Thomas F. J. Martin - Publications

Affiliations: 
University of Wisconsin, Madison, Madison, WI 
Area:
Biochemistry
Website:
https://biochem.wisc.edu/faculty/martin

82 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2017 Woo SS, James DJ, Martin TF. Munc13-4 functions as a Ca sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles. Molecular Biology of the Cell. 28: 792-808. PMID 28100639 DOI: 10.1091/Mbc.E16-08-0617  0.555
2016 Petrie M, Esquibel J, Kabachinski G, Maciuba S, Takahashi H, Edwardson JM, Martin TF. The Vesicle Priming Factor CAPS Functions as a Homodimer via C2 Domain Interactions to Promote Regulated Vesicle Exocytosis. The Journal of Biological Chemistry. 291: 21257-21270. PMID 27528604 DOI: 10.1074/Jbc.M116.728097  0.816
2016 Kabachinski G, Kielar-Grevstad DM, Zhang X, James DJ, Martin TF. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion. Molecular Biology of the Cell. 27: 654-68. PMID 26700319 DOI: 10.1091/Mbc.E15-07-0509  0.827
2015 Yamaga M, Kielar-Grevstad DM, Martin TF. Phospholipase Cη2 Activation Redirects Vesicle Trafficking by Regulating F-actin. The Journal of Biological Chemistry. 290: 29010-21. PMID 26432644 DOI: 10.1074/Jbc.M115.658328  0.511
2015 Martin TF. PI(4,5)P₂-binding effector proteins for vesicle exocytosis. Biochimica Et Biophysica Acta. 1851: 785-93. PMID 25280637 DOI: 10.1016/J.Bbalip.2014.09.017  0.535
2014 Kabachinski G, Yamaga M, Kielar-Grevstad DM, Bruinsma S, Martin TF. CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis. Molecular Biology of the Cell. 25: 508-21. PMID 24356451 DOI: 10.1091/Mbc.E12-11-0829  0.849
2013 James DJ, Martin TF. CAPS and Munc13: CATCHRs that SNARE Vesicles. Frontiers in Endocrinology. 4: 187. PMID 24363652 DOI: 10.3389/Fendo.2013.00187  0.509
2013 Zhang Z, Takeuchi H, Gao J, Wang D, James DJ, Martin TF, Hirata M. PRIP (phospholipase C-related but catalytically inactive protein) inhibits exocytosis by direct interactions with syntaxin 1 and SNAP-25 through its C2 domain. The Journal of Biological Chemistry. 288: 7769-80. PMID 23341457 DOI: 10.1074/Jbc.M112.419317  0.437
2012 Boswell KL, James DJ, Esquibel JM, Bruinsma S, Shirakawa R, Horiuchi H, Martin TF. Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion. The Journal of Cell Biology. 197: 301-12. PMID 22508512 DOI: 10.1083/Jcb.201109132  0.812
2012 Martin TF. Role of PI(4,5)P(2) in vesicle exocytosis and membrane fusion. Sub-Cellular Biochemistry. 59: 111-30. PMID 22374089 DOI: 10.1007/978-94-007-3015-1_4  0.548
2011 Khodthong C, Kabachinski G, James DJ, Martin TF. Munc13 homology domain-1 in CAPS/UNC31 mediates SNARE binding required for priming vesicle exocytosis. Cell Metabolism. 14: 254-63. PMID 21803295 DOI: 10.1016/J.Cmet.2011.07.002  0.8
2011 Falkowski MA, Thomas DD, Messenger SW, Martin TF, Groblewski GE. Expression, localization, and functional role for synaptotagmins in pancreatic acinar cells. American Journal of Physiology. Gastrointestinal and Liver Physiology. 301: G306-16. PMID 21636530 DOI: 10.1152/Ajpgi.00108.2011  0.556
2010 Daily NJ, Boswell KL, James DJ, Martin TF. Novel interactions of CAPS (Ca2+-dependent activator protein for secretion) with the three neuronal SNARE proteins required for vesicle fusion. The Journal of Biological Chemistry. 285: 35320-9. PMID 20826818 DOI: 10.1074/Jbc.M110.145169  0.823
