Year |
Citation |
Score |
2020 |
Aizenman M, Duminil-Copin H, Warzel S. Dimerization and Néel Order in Different Quantum Spin Chains Through a Shared Loop Representation. Annales Henri Poincare. 21: 2737-2774. PMID 32765188 DOI: 10.1007/S00023-020-00924-2 |
0.388 |
|
2017 |
Aizenman M, Peled R, Schenker J, Shamis M, Sodin S. Matrix regularizing effects of Gaussian perturbations Communications in Contemporary Mathematics. 19: 1750028. DOI: 10.1142/S0219199717500286 |
0.674 |
|
2017 |
Aizenman M, Valcázar ML, Warzel S. Pfaffian Correlation Functions of Planar Dimer Covers Journal of Statistical Physics. 166: 1078-1091. DOI: 10.1007/S10955-016-1684-8 |
0.317 |
|
2015 |
Aizenman M, Duminil-Copin H, Sidoravicius V. Random Currents and Continuity of Ising Model’s Spontaneous Magnetization Communications in Mathematical Physics. 334: 719-742. DOI: 10.1007/S00220-014-2093-Y |
0.395 |
|
2015 |
Aizenman M, Warzel S. Boosted Simon-Wolff Spectral Criterion and Resonant Delocalization Communications On Pure and Applied Mathematics. DOI: 10.1002/Cpa.21625 |
0.406 |
|
2014 |
Aizenman M, Warzel S. On the ubiquity of the Cauchy distribution in spectral problems Probability Theory and Related Fields. 163: 61-87. DOI: 10.1007/S00440-014-0587-3 |
0.354 |
|
2014 |
Aizenman M, Shamis M, Warzel S. