Year |
Citation |
Score |
2023 |
Itzhak N, Pessach IM, Moskovitch R. Prediction of acute hypertensive episodes in critically ill patients. Artificial Intelligence in Medicine. 139: 102525. PMID 37100504 DOI: 10.1016/j.artmed.2023.102525 |
0.315 |
|
2022 |
Novitski P, Cohen CM, Karasik A, Hodik G, Moskovitch R. Temporal patterns selection for All-Cause Mortality prediction in T2D with ANNs. Journal of Biomedical Informatics. 134: 104198. PMID 36100163 DOI: 10.1016/j.jbi.2022.104198 |
0.379 |
|
2022 |
Novitski P, Cohen CM, Karasik A, Shalev V, Hodik G, Moskovitch R. All-cause mortality prediction in T2D patients with iTirps. Artificial Intelligence in Medicine. 130: 102325. PMID 35809964 DOI: 10.1016/j.artmed.2022.102325 |
0.33 |
|
2020 |
Mateless R, Rejabek D, Margalit O, Moskovitch R. Decompiled APK based malicious code classification Future Generation Computer Systems. 110: 135-147. DOI: 10.1016/J.Future.2020.03.052 |
0.319 |
|
2019 |
Moskovitch R, Shahar Y, Wang F, Hripcsak G. Temporal Biomedical Data Analytics. Journal of Biomedical Informatics. PMID 30654029 DOI: 10.1016/J.Jbi.2018.12.006 |
0.303 |
|
2017 |
Shknevsky A, Shahar Y, Moskovitch R. Consistent Discovery of Frequent Interval-Based Temporal Patterns in Chronic Patients' Data. Journal of Biomedical Informatics. PMID 28987378 DOI: 10.1016/J.Jbi.2017.10.002 |
0.36 |
|
2017 |
Moskovitch R, Polubriaginof F, Weiss A, Ryan P, Tatonetti N. Procedure Prediction from Symbolic Electronic Health Records via Time Intervals Analytics. Journal of Biomedical Informatics. PMID 28823923 DOI: 10.1016/J.Jbi.2017.07.018 |
0.653 |
|
2017 |
Nissim N, Shahar Y, Elovici Y, Hripcsak G, Moskovitch R. Inter-labeler and intra-labeler variability of condition severity classification models using active and passive learning methods. Artificial Intelligence in Medicine. PMID 28456512 DOI: 10.1016/J.Artmed.2017.03.003 |
0.378 |
|
2016 |
Moskovitch R, Choi H, Hripcsak G, Tatonetti N. Prognosis of Clinical Outcomes with Temporal Patterns and Experiences with One Class Feature Selection. Ieee/Acm Transactions On Computational Biology and Bioinformatics / Ieee, Acm. PMID 27429447 DOI: 10.1109/Tcbb.2016.2591539 |
0.652 |
|
2016 |
Nissim N, Boland MR, Tatonetti NP, Elovici Y, Hripcsak G, Shahar Y, Moskovitch R. Improving Condition Severity Classification with an Efficient Active Learning Based Framework. Journal of Biomedical Informatics. PMID 27016383 DOI: 10.1016/J.Jbi.2016.03.016 |
0.702 |
|
2016 |
Nissim N, Cohen A, Moskovitch R, Shabtai A, Edri M, BarAd O, Elovici Y. Keeping pace with the creation of new malicious PDF files using an active-learning based detection framework Security Informatics. 5. DOI: 10.1186/S13388-016-0026-3 |
0.403 |
|
2016 |
Moskovitch R, Walsh C, Wang F, Hripcsak G, Tatonetti N. Outcomes prediction via time intervals related patterns Proceedings - Ieee International Conference On Data Mining, Icdm. 2016: 919-924. DOI: 10.1109/ICDM.2015.143 |
0.59 |
|
2016 |
Nissim N, Moskovitch R, BarAd O, Rokach L, Elovici Y. ALDROID: efficient update of Android anti-virus software using designated active learning methods Knowledge and Information Systems. 49: 795-833. DOI: 10.1007/S10115-016-0918-Z |
0.378 |
|
2015 |
Boland MR, Jacunski A, Lorberbaum T, Romano JD, Moskovitch R, Tatonetti NP. Systems biology approaches for identifying adverse drug reactions and elucidating their underlying biological mechanisms. Wiley Interdisciplinary Reviews. Systems Biology and Medicine. PMID 26559926 DOI: 10.1002/Wsbm.1323 |
0.414 |
|
2015 |
Nissim N, Boland MR, Moskovitch R, Tatonetti NP, Elovici Y, Shahar Y, Hripcsak G. An active learning framework for efficient condition severity classification Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9105: 13-24. DOI: 10.1007/978-3-319-19551-3_3 |
