538 |
|
2016 |
Ma KW, Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. Plant Molecular Biology. PMID 26879412 DOI: 10.1007/S11103-016-0452-0 |
0.502 |
|
2015 |
Kong G, Zhao Y, Jing M, Huang J, Yang J, Xia Y, Kong L, Ye W, Xiong Q, Qiao Y, Dong S, Ma W, Wang Y. The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b. Plos Pathogens. 11: e1005139. PMID 26317500 DOI: 10.1371/Journal.Ppat.1005139 |
0.533 |
|
2015 |
Ma KW, Jiang S, Hawara E, Lee D, Pan S, Coaker G, Song J, Ma W. Two serine residues in Pseudomonas syringae effector HopZ1a are required for acetyltransferase activity and association with the host co-factor. The New Phytologist. PMID 26103463 DOI: 10.1111/Nph.13528 |
0.612 |
|
2015 |
Qiao Y, Shi J, Zhai Y, Hou Y, Ma W. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. Proceedings of the National Academy of Sciences of the United States of America. 112: 5850-5. PMID 25902521 DOI: 10.1073/Pnas.1421475112 |
0.469 |
|
2014 |
Xiong Q, Ye W, Choi D, Wong J, Qiao Y, Tao K, Wang Y, Ma W. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana. Molecular Plant-Microbe Interactions : Mpmi. 27: 1379-89. PMID 25387135 DOI: 10.1094/Mpmi-06-14-0190-R |
0.555 |
|
2014 |
Wong J, Gao L, Yang Y, Zhai J, Arikit S, Yu Y, Duan S, Chan V, Xiong Q, Yan J, Li S, Liu R, Wang Y, Tang G, Meyers BC, ... ... Ma W, et al. Roles of small RNAs in soybean defense against Phytophthora sojae infection. The Plant Journal : For Cell and Molecular Biology. 79: 928-40. PMID 24944042 DOI: 10.1111/Tpj.12590 |
0.344 |
|
2014 |
Ma W. From pathogen recognition to plant immunity: BIK1 cROSses the divide. Cell Host & Microbe. 15: 253-4. PMID 24629331 DOI: 10.1016/J.Chom.2014.02.012 |
0.414 |
|
2014 |
Shi J, Pagliaccia D, Morgan R, Qiao Y, Pan S, Vidalakis G, Ma W. Novel diagnosis for citrus stubborn disease by detection of a spiroplasma citri-secreted protein. Phytopathology. 104: 188-95. PMID 23931112 DOI: 10.1094/Phyto-06-13-0176-R |
0.426 |
|
2013 |
Jiang S, Yao J, Ma KW, Zhou H, Song J, He SY, Ma W. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors. Plos Pathogens. 9: e1003715. PMID 24204266 DOI: 10.1371/Journal.Ppat.1003715 |
0.654 |
|
2013 |
Qiao Y, Liu L, Xiong Q, Flores C, Wong J, Shi J, Wang X, Liu X, Xiang Q, Jiang S, Zhang F, Wang Y, Judelson HS, Chen X, Ma W. Oomycete pathogens encode RNA silencing suppressors. Nature Genetics. 45: 330-3. PMID 23377181 DOI: 10.1038/Ng.2525 |
0.614 |
|
2011 |
Ma KW, Flores C, Ma W. Chromatin configuration as a battlefield in plant-bacteria interactions. Plant Physiology. 157: 535-43. PMID 21825106 DOI: 10.1104/Pp.111.182295 |
0.492 |
|
2011 |
Lewis JD, Lee A, Ma W, Zhou H, Guttman DS, Desveaux D. The YopJ superfamily in plant-associated bacteria. Molecular Plant Pathology. 12: 928-37. PMID 21726386 DOI: 10.1111/J.1364-3703.2011.00719.X |
0.759 |
|
2011 |
Zhou H, Lin J, Johnson A, Morgan RL, Zhong W, Ma W. Pseudomonas syringae type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean. Cell Host & Microbe. 9: 177-86. PMID 21402357 DOI: 10.1016/J.Chom.2011.02.007 |
0.448 |
|
2011 |
Qiao Y, Piao R, Shi J, Lee SI, Jiang W, Kim BK, Lee J, Han L, Ma W, Koh HJ. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Tag. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik. 122: 1439-49. PMID 21318372 DOI: 10.1007/S00122-011-1543-6 |
0.364 |
|
2010 |
Morgan RL, Zhou H, Lehto E, Nguyen N, Bains A, Wang X, Ma W. Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts. Molecular Microbiology. 76: 437-55. PMID 20233307 DOI: 10.1111/J.1365-2958.2010.07107.X |
0.543 |
|
2010 |
Yang Y, Zhao J, Morgan RL, Ma W, Jiang T. Computational prediction of type III secreted proteins from gram-negative bacteria. Bmc Bioinformatics. 11: S47. PMID 20122221 DOI: 10.1186/1471-2105-11-S1-S47 |
0.453 |
|
2009 |
Zhou H, Morgan RL, Guttman DS, Ma W. Allelic variants of the Pseudomonas syringae type III effector HopZ1 are differentially recognized by plant resistance systems. Molecular Plant-Microbe Interactions : Mpmi. 22: 176-89. PMID 19132870 DOI: 10.1094/Mpmi-22-2-0176 |
0.677 |
|
2008 |
Ma W, Guttman DS. Evolution of prokaryotic and eukaryotic virulence effectors. Current Opinion in Plant Biology. 11: 412-9. PMID 18585954 DOI: 10.1016/J.Pbi.2008.05.001 |
0.654 |
|
2008 |
Lewis JD, Abada W, Ma W, Guttman DS, Desveaux D. The HopZ family of Pseudomonas syringae type III effectors require myristoylation for virulence and avirulence functions in Arabidopsis thaliana. Journal of Bacteriology. 190: 2880-91. PMID 18263728 DOI: 10.1128/Jb.01702-07 |
0.746 |
|
2006 |
Ma W, Dong FF, Stavrinides J, Guttman DS. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. Plos Genetics. 2: e209. PMID 17194219 DOI: 10.1371/Journal.Pgen.0020209 |
0.76 |
|
2006 |
Stavrinides J, Ma W, Guttman DS. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. Plos Pathogens. 2: e104. PMID 17040127 DOI: 10.1371/Journal.Ppat.0020104 |
0.761 |
|
2005 |
Ma W, Dong FFT, Stavrinides J, Guttman DS. Diversification of a Type III Effector Family via both Pathoadaptation and Horizontal Transfer in Response to a Coevolutionary Arms Race Plos Genetics. DOI: 10.1371/Journal.Pgen.0020209.Eor |
0.701 |
|
2004 |
Ma W, Charles TC, Glick BR. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Applied and Environmental Microbiology. 70: 5891-7. PMID 15466529 DOI: 10.1128/Aem.70.10.5891-5897.2004 |
0.312 |
|
2003 |
Ma W, Guinel FC, Glick BR. Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Applied and Environmental Microbiology. 69: 4396-402. PMID 12902221 DOI: 10.1128/Aem.69.8.4396-4402.2003 |
0.305 |
|
Show low-probability matches. |