Year |
Citation |
Score |
2024 |
Saha G, Shen C, Duncan J, Cibin R. Performance evaluation of deep learning based stream nitrate concentration prediction model to fill stream nitrate data gaps at low-frequency nitrate monitoring basins. Journal of Environmental Management. 357: 120721. PMID 38565027 DOI: 10.1016/j.jenvman.2024.120721 |
0.325 |
|
2023 |
Saha GK, Rahmani F, Shen C, Li L, Cibin R. A deep learning-based novel approach to generate continuous daily stream nitrate concentration for nitrate data-sparse watersheds. The Science of the Total Environment. 878: 162930. PMID 36934914 DOI: 10.1016/j.scitotenv.2023.162930 |
0.305 |
|
2022 |
Sadayappan K, Kerins D, Shen C, Li L. Nitrate concentrations predominantly driven by human, climate, and soil properties in US rivers. Water Research. 226: 119295. PMID 36323218 DOI: 10.1016/j.watres.2022.119295 |
0.324 |
|
2021 |
Zhi W, Feng D, Tsai WP, Sterle G, Harpold A, Shen C, Li L. From Hydrometeorology to River Water Quality: Can a Deep Learning Model Predict Dissolved Oxygen at the Continental Scale? Environmental Science & Technology. PMID 33533608 DOI: 10.1021/acs.est.0c06783 |
0.33 |
|
2020 |
Feng D, Fang K, Shen C. Enhancing streamflow forecast and extracting insights using long‐short term memory networks with data integration at continental scales Water Resources Research. 56. DOI: 10.1029/2019Wr026793 |
0.432 |
|
2019 |
Fang K, Shen C. Near-Real-Time Forecast of Satellite-Based Soil Moisture Using Long Short-Term Memory with an Adaptive Data Integration Kernel Journal of Hydrometeorology. 21: 399-413. DOI: 10.1175/Jhm-D-19-0169.1 |
0.4 |
|
2019 |
Fang K, Pan M, Shen C. The Value of SMAP for Long-Term Soil Moisture Estimation With the Help of Deep Learning Ieee Transactions On Geoscience and Remote Sensing. 57: 2221-2233. DOI: 10.1109/Tgrs.2018.2872131 |
0.414 |
|
2019 |
Fan Y, Clark M, Lawrence DM, Swenson S, Band LE, Brantley SL, Brooks PD, Dietrich WE, Flores A, Grant G, Kirchner JW, Mackay DS, McDonnell JJ, Milly PCD, Sullivan PL, ... ... Shen C, et al. Hillslope Hydrology in Global Change Research and Earth System Modeling Water Resources Research. 55: 1737-1772. DOI: 10.1029/2018Wr023903 |
0.347 |
|
2019 |
Ji X, Lesack LFW, Melack JM, Wang S, Riley WJ, Shen C. Seasonal and Interannual Patterns and Controls of Hydrological Fluxes in an Amazon Floodplain Lake With a Surface‐Subsurface Process Model Water Resources Research. 55: 3056-3075. DOI: 10.1029/2018Wr023897 |
0.457 |
|
2019 |
Fang K, Ji X, Shen C, Ludwig N, Godfrey P, Mahjabin T, Doughty C. Combining a land surface model with groundwater model calibration to assess the impacts of groundwater pumping in a mountainous desert basin Advances in Water Resources. 130: 12-28. DOI: 10.1016/J.Advwatres.2019.05.008 |
0.509 |
|
2018 |
Shen C, Laloy E, Elshorbagy A, Albert A, Bales J, Chang F, Ganguly S, Hsu K, Kifer D, Fang Z, Fang K, Li D, Li X, Tsai W. HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community Hydrology and Earth System Sciences. 22: 5639-5656. DOI: 10.5194/Hess-22-5639-2018 |
0.365 |
|
2018 |
Shen C, Laloy E, Albert A, Chang F, Elshorbagy A, Ganguly S, Hsu K, Kifer D, Fang Z, Fang K, Li D, Li X, Tsai W. HESS Opinions: Deep learning as a promising avenue toward knowledge discovery in water sciences Hydrology and Earth System Sciences Discussions. 1-21. DOI: 10.5194/Hess-2018-168 |