0.685 |
|
2014 |
Nissim N, Moskovitch R, Rokach L, Elovici Y. Novel active learning methods for enhanced PC malware detection in windows OS Expert Systems With Applications. 41: 5843-5857. DOI: 10.1016/J.Eswa.2014.02.053 |
0.394 |
|
2014 |
Moskovitch R, Shahar Y. Classification-driven temporal discretization of multivariate time series Data Mining and Knowledge Discovery. 29: 871-913. DOI: 10.1007/S10618-014-0380-Z |
0.411 |
|
2014 |
Moskovitch R, Shahar Y. Classification of multivariate time series via temporal abstraction and time intervals mining Knowledge and Information Systems. 45: 35-74. DOI: 10.1007/S10115-014-0784-5 |
0.386 |
|
2013 |
Moskovitch R, Shahar Y. Fast time intervals mining using the transitivity of temporal relations Knowledge and Information Systems. 42: 21-48. DOI: 10.1007/S10115-013-0707-X |
0.328 |
|
2012 |
Shabtai A, Moskovitch R, Feher C, Dolev S, Elovici Y. Detecting unknown malicious code by applying classification techniques on OpCode patterns Security Informatics. 1. DOI: 10.1186/2190-8532-1-1 |
0.325 |
|
2012 |
Feher C, Elovici Y, Moskovitch R, Rokach L, Schclar A. User identity verification via mouse dynamics Information Sciences. 201: 19-36. DOI: 10.1016/J.Ins.2012.02.066 |
0.311 |
|
2012 |
Nissim N, Moskovitch R, Rokach L, Elovici Y. Detecting unknown computer worm activity via support vector machines and active learning Pattern Analysis and Applications. 15: 459-475. DOI: 10.1007/S10044-012-0296-4 |
0.349 |
|
2010 |
shabtai A, Potashnik D, Fledel Y, Moskovitch R, Elovici Y. Monitoring, analysis, and filtering system for purifying network traffic of known and unknown malicious content Security and Communication Networks. 4: 947-965. DOI: 10.1002/Sec.229 |
0.329 |
|
2009 |
Moskovitch R, Shahar Y. Vaidurya: a multiple-ontology, concept-based, context-sensitive clinical-guideline search engine. Journal of Biomedical Informatics. 42: 11-21. PMID 18721900 DOI: 10.1016/J.Jbi.2008.07.003 |
0.338 |
|
2009 |
Shabtai A, Moskovitch R, Elovici Y, Glezer C. Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey Information Security Technical Report. 14: 16-29. DOI: 10.1016/J.Istr.2009.03.003 |
0.375 |
|
2009 |
Moskovitch R, Stopel D, Feher C, Nissim N, Japkowicz N, Elovici Y. Unknown malcode detection and the imbalance problem Journal in Computer Virology. 5: 295-308. DOI: 10.1007/S11416-009-0122-8 |
0.316 |
|
2009 |
Stopel D, Moskovitch R, Boger Z, Shahar Y, Elovici Y. Using artificial neural networks to detect unknown computer worms Neural Computing and Applications. 18: 663-674. DOI: 10.1007/S00521-009-0238-2 |
0.38 |
|
2008 |
Moskovitch R, Elovici Y, Rokach L. Detection of unknown computer worms based on behavioral classification of the host Computational Statistics & Data Analysis. 52: 4544-4566. DOI: 10.1016/J.Csda.2008.01.028 |
0.376 |
|
2008 |
Kuflik T, Pertot I, Moskovitch R, Zasso R, Pellegrini E, Gessler C. Optimization of Fire blight scouting with a decision support system based on infection risk Computers and Electronics in Agriculture. 62: 118-127. DOI: 10.1016/J.Compag.2007.12.003 |
0.338 |
|
2006 |
Moskovitch R, Cohen-Kashi S, Dror U, Levy I, Maimon A, Shahar Y. Multiple hierarchical classification of free-text clinical guidelines. Artificial Intelligence in Medicine. 37: 177-90. PMID 16730962 DOI: 10.1016/J.Artmed.2006.04.001 |
0.397 |
|
2004 |
Shahar Y, Young O, Shalom E, Galperin M, Mayaffit A, Moskovitch R, Hessing A. A framework for a distributed, hybrid, multiple-ontology clinical-guideline library, and automated guideline-support tools. Journal of Biomedical Informatics. 37: 325-44. PMID 15488747 DOI: 10.1016/J.Jbi.2004.07.001 |
0.341 |
|
Show low-probability matches. |