Year |
Citation |
Score |
2022 |
Zhou T, Tarduno JA, Nimmo F, Cottrell RD, Bono RK, Ibanez-Mejia M, Huang W, Hamilton M, Kodama K, Smirnov AV, Crummins B, Padgett F. Early Cambrian renewal of the geodynamo and the origin of inner core structure. Nature Communications. 13: 4161. PMID 35853855 DOI: 10.1038/s41467-022-31677-7 |
0.305 |
|
2021 |
Tarduno JA, Cottrell RD, Lawrence K, Bono RK, Huang W, Johnson CL, Blackman EG, Smirnov AV, Nakajima M, Neal CR, Zhou T, Ibanez-Mejia M, Oda H, Crummins B. Absence of a long-lived lunar paleomagnetosphere. Science Advances. 7. PMID 34348904 DOI: 10.1126/sciadv.abi7647 |
0.321 |
|
2020 |
Brenner AR, Fu RR, Evans DAD, Smirnov AV, Trubko R, Rose IR. Paleomagnetic evidence for modern-like plate motion velocities at 3.2 Ga. Science Advances. 6: eaaz8670. PMID 32494654 DOI: 10.1126/Sciadv.Aaz8670 |
0.311 |
|
2020 |
Tarduno JA, Cottrell RD, Bono RK, Oda H, Davis WJ, Fayek M, Erve OV', Nimmo F, Huang W, Thern ER, Fearn S, Mitra G, Smirnov AV, Blackman EG. Paleomagnetism indicates that primary magnetite in zircon records a strong Hadean geodynamo. Proceedings of the National Academy of Sciences of the United States of America. PMID 31964848 DOI: 10.1073/Pnas.1916553117 |
0.461 |
|
2019 |
Kulakov EV, Sprain CJ, Doubrovine PV, Smirnov AV, Paterson GA, Hawkins L, Fairchild L, Piispa EJ, Biggin AJ. Analysis of an Updated Paleointensity Database (Q
PI
‐PINT) for 65–200 Ma: Implications for the Long‐Term History of Dipole Moment Through the Mesozoic Journal of Geophysical Research: Solid Earth. 124: 9999-10022. DOI: 10.1029/2018Jb017287 |
0.675 |
|
2019 |
Doubrovine PV, Veikkolainen T, Pesonen LJ, Piispa E, Ots S, Smirnov AV, Kulakov EV, Biggin AJ. Latitude Dependence of Geomagnetic Paleosecular Variation and its Relation to the Frequency of Magnetic Reversals: Observations From the Cretaceous and Jurassic Geochemistry, Geophysics, Geosystems. 20: 1240-1279. DOI: 10.1029/2018Gc007863 |
0.701 |
|
2019 |
Salminen J, Oliveira E, Piispa E, Smirnov A, Trindade R. Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil: Implications for Archean supercratons Precambrian Research. 329: 108-123. DOI: 10.1016/J.Precamres.2018.12.001 |
0.433 |
|
2017 |
Smirnov AV, Kulakov EV, Foucher MS, Bristol KE. Intrinsic paleointensity bias and the long-term history of the geodynamo. Science Advances. 3: e1602306. PMID 28246644 DOI: 10.1126/Sciadv.1602306 |
0.711 |
|
2017 |
Smirnov AV. Intensity of geomagnetic field in the Precambrian and evolution of the Earth’s deep interior Izvestiya-Physics of the Solid Earth. 53: 760-768. DOI: 10.1134/S1069351317050123 |
0.459 |
|
2017 |
Evans DAD, Smirnov A, Gumsley AP. Paleomagnetism and U–Pb geochronology of the Black Range dykes, Pilbara Craton, Western Australia: a Neoarchean crossing of the polar circle Australian Journal of Earth Sciences. 64: 225-237. DOI: 10.1080/08120099.2017.1289981 |
0.391 |
|
2017 |
Lerner GA, Smirnov AV, Surovitckii LV, Piispa EJ. Nonheating methods for absolute paleointensity determination: Comparison and calibration using synthetic and natural magnetite-bearing samples Journal of Geophysical Research. 122: 1614-1633. DOI: 10.1002/2016Jb013777 |
0.419 |
|
2016 |
Smirnov AV, Tarduno JA, Kulakov EV, McEnroe SA, Bono RK. Palaeointensity, core thermal conductivity and the unknown age of the inner core Geophysical Journal International. 205: 1190-1195. DOI: 10.1093/Gji/Ggw080 |
0.72 |
|
2016 |
Salminen JM, Evans DAD, Trindade RIF, Oliveira EP, Piispa EJ, Smirnov AV. Paleogeography of the Congo/São Francisco craton at 1.5 Ga: Expanding the core of Nuna supercontinent Precambrian Research. 286: 195-212. DOI: 10.1016/J.Precamres.2016.09.011 |