0.335 |
|
2018 |
Simon Wang S, Gillies RR, Chung O, Shen C. Cross-Basin Decadal Climate Regime Connecting the Colorado River with the Great Salt Lake Journal of Hydrometeorology. 19: 659-665. DOI: 10.1175/Jhm-D-17-0081.1 |
0.406 |
|
2018 |
Shen C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists Water Resources Research. 54: 8558-8593. DOI: 10.1029/2018Wr022643 |
0.361 |
|
2018 |
Ji X, Shen C. The introspective may achieve more: Enhancing existing Geoscientific models with native-language emulated structural reflection Computers & Geosciences. 110: 32-40. DOI: 10.1016/J.Cageo.2017.09.014 |
0.313 |
|
2017 |
Niu J, Shen C, Chambers JQ, Melack JM, Riley WJ. Interannual Variation in Hydrologic Budgets in an Amazonian Watershed with a Coupled Subsurface–Land Surface Process Model Journal of Hydrometeorology. 18: 2597-2617. DOI: 10.1175/Jhm-D-17-0108.1 |
0.624 |
|
2017 |
Fang K, Shen C, Kifer D, Yang X. Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network Geophysical Research Letters. 44: 11,030-11,039. DOI: 10.1002/2017Gl075619 |
0.4 |
|
2017 |
Fang K, Shen C. Full-flow-regime storage-streamflow correlation patterns provide insights into hydrologic functioning over the continental US Water Resources Research. 53: 8064-8083. DOI: 10.1002/2016Wr020283 |
0.499 |
|
2016 |
Liu X, Chen Y, Shen C. Coupled Two-Dimensional Surface Flow and Three-Dimensional Subsurface Flow Modeling for Drainage of Permeable Road Pavement Journal of Hydrologic Engineering. 21: 04016051. DOI: 10.1061/(Asce)He.1943-5584.0001462 |
0.538 |
|
2016 |
Fatichi S, Vivoni ER, Ogden FL, Ivanov VY, Mirus B, Gochis D, Downer CW, Camporese M, Davison JH, Ebel B, Jones N, Kim J, Mascaro G, Niswonger R, Restrepo P, ... ... Shen C, et al. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology Journal of Hydrology. 537: 45-60. DOI: 10.1016/J.Jhydrol.2016.03.026 |
0.498 |
|
2016 |
Fang K, Shen C, Fisher JB, Niu J. Improving Budyko curve-based estimates of long-term water partitioning using hydrologic signatures from GRACE Water Resources Research. 52: 5537-5554. DOI: 10.1002/2016Wr018748 |
0.607 |
|
2016 |
Shen C, Wang S, Liu X. Geomorphological significance of at-many-stations hydraulic geometry Geophysical Research Letters. 43: 3762-3770. DOI: 10.1002/2016Gl068364 |
0.512 |
|
2016 |
Shen C, Riley WJ, Smithgall KR, Melack JM, Fang K. The fan of influence of streams and channel feedbacks to simulated land surface water and carbon dynamics Water Resources Research. DOI: 10.1002/2015Wr018086 |
0.403 |
|
2016 |
Pau GSH, Shen C, Riley WJ, Liu Y. Accurate and efficient prediction of fine-resolution hydrologic and carbon dynamic simulations from coarse-resolution models Water Resources Research. DOI: 10.1002/2015Wr017782 |
0.446 |
|
2015 |
Ji X, Shen C, Riley WJ. Temporal evolution of soil moisture statistical fractal and controls by soil texture and regional groundwater flow Advances in Water Resources. 86: 155-169. DOI: 10.1016/J.Advwatres.2015.09.027 |
0.466 |
|
2015 |
Clark MP, Fan Y, Lawrence DM, Adam JC, Bolster D, Gochis DJ, Hooper RP, Kumar M, Leung LR, Mackay DS, Maxwell RM, Shen C, Swenson SC, Zeng X. Improving the representation of hydrologic processes in Earth System Models Water Resources Research. 51: 5929-5956. DOI: 10.1002/2015Wr017096 |
0.466 |