2010 James DJ, Khodthong C, Kowalchyk JA, Martin TF. Phosphatidylinositol 4,5-bisphosphate regulation of SNARE function in membrane fusion mediated by CAPS. Advances in Enzyme Regulation. 50: 62-70. PMID 19896969 DOI: 10.1016/J.Advenzreg.2009.10.012  0.825
2009 James DJ, Kowalchyk J, Daily N, Petrie M, Martin TF. CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions. Proceedings of the National Academy of Sciences of the United States of America. 106: 17308-13. PMID 19805029 DOI: 10.1073/Pnas.0900755106  0.843
2009 Nojiri M, Loyet KM, Klenchin VA, Kabachinski G, Martin TF. CAPS activity in priming vesicle exocytosis requires CK2 phosphorylation. The Journal of Biological Chemistry. 284: 18707-14. PMID 19460754 DOI: 10.1074/Jbc.M109.017483  0.783
2009 Xia X, Lessmann V, Martin TF. Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events. Journal of Cell Science. 122: 75-82. PMID 19066284 DOI: 10.1242/Jcs.034603  0.429
2008 Lynch KL, Gerona RR, Kielar DM, Martens S, McMahon HT, Martin TF. Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. Molecular Biology of the Cell. 19: 5093-103. PMID 18799625 DOI: 10.1091/Mbc.E08-03-0235  0.806
2008 James DJ, Khodthong C, Kowalchyk JA, Martin TF. Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. The Journal of Cell Biology. 182: 355-66. PMID 18644890 DOI: 10.1083/Jcb.200801056  0.808
2007 Lynch KL, Gerona RR, Larsen EC, Marcia RF, Mitchell JC, Martin TF. Synaptotagmin C2A loop 2 mediates Ca2+-dependent SNARE interactions essential for Ca2+-triggered vesicle exocytosis. Molecular Biology of the Cell. 18: 4957-68. PMID 17914059 DOI: 10.1091/Mbc.E07-04-0368  0.713
2007 Speese S, Petrie M, Schuske K, Ailion M, Ann K, Iwasaki K, Jorgensen EM, Martin TF. UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 27: 6150-62. PMID 17553987 DOI: 10.1523/Jneurosci.1466-07.2007  0.728
2007 Lynch KL, Martin TF. Synaptotagmins I and IX function redundantly in regulated exocytosis but not endocytosis in PC12 cells. Journal of Cell Science. 120: 617-27. PMID 17264148 DOI: 10.1242/Jcs.03375  0.704
2006 Aikawa Y, Lynch KL, Boswell KL, Martin TF. A second SNARE role for exocytic SNAP25 in endosome fusion. Molecular Biology of the Cell. 17: 2113-24. PMID 16481393 DOI: 10.1091/Mbc.E06-01-0074  0.825
2006 Aikawa Y, Xia X, Martin TF. SNAP25, but not syntaxin 1A, recycles via an ARF6-regulated pathway in neuroendocrine cells. Molecular Biology of the Cell. 17: 711-22. PMID 16314394 DOI: 10.1091/Mbc.E05-05-0382  0.505
2005 Aikawa Y, Martin TF. ADP-ribosylation factor 6 regulation of phosphatidylinositol-4,5-bisphosphate synthesis, endocytosis, and exocytosis. Methods in Enzymology. 404: 422-31. PMID 16413288 DOI: 10.1016/S0076-6879(05)04037-1  0.445
2005 Waselle L, Gerona RR, Vitale N, Martin TF, Bader MF, Regazzi R. Role of phosphoinositide signaling in the control of insulin exocytosis. Molecular Endocrinology (Baltimore, Md.). 19: 3097-106. PMID 16081518 DOI: 10.1210/Me.2004-0530  0.645
