Dmitri Kavetski - Publications

Affiliations: 
Princeton University, Princeton, NJ 

63 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 McInerney D, Thyer M, Kavetski D, Laugesen R, Tuteja N, Kuczera G. Multi‐temporal hydrological residual error modelling for seamless sub‐seasonal streamflow forecasting Water Resources Research. DOI: 10.1029/2019Wr026979  0.458
2020 Lerat J, Thyer M, McInerney D, Kavetski D, Woldemeskel F, Pickett-Heaps C, Shin D, Feikema P. A robust approach for calibrating a daily rainfall-runoff model to monthly streamflow data Journal of Hydrology. 591: 125129. DOI: 10.1016/J.Jhydrol.2020.125129  0.464
2019 McInerney D, Kavetski D, Thyer M, Lerat J, Kuczera G. Benefits of Explicit Treatment of Zero Flows in Probabilistic Hydrological Modeling of Ephemeral Catchments Water Resources Research. 55: 11035-11060. DOI: 10.1029/2018Wr024148  0.363
2018 Gibbs MS, McInerney D, Humphrey G, Thyer MA, Maier HR, Dandy GC, Kavetski D. State updating and calibration period selection to improve dynamic monthly streamflow forecasts for an environmental flow management application Hydrology and Earth System Sciences. 22: 871-887. DOI: 10.5194/Hess-22-871-2018  0.462
2018 Woldemeskel F, McInerney D, Lerat J, Thyer M, Kavetski D, Shin D, Tuteja N, Kuczera G. Evaluating post-processing approaches for monthly and seasonal streamflow forecasts Hydrology and Earth System Sciences. 22: 6257-6278. DOI: 10.5194/Hess-22-6257-2018  0.419
2018 Woldemeskel F, McInerney D, Lerat J, Thyer M, Kavetski D, Shin D, Tuteja N, Kuczera G. Evaluating residual error approaches for post-processing monthly and seasonal streamflow forecasts Hydrology and Earth System Sciences Discussions. 1-40. DOI: 10.5194/Hess-2018-214  0.47
2018 Qin Y, Kavetski D, Kuczera G. A Robust Gauss‐Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss‐Newton to Robust Gauss‐Newton Water Resources Research. 54: 9655-9683. DOI: 10.1029/2017Wr022488  0.356
2018 Kavetski D, Qin Y, Kuczera G. The Fast and the Robust: Trade‐Offs Between Optimization Robustness and Cost in the Calibration of Environmental Models Water Resources Research. 54: 9432-9455. DOI: 10.1029/2017Wr022051  0.35
2018 McInerney D, Thyer M, Kavetski D, Githui F, Thayalakumaran T, Liu M, Kuczera G. The Importance of Spatiotemporal Variability in Irrigation Inputs for Hydrological Modeling of Irrigated Catchments Water Resources Research. 54: 6792-6821. DOI: 10.1029/2017Wr022049  0.417
2018 Henn B, Clark MP, Kavetski D, Newman AJ, Hughes M, McGurk B, Lundquist JD. Spatiotemporal patterns of precipitation inferred from streamflow observations across the Sierra Nevada mountain range Journal of Hydrology. 556: 993-1012. DOI: 10.1016/J.Jhydrol.2016.08.009  0.373
2018 McInerney D, Thyer MA, Kavetski D, Bennett B, Lerat J, Gibbs MS, Kuczera G. A simplified approach to produce probabilistic hydrological model predictions Environmental Modelling and Software. 109: 306-314. DOI: 10.1016/J.Envsoft.2018.07.001  0.517
2018 Fenicia F, Kavetski D, Reichert P, Albert C. Signature‐Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties Water Resources Research. 54: 3958-3987. DOI: 10.1002/2017Wr021616  0.43
2018 Kavetski D, Fenicia F, Reichert P, Albert C. Signature‐Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Theory and Comparison to Existing Applications Water Resources Research. 54: 4059-4083. DOI: 10.1002/2017Wr020528  0.37
2017 Gibbs MS, McInerney D, Humphrey G, Thyer MA, Maier HR, Dandy GC, Kavetski D. State Updating and Calibration Period Selection to Improve Dynamic Monthly Streamflow Forecasts for a Wetland Management Application Hydrology and Earth System Sciences Discussions. 1-29. DOI: 10.5194/Hess-2017-381  0.46