0.364 |
|
2015 |
Smirnov AV, Evans DAD. Geomagnetic paleointensity at ~2.41 Ga as recorded by the Widgiemooltha Dike Swarm, Western Australia Earth and Planetary Science Letters. 416: 35-45. DOI: 10.1016/J.Epsl.2015.02.012 |
0.501 |
|
2014 |
Kulakov EV, Smirnov AV, Diehl JF. Paleomagnetism of the ∼1.1 Ga Coldwell Complex (Ontario, Canada): Implications for Proterozoic geomagnetic field morphology and plate velocities Journal of Geophysical Research B: Solid Earth. 119: 8633-8654. DOI: 10.1002/2014Jb011463 |
0.733 |
|
2013 |
Kulakov EV, Smirnov AV, Diehl JF. Paleomagnetism of ~1.09 Ga Lake Shore Traps (Keweenaw Peninsula, Michigan): New results and implications Canadian Journal of Earth Sciences. 50: 1085-1096. DOI: 10.1139/Cjes-2013-0003 |
0.698 |
|
2013 |
Smirnov AV, Evans DAD, Ernst RE, Söderlund U, Li ZX. Trading partners: Tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn Precambrian Research. 224: 11-22. DOI: 10.1016/J.Precamres.2012.09.020 |
0.321 |
|
2013 |
Kulakov EV, Smirnov AV, Diehl JF. Absolute geomagnetic paleointensity as recorded by ~1.09 Ga Lake Shore Traps (Keweenaw Peninsula, Michigan) Studia Geophysica Et Geodaetica. 57: 565-584. DOI: 10.1007/S11200-013-0606-3 |
0.727 |
|
2012 |
Smirnov AV, Tarduno JA. Development of a low-temperature insert for the measurement of remanent magnetization direction using superconducting quantum interference device rock magnetometers Geochemistry, Geophysics, Geosystems. 12. DOI: 10.1029/2011Gc003517 |
0.426 |
|
2011 |
Smirnov AV, Tarduno JA, Evans DAD. Evolving core conditions ca. 2 billion years ago detected by paleosecular variation Physics of the Earth and Planetary Interiors. 187: 225-231. DOI: 10.1016/J.Pepi.2011.05.003 |
0.428 |
|
2010 |
Smirnov AV, Tarduno JA. Co-location of eruption sites of the Siberian Traps and North Atlantic Igneous Province: Implications for the nature of hotspots and mantle plumes Earth and Planetary Science Letters. 297: 687-690. DOI: 10.1016/J.Epsl.2010.07.023 |
0.348 |
|
2009 |
Smirnov AV. Grain size dependence of low-temperature remanent magnetization in natural and synthetic magnetite: Experimental study Earth, Planets and Space. 61: 119-124. DOI: 10.1186/Bf03352891 |
0.447 |
|
2008 |
Schumann D, Raub TD, Kopp RE, Guerquin-Kern JL, Wu TD, Rouiller I, Smirnov AV, Sears SK, Lücken U, Tikoo SM, Hesse R, Kirschvink JL, Vali H. Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences of the United States of America. 105: 17648-53. PMID 18936486 DOI: 10.1073/Pnas.0803634105 |
0.35 |
|
2007 |
Smirnov AV. Effect of the magnetic field applied during cooling on magnetic hysteresis in the low-temperature phase of magnetite: First-order reversal curve (FORC) analysis Geochemistry, Geophysics, Geosystems. 8. DOI: 10.1029/2007Gc001650 |
0.433 |
|
2006 |
Smirnov AV. Memory of the magnetic field applied during cooling in the low-temperature phase of magnetite: Grain size dependence Journal of Geophysical Research: Solid Earth. 111. DOI: 10.1029/2006Jb004573 |
0.413 |
|
2006 |
Smirnov AV. Low-temperature magnetic properties of magnetite using first-order reversal curve analysis: Implications for thepseudo-single-domain state Geochemistry, Geophysics, Geosystems. 7. DOI: 10.1029/2006Gc001397 |
0.413 |
|
2006 |
Tarduno JA, Cottrell RD, Smirnov AV. The paleomagnetism of single silicate crystals: Recording geomagnetic field strength during mixed polarity intervals, superchrons, and inner core growth Reviews of Geophysics. 44. DOI: 10.1029/2005Rg000189 |
0.507 |
|
Show low-probability matches. |