|
2014 |
Molins S, Trebotich D, Yang L, Ajo-Franklin JB, Ligocki TJ, Shen C, Steefel CI. Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. Environmental Science & Technology. 48: 7453-60. PMID 24865463 DOI: 10.1021/Es5013438 |
0.4 |
|
2014 |
Riley WJ, Shen C. Characterizing coarse-resolution watershed soil moisture heterogeneity using fine-scale simulations Hydrology and Earth System Sciences. 18: 2463-2483. DOI: 10.5194/Hess-18-2463-2014 |
0.417 |
|
2014 |
Trebotich D, Adams MF, Molins S, Steefel CI, Shen C. High-Resolution Simulation of Pore-Scale Reactive Transport Processes Associated with Carbon Sequestration Computing in Science & Engineering. 16: 22-31. DOI: 10.1109/Mcse.2014.77 |
0.392 |
|
2014 |
Shen C, Niu J, Fang K. Quantifying the effects of data integration algorithms on the outcomes of a subsurface–land surface processes model Environmental Modelling & Software. 59: 146-161. DOI: 10.1016/J.Envsoft.2014.05.006 |
0.625 |
|
2014 |
Niu J, Shen C, Li S, Phanikumar MS. Quantifying storage changes in regional Great Lakes watersheds using a coupled subsurface-land surface process model and GRACE, MODIS products Water Resources Research. 50: 7359-7377. DOI: 10.1002/2014Wr015589 |
0.727 |
|
2014 |
Maxwell RM, Putti M, Meyerhoff S, Delfs JO, Ferguson IM, Ivanov V, Kim J, Kolditz O, Kollet SJ, Kumar M, Lopez S, Niu J, Paniconi C, Park YJ, Phanikumar MS, ... Shen C, et al. Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks Water Resources Research. 50: 1531-1549. DOI: 10.1002/2013Wr013725 |
0.725 |
|
2013 |
Shen C, Niu J, Phanikumar MS. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model Water Resources Research. 49: 2552-2572. DOI: 10.1002/Wrcr.20189 |
0.712 |
|
2012 |
Molins S, Trebotich D, Steefel CI, Shen C. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation Water Resources Research. 48. DOI: 10.1029/2011Wr011404 |
0.313 |
|
2011 |
Shen C, Qiu JM, Christlieb A. Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations Journal of Computational Physics. 230: 3780-3802. DOI: 10.1016/J.Jcp.2011.02.008 |
0.322 |
|
2010 |
Shen C, Phanikumar MS. A process-based, distributed hydrologic model based on a large-scale method for surface–subsurface coupling Advances in Water Resources. 33: 1524-1541. DOI: 10.1016/J.Advwatres.2010.09.002 |
0.709 |
|
2010 |
Shen C, Niu J, Anderson EJ, Phanikumar MS. Estimating longitudinal dispersion in rivers using Acoustic Doppler Current Profilers Advances in Water Resources. 33: 615-623. DOI: 10.1016/J.Advwatres.2010.02.008 |
0.696 |
|
2009 |
Shen C, Phanikumar MS. An efficient space-fractional dispersion approximation for stream solute transport modeling Advances in Water Resources. 32: 1482-1494. DOI: 10.1016/J.Advwatres.2009.07.001 |
0.667 |
|
2008 |
Shen C, Phanikumar MS, Fong TT, Aslam I, McElmurry SP, Molloy SL, Rose JB. Evaluating bacteriophage P22 as a tracer in a complex surface water system: the Grand River, Michigan. Environmental Science & Technology. 42: 2426-31. PMID 18504976 DOI: 10.1021/Es702317T |
0.68 |
|
2007 |
Phanikumar MS, Aslam I, Shen C, Long DT, Voice TC. Separating surface storage from hyporheic retention in natural streams using wavelet decomposition of acoustic Doppler current profiles Water Resources Research. 43. DOI: 10.1029/2006Wr005104 |
0.689 |
|
Show low-probability matches. |