2017 Schaefli B, Kavetski D. Bayesian spectral likelihood for hydrological parameter inference Water Resources Research. 53: 6857-6884. DOI: 10.1002/2016Wr019465  0.465
2017 McInerney D, Thyer M, Kavetski D, Lerat J, Kuczera G. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors Water Resources Research. 53: 2199-2239. DOI: 10.1002/2016Wr019168  0.44
2016 Giustarini L, Hostache R, Kavetski D, Chini M, Corato G, Schlaffer S, Matgen P. Probabilistic Flood Mapping Using Synthetic Aperture Radar Data Ieee Transactions On Geoscience and Remote Sensing. 54: 6958-6969. DOI: 10.1109/Tgrs.2016.2592951  0.338
2016 Qin Y, Kuczera G, Kavetski D. Comparison of Newton-type and SCE optimisation algorithms for the calibration of conceptual hydrological models Australian Journal of Water Resources. 20: 169-176. DOI: 10.1080/13241583.2017.1298180  0.387
2016 Henn B, Clark MP, Kavetski D, McGurk B, Painter TH, Lundquist JD. Combining snow, streamflow, and precipitation gauge observations to infer basin-mean precipitation Water Resources Research. 52: 8700-8723. DOI: 10.1002/2015Wr018564  0.452
2016 Fenicia F, Kavetski D, Savenije HHG, Pfister L. From spatially variable streamflow to distributed hydrological models: analysis of key modeling decisions Water Resources Research. 52: 954-989. DOI: 10.1002/2015Wr017398  0.538
2015 Hill MC, Kavetski D, Clark M, Ye M, Arabi M, Lu D, Foglia L, Mehl S. Practical Use of Computationally Frugal Model Analysis Methods. Ground Water. PMID 25810333 DOI: 10.1111/Gwat.12330  0.476
2015 Lockart N, Kavetski D, Franks SW. A new stochastic model for simulating daily solar radiation from sunshine hours International Journal of Climatology. 35: 1090-1106. DOI: 10.1002/Joc.4041  0.411
2015 Wrede S, Fenicia F, Martínez-Carreras N, Juilleret J, Hissler C, Krein A, Savenije HHG, Uhlenbrook S, Kavetski D, Pfister L. Towards more systematic perceptual model development: a case study using 3 Luxembourgish catchments Hydrological Processes. 29: 2731-2750. DOI: 10.1002/Hyp.10393  0.461
2015 Clark MP, Nijssen B, Lundquist JD, Kavetski D, Rupp DE, Woods RA, Freer JE, Gutmann ED, Wood AW, Gochis DJ, Rasmussen RM, Tarboton DG, Mahat V, Flerchinger GN, Marks DG. A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies Water Resources Research. 51: 2515-2542. DOI: 10.1002/2015Wr017200  0.445
2015 Clark MP, Nijssen B, Lundquist JD, Kavetski D, Rupp DE, Woods RA, Freer JE, Gutmann ED, Wood AW, Brekke LD, Arnold JR, Gochis DJ, Rasmussen RM. A unified approach for process-based hydrologic modeling: 1. Modeling concept Water Resources Research. 51: 2498-2514. DOI: 10.1002/2015Wr017198  0.515
2015 Henn B, Clark MP, Kavetski D, Lundquist JD. Estimating mountain basin-mean precipitation from streamflow using Bayesian inference Water Resources Research. 51: 8012-8033. DOI: 10.1002/2014Wr016736  0.483
2014 Pagano TC, Wood AW, Ramos M, Cloke HL, Pappenberger F, Clark MP, Cranston M, Kavetski D, Mathevet T, Sorooshian S, Verkade JS. Challenges of Operational River Forecasting Journal of Hydrometeorology. 15: 1692-1707. DOI: 10.1175/Jhm-D-13-0188.1  0.379
2014 Fenicia F, Kavetski D, Savenije HHG, Clark MP, Schoups G, Pfister L, Freer J. Catchment properties, function, and conceptual model representation: Is there a correspondence? Hydrological Processes. 28: 2451-2467. DOI: 10.1002/Hyp.9726  0.366
2014 Westra S, Thyer M, Leonard M, Kavetski D, Lambert M. A strategy for diagnosing and interpreting hydrological model nonstationarity Water Resources Research. 50: 5090-5113. DOI: 10.1002/2013Wr014719  0.535
2014 Evin G, Thyer M, Kavetski D, McInerney D, Kuczera G. Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity Water Resources Research. 50: 2350-2375. DOI: 10.1002/2013Wr014185  0.502
2013 Esse WRv, Perrin C, Booij MJ, Augustijn DCM, Fenicia F, Kavetski D, Lobligeois F. The influence of conceptual model structure on model performance: a comparative study for 237 French catchments Hydrology and Earth System Sciences. 17: 4227-4239. DOI: 10.5194/Hess-17-4227-2013  0.49
2013 Hill MC, Faunt CC, Belcher WR, Sweetkind DS, Tiedeman CR, Kavetski D. Knowledge, transparency, and refutability in groundwater models, an example from the Death Valley regional groundwater flow system Physics and Chemistry of the Earth. 64: 105-116. DOI: 10.1016/J.Pce.2013.03.006  0.496
2013 Evin G, Kavetski D, Thyer M, Kuczera G. Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration Water Resources Research. 49: 4518-4524. DOI: 10.1002/Wrcr.20284  0.522
2013 Ershadi A, McCabe MF, Evans JP, Mariethoz G, Kavetski D. A Bayesian analysis of sensible heat flux estimation: Quantifying uncertainty in meteorological forcing to improve model prediction Water Resources Research. 49: 2343-2358. DOI: 10.1002/Wrcr.20231  0.362
2012 Fenicia F, Pfister L, Kavetski D, Matgen P, Iffly J, Hoffmann L, Uijlenhoet R. Microwave links for rainfall estimation in an urban environment: Insights from an experimental setup in Luxembourg-City Journal of Hydrology. 464: 69-78. DOI: 10.1016/J.Jhydrol.2012.06.047  0.432
2011 Kavetski D, Fenicia F. Elements of a flexible approach for conceptual hydrological modeling : 2. Application and experimental insights Water Resources Research. 47. DOI: 10.1029/2011Wr010748  0.518
2011 Clark MP, Hendrikx J, Slater AG, Kavetski D, Anderson B, Cullen NJ, Kerr T, Örn Hreinsson E, Woods RA. Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review Water Resources Research. 47. DOI: 10.1029/2011Wr010745  0.387
2011 Renard B, Kavetski D, Leblois E, Thyer M, Kuczera G, Franks SW. Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation Water Resources Research. 47: 1-21. DOI: 10.1029/2011Wr010643  0.518
2011 Fenicia F, Kavetski D, Savenije HHG. Elements of a flexible approach for conceptual hydrological modeling : 1. Motivation and theoretical development Water Resources Research. 47. DOI: 10.1029/2010Wr010174  0.484
2011 Clark MP, Kavetski D, Fenicia F. Pursuing the method of multiple working hypotheses for hydrological modeling Water Resources Research. 47. DOI: 10.1029/2010Wr009827  0.48
2011 Kavetski D, Fenicia F, Clark MP. Impact of temporal data resolution on parameter inference and model identification in conceptual hydrological modeling: Insights from an experimental catchment Water Resources Research. 47. DOI: 10.1029/2010Wr009525  0.484
2011 McMillan H, Jackson B, Clark M, Kavetski D, Woods R. Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models Journal of Hydrology. 400: 83-94. DOI: 10.1016/J.Jhydrol.2011.01.026  0.498
2011 Clark MP, McMillan HK, Collins DBG, Kavetski D, Woods RA. Hydrological field data from a modeller's perspective: Part 2: Process-based evaluation of model hypotheses Hydrological Processes. 25: 523-543. DOI: 10.1002/Hyp.7902  0.487
2010 Kuczera G, Renard B, Thyer M, Kavetski D. There are no hydrological monsters, just models and observations with large uncertainties! Hydrological Sciences Journal-Journal Des Sciences Hydrologiques. 55: 980-991. DOI: 10.1080/02626667.2010.504677  0.512
2010 Kuczera G, Kavetski D, Renard B, Thyer M. A limited-memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models. Water Resources Research. 46. DOI: 10.1029/2009Wr008985  0.489
2010 Kavetski D, Clark MP. Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction Water Resources Research. 46. DOI: 10.1029/2009Wr008896  0.529