2005 Blackmer T, Larsen EC, Bartleson C, Kowalchyk JA, Yoon EJ, Preininger AM, Alford S, Hamm HE, Martin TF. G protein betagamma directly regulates SNARE protein fusion machinery for secretory granule exocytosis. Nature Neuroscience. 8: 421-5. PMID 15778713 DOI: 10.1038/Nn1423  0.532
2004 Grishanin RN, Kowalchyk JA, Klenchin VA, Ann K, Earles CA, Chapman ER, Gerona RR, Martin TF. CAPS acts at a prefusion step in dense-core vesicle exocytosis as a PIP2 binding protein. Neuron. 43: 551-62. PMID 15312653 DOI: 10.1016/J.Neuron.2004.07.028  0.753
2003 Speidel D, Varoqueaux F, Enk C, Nojiri M, Grishanin RN, Martin TF, Hofmann K, Brose N, Reim K. A family of Ca2+-dependent activator proteins for secretion: comparative analysis of structure, expression, localization, and function. The Journal of Biological Chemistry. 278: 52802-9. PMID 14530279 DOI: 10.1074/Jbc.M304727200  0.597
2003 Wang CT, Lu JC, Bai J, Chang PY, Martin TF, Chapman ER, Jackson MB. Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature. 424: 943-7. PMID 12931189 DOI: 10.1038/Nature01857  0.546
2003 Aikawa Y, Martin TF. ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. The Journal of Cell Biology. 162: 647-59. PMID 12925709 DOI: 10.1083/Jcb.200212142  0.556
2003 Martin TF. Tuning exocytosis for speed: fast and slow modes. Biochimica Et Biophysica Acta. 1641: 157-65. PMID 12914956 DOI: 10.1016/S0167-4889(03)00093-4  0.471
2003 Martin TF, Grishanin RN. PC12 cells as a model for studies of regulated secretion in neuronal and endocrine cells. Methods in Cell Biology. 71: 267-86. PMID 12884694 DOI: 10.1016/S0091-679X(03)01012-4  0.314
2003 Tucker WC, Edwardson JM, Bai J, Kim HJ, Martin TF, Chapman ER. Identification of synaptotagmin effectors via acute inhibition of secretion from cracked PC12 cells. The Journal of Cell Biology. 162: 199-209. PMID 12860971 DOI: 10.1083/Jcb.200302060  0.557
2003 Comparot S, Lingiah G, Martin T. Function and specificity of 14‐3‐3 proteins in the regulation of carbohydrate and nitrogen metabolism Journal of Experimental Botany. 54: 595-604. PMID 12508070 DOI: 10.1093/Jxb/Erg057  0.339
2002 Wassenberg JJ, Martin TF. Role of CAPS in dense-core vesicle exocytosis. Annals of the New York Academy of Sciences. 971: 201-9. PMID 12438120 DOI: 10.1111/J.1749-6632.2002.Tb04464.X  0.42
2002 Zhang X, Kim-Miller MJ, Fukuda M, Kowalchyk JA, Martin TF. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron. 34: 599-611. PMID 12062043 DOI: 10.1016/S0896-6273(02)00671-2  0.795
2002 Martin TF. Prime movers of synaptic vesicle exocytosis. Neuron. 34: 9-12. PMID 11931737 DOI: 10.1016/S0896-6273(02)00651-7  0.376
2002 Grishanin RN, Klenchin VA, Loyet KM, Kowalchyk JA, Ann K, Martin TF. Membrane association domains in Ca2+-dependent activator protein for secretion mediate plasma membrane and dense-core vesicle binding required for Ca2+-dependent exocytosis. The Journal of Biological Chemistry. 277: 22025-34. PMID 11927595 DOI: 10.1074/Jbc.M201614200  0.799
2002 Fukuda M, Kowalchyk JA, Zhang X, Martin TF, Mikoshiba K. Synaptotagmin IX regulates Ca2+-dependent secretion in PC12 cells. The Journal of Biological Chemistry. 277: 4601-4. PMID 11751925 DOI: 10.1074/Jbc.C100588200  0.508
2001 Wang CT, Grishanin R, Earles CA, Chang PY, Martin TF, Chapman ER, Jackson MB. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science (New York, N.Y.). 294: 1111-5. PMID 11691996 DOI: 10.1126/Science.1064002  0.456
2001 Renden R, Berwin B, Davis W, Ann K, Chin CT, Kreber R, Ganetzky B, Martin TF, Broadie K. Drosophila CAPS is an essential gene that regulates dense-core vesicle release and synaptic vesicle fusion. Neuron. 31: 421-37. PMID 11516399 DOI: 10.1016/S0896-6273(01)00382-8  0.422
2001 Martin TF. PI(4,5)P(2) regulation of surface membrane traffic. Current Opinion in Cell Biology. 13: 493-9. PMID 11454457 DOI: 10.1016/S0955-0674(00)00241-6  0.457
2001 Blackmer T, Larsen EC, Takahashi M, Martin TF, Alford S, Hamm HE. G protein betagamma subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science (New York, N.Y.). 292: 293-7. PMID 11303105 DOI: 10.1126/Science.1058803  0.452
2000 Desai RC, Vyas B, Earles CA, Littleton JT, Kowalchyck JA, Martin TF, Chapman ER. The C2B domain of synaptotagmin is a Ca(2+)-sensing module essential for exocytosis. The Journal of Cell Biology. 150: 1125-36. PMID 10974000 DOI: 10.1083/Jcb.150.5.1125  0.515
2000 Klenchin VA, Martin TF. Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie. 82: 399-407. PMID 10865127 DOI: 10.1016/S0300-9084(00)00208-X  0.572
2000 Rupnik M, Kreft M, Sikdar SK, Grilc S, Romih R, Zupancic G, Martin TF, Zorec R. Rapid regulated dense-core vesicle exocytosis requires the CAPS protein. Proceedings of the National Academy of Sciences of the United States of America. 97: 5627-32. PMID 10792045 DOI: 10.1073/Pnas.090359097  0.558
2000 Gerona RR, Larsen EC, Kowalchyk JA, Martin TF. The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. The Journal of Biological Chemistry. 275: 6328-36. PMID 10692432 DOI: 10.1074/Jbc.275.9.6328  0.733
2000 Martin TF. Racing lipid rafts for synaptic-vesicle formation. Nature Cell Biology. 2: E9-11. PMID 10620814 DOI: 10.1038/71392  0.425
1998 Martin TF. Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annual Review of Cell and Developmental Biology. 14: 231-64. PMID 9891784 DOI: 10.1146/Annurev.Cellbio.14.1.231  0.385
1998 Klenchin VA, Kowalchyk JA, Martin TF. Large dense-core vesicle exocytosis in PC12 cells. Methods (San Diego, Calif.). 16: 204-8. PMID 9790867 DOI: 10.1006/Meth.1998.0668  0.433
1998 Tandon A, Bannykh S, Kowalchyk JA, Banerjee A, Martin TF, Balch WE. Differential regulation of exocytosis by calcium and CAPS in semi-intact synaptosomes. Neuron. 21: 147-54. PMID 9697859 DOI: 10.1016/S0896-6273(00)80522-X  0.447
1998 Berwin B, Floor E, Martin TF. CAPS (mammalian UNC-31) protein localizes to membranes involved in dense-core vesicle exocytosis. Neuron. 21: 137-45. PMID 9697858 DOI: 10.1016/S0896-6273(00)80521-8  0.565
1998 Martin TF. Mechanisms of protein secretion in endocrine and exocrine cells. Vitamins and Hormones. 54: 207-26. PMID 9529978 DOI: 10.1016/S0083-6729(08)60926-7  0.422
1998 Loyet KM, Kowalchyk JA, Chaudhary A, Chen J, Prestwich GD, Martin TF. Specific binding of phosphatidylinositol 4,5-bisphosphate to calcium-dependent activator protein for secretion (CAPS), a potential phosphoinositide effector protein for regulated exocytosis. The Journal of Biological Chemistry. 273: 8337-43. PMID 9525942 DOI: 10.1074/Jbc.273.14.8337  0.77
