Ioan Bejenaru, Ph.D.
Affiliations: | 2004 | University of California, Berkeley, Berkeley, CA, United States |
Area:
Partial differential equationsGoogle:
"Ioan Bejenaru"Parents
Sign in to add mentorDaniel Tataru | grad student | 2004 | UC Berkeley | |
(Quadratic derivative nonlinear Schroedinger equations.) |
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Bejenaru I. (2019) Optimal multilinear restriction estimates for a class of hypersurfaces with curvature Analysis & Pde. 12: 1115-1148 |
Bejenaru I. (2017) The optimal trilinear restriction estimate for a class of hypersurfaces with curvature Advances in Mathematics. 307: 1151-1183 |
Bejenaru I, Ionescu A, Kenig C, et al. (2016) Equivariant Schrödingermaps in two spatial dimensions: The H2 target Kyoto Journal of Mathematics. 56: 283-323 |
Bejenaru I, Herr S. (2016) The Cubic Dirac Equation: Small Initial Data in H1/2R2 Communications in Mathematical Physics. 343: 515-562 |
Bejenaru I, Guo Z, Herr S, et al. (2015) Well-posedness and scattering for the Zakharov system in four dimensions Analysis and Pde. 8: 2029-2055 |
Bejenaru I, Herr S. (2015) The Cubic Dirac Equation: Small Initial Data in H1(R3) Communications in Mathematical Physics. 335: 43-82 |
Bejenaru I, Tataru D. (2014) Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions Memoirs of the American Mathematical Society. 228: 1-120 |
Bejenaru I, Krieger J, Tataru D. (2013) A codimension-two stable manifold of near soliton equivariant wave maps Analysis and Pde. 6: 829-857 |
Bejenaru I, Ionescu A, Kenig C, et al. (2013) Equivariant schrödinger maps in two spatial dimensions Duke Mathematical Journal. 162: 1967-2025 |
Bejenaru I, Ionescu AD, Kenig CE, et al. (2011) Global Schrödinger maps in dimensions d ≥ 2: Small data in the critical sobolev spaces Annals of Mathematics. 173: 1443-1506 |