2010 Clark MP, Kavetski D. Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes Water Resources Research. 46. DOI: 10.1029/2009Wr008894  0.504
2010 Renard B, Kavetski D, Kuczera G, Thyer M, Franks SW. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors Water Resources Research. 46: 1-22. DOI: 10.1029/2009Wr008328  0.493
2010 Fenicia F, Wrede S, Kavetski D, Pfister L, Hoffmann L, Savenije HHG, McDonnell JJ. Assessing the impact of mixing assumptions on the estimation of streamwater mean residence time Hydrological Processes. 24: 1730-1741. DOI: 10.1002/Hyp.7595  0.47
2009 Nordbotten JM, Kavetski D, Celia MA, Bachu S. Model for CO2 leakage including multiple geological layers and multiple leaky wells. Environmental Science & Technology. 43: 743-9. PMID 19245011 DOI: 10.1021/Es801135V  0.318
2009 Thyer M, Renard B, Kavetski D, Kuczera G, Franks SW, Srikanthan S. Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis Water Resources Research. 45: 1-22. DOI: 10.1029/2008Wr006825  0.526
2009 Renard B, Kavetski D, Kuczera G. Comment on “An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction” by Newsha K. Ajami et al. Water Resources Research. 45. DOI: 10.1029/2007Wr006538  0.356
2008 Viswanathan HS, Pawar RJ, Stauffer PH, Kaszuba JP, Carey JW, Olsen SC, Keating GN, Kavetski D, Guthrie GD. Development of a hybrid process and system model for the assessment of wellbore leakage at a geologic CO2 sequestration site. Environmental Science & Technology. 42: 7280-6. PMID 18939559 DOI: 10.1021/Es800417X  0.32
2007 Kavetski D, Kuczera G. Model smoothing strategies to remove microscale discontinuities and spurious secondary optima in objective functions in hydrological calibration Water Resources Research. 43. DOI: 10.1029/2006Wr005195  0.464
2006 Kavetski D, Kuczera G, Franks SW. Bayesian analysis of input uncertainty in hydrological modeling: 2. Application Water Resources Research. 42: 1-10. DOI: 10.1029/2005Wr004376  0.539
2006 Kavetski D, Kuczera G, Franks SW. Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory Water Resources Research. 42: 1-9. DOI: 10.1029/2005Wr004368  0.546
2006 Kuczera G, Kavetski D, Franks S, Thyer M. Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters Journal of Hydrology. 331: 161-177. DOI: 10.1016/J.Jhydrol.2006.05.010  0.556
2006 Kavetski D, Kuczera G, Franks SW. Calibration of conceptual hydrological models revisited: 2. Improving optimisation and analysis Journal of Hydrology. 320: 187-201. DOI: 10.1016/J.Jhydrol.2005.07.013  0.502
2006 Kavetski D, Kuczera G, Franks SW. Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts Journal of Hydrology. 320: 173-186. DOI: 10.1016/J.Jhydrol.2005.07.012  0.506
2003 Kavetski D, Kuczera G, Franks SW. Semidistributed hydrological modeling: A “saturation path” perspective on TOPMODEL and VIC Water Resources Research. 39. DOI: 10.1029/2003Wr002122  0.524
2002 Kavetski D, Binning PJ, Sloan SW. Noniterative time stepping schemes with adaptive truncation error control for the solution of Richards equation Water Resources Research. 38. DOI: 10.1029/2001Wr000720  0.325
2002 Kavetski D, Binning PJ, Sloan SW. Adaptive backward Euler time stepping with truncation error control for numerical modelling of unsaturated fluid flow International Journal For Numerical Methods in Engineering. 53: 1301-1322. DOI: 10.1002/Nme.329  0.418
2001 Kavetski D, Binning P, Sloan SW. Adaptive time stepping and error control in a mass conservative numerical solution of the mixed form of Richards equation Advances in Water Resources. 24: 595-605. DOI: 10.1016/S0309-1708(00)00076-2  0.365
Show low-probability matches.