1997 Martin TF. Stages of regulated exocytosis. Trends in Cell Biology. 7: 271-6. PMID 17708959 DOI: 10.1016/S0962-8924(97)01060-X  0.487
1997 Martin TF, Loyet KM, Barry VA, Kowalchyk JA. The role of PtdIns(4,5)P2 in exocytotic membrane fusion. Biochemical Society Transactions. 25: 1137-41. PMID 9449963 DOI: 10.1042/Bst0251137  0.735
1997 Ann K, Kowalchyk JA, Loyet KM, Martin TF. Novel Ca2+-binding protein (CAPS) related to UNC-31 required for Ca2+-activated exocytosis. The Journal of Biological Chemistry. 272: 19637-40. PMID 9289490 DOI: 10.1074/Jbc.272.32.19637  0.793
1997 Martin TF, Kowalchyk JA. Docked secretory vesicles undergo Ca2+-activated exocytosis in a cell-free system. The Journal of Biological Chemistry. 272: 14447-53. PMID 9162085 DOI: 10.1074/Jbc.272.22.14447  0.597
1996 Banerjee A, Kowalchyk JA, DasGupta BR, Martin TF. SNAP-25 is required for a late postdocking step in Ca2+-dependent exocytosis. The Journal of Biological Chemistry. 271: 20227-30. PMID 8702751 DOI: 10.1074/Jbc.271.34.20227  0.572
1996 Banerjee A, Barry VA, DasGupta BR, Martin TF. N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. The Journal of Biological Chemistry. 271: 20223-6. PMID 8702750 DOI: 10.1074/Jbc.271.34.20223  0.558
1995 Martin TF, Hay JC, Banerjee A, Barry VA, Ann K, Yom HC, Porter BW, Kowalchyk JA. Late ATP-dependent and Ca++-activated steps of dense core granule exocytosis. Cold Spring Harbor Symposia On Quantitative Biology. 60: 197-204. PMID 8824391 DOI: 10.1101/Sqb.1995.060.01.022  0.448
1995 Martin T. Intracellular Signalling: New directions for phosphatidylinositol transfer Current Biology. 5: 990-992. PMID 8542291 DOI: 10.1016/S0960-9822(95)00196-5  0.332
1995 Hay JC, Fisette PL, Jenkins GH, Fukami K, Takenawa T, Anderson RA, Martin TF. ATP-dependent inositide phosphorylation required for Ca(2+)-activated secretion. Nature. 374: 173-7. PMID 7877690 DOI: 10.1038/374173A0  0.518
1994 Martin TF. Identification of proteins required for Ca(2+)-activated secretion. Annals of the New York Academy of Sciences. 710: 328-32. PMID 8154758 DOI: 10.1111/J.1749-6632.1994.Tb26639.X  0.473
1994 Martin TF. The molecular machinery for fast and slow neurosecretion. Current Opinion in Neurobiology. 4: 626-32. PMID 7849517 DOI: 10.1016/0959-4388(94)90002-7  0.485
1993 Lomneth R, Gimenez J, Martin TF, DasGupta BR. Calcium-dependent release of norepinephrine from permeabilized PC12 cells is inhibited by approximately 48 and approximately 112 kDa fragments of botulinum neurotoxin type E. Neuropharmacology. 32: 285-9. PMID 8474625 DOI: 10.1016/0028-3908(93)90113-H  0.356
1993 Hay JC, Martin TF. Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca(2+)-activated secretion. Nature. 366: 572-5. PMID 8255295 DOI: 10.1038/366572A0  0.497
1993 Banerjee A, Martin TF, DasGupta BR. Nerve growth factor induces sensitivity to botulinum neurotoxin type A in norepinephrine-secreting PC12 cells. Neuroscience Letters. 164: 93-6. PMID 8152624 DOI: 10.1016/0304-3940(93)90865-I  0.329
1992 Hay JC, Martin TF. Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. The Journal of Cell Biology. 119: 139-51. PMID 1527165 DOI: 10.1083/jcb.119.1.139  0.346
1992 Walent JH, Porter BW, Martin TF. A novel 145 kd brain cytosolic protein reconstitutes Ca(2+)-regulated secretion in permeable neuroendocrine cells. Cell. 70: 765-75. PMID 1516133 DOI: 10.1016/0092-8674(92)90310-9  0.554
1992 Hsieh KP, Martin TF. Thyrotropin-releasing hormone and gonadotropin-releasing hormone receptors activate phospholipase C by coupling to the guanosine triphosphate-binding proteins Gq and G11. Molecular Endocrinology (Baltimore, Md.). 6: 1673-81. PMID 1333052 DOI: 10.1210/Mend.6.10.1333052  0.339
1991 Lomneth R, Martin TF, DasGupta BR. Botulinum neurotoxin light chain inhibits norepinephrine secretion in PC12 cells at an intracellular membranous or cytoskeletal site. Journal of Neurochemistry. 57: 1413-21. PMID 1895112 DOI: 10.1111/J.1471-4159.1991.Tb08308.X  0.455
1991 Martin TF. Receptor regulation of phosphoinositidase C. Pharmacology & Therapeutics. 49: 329-45. PMID 1647037 DOI: 10.1016/0163-7258(91)90062-Q  0.326
1989 Martínez de la Escalera G, Porter BW, Martin TF, Weiner RI. Dopamine withdrawal and addition of thyrotropin-releasing hormone stimulate membrane translocation of protein kinase-C and phosphorylation of an endogenous 80K substrate in enriched lactotrophs. Endocrinology. 125: 1168-73. PMID 2503364 DOI: 10.1210/Endo-125-3-1168  0.335
1987 Martin TF. Hormone-regulated phosphoinositide turnover in permeabilized cells and membranes. Methods in Enzymology. 141: 111-26. PMID 3037242 DOI: 10.1016/0076-6879(87)41060-4  0.413
1985 Ronning SA, Martin TF. Prolactin secretion in permeable GH3 pituitary cells is stimulated by Ca2+ and protein kinase C activators. Biochemical and Biophysical Research Communications. 130: 524-32. PMID 3161502 DOI: 10.1016/0006-291X(85)90448-6  0.458
1985 Drust DS, Martin TF. Protein kinase C translocates from cytosol to membrane upon hormone activation: effects of thyrotropin-releasing hormone in GH3 cells. Biochemical and Biophysical Research Communications. 128: 531-7. PMID 3158313 DOI: 10.1016/0006-291X(85)90079-8  0.402
1985 Lucas DO, Bajjalieh SM, Kowalchyk JA, Martin TF. Direct stimulation by thyrotropin-releasing hormone (TRH) of polyphosphoinositide hydrolysis in GH3 cell membranes by a guanine nucleotide-modulated mechanism. Biochemical and Biophysical Research Communications. 132: 721-8. PMID 2998380 DOI: 10.1016/0006-291X(85)91192-1  0.459
1984 Martin TF, Kowalchyk JA. Evidence for the role of calcium and diacylglycerol as dual second messengers in thyrotropin-releasing hormone action: involvement of diacylglycerol. Endocrinology. 115: 1517-26. PMID 6090104 DOI: 10.1210/Endo-115-4-1517  0.345
1983 Ronning SA, Heatley GA, Martin TF. Thyrotropin-releasing hormone mobilizes Ca2+ from endoplasmic reticulum and mitochondria of GH3 pituitary cells: characterization of cellular Ca2+ pools by a method based on digitonin permeabilization. Proceedings of the National Academy of Sciences of the United States of America. 79: 6294-8. PMID 6815650 DOI: 10.1073/Pnas.79.20.6294  0.444
1982 Sutton CA, Martin TF. Thyrotropin-releasing hormone (TRH) selectively and rapidly stimulates phosphatidylinositol turnover in GH pituitary cells: a possible second step of TRH action. Endocrinology. 110: 1273-80. PMID 6800771 DOI: 10.1210/Endo-110-4-1273  0.352
Show low-probability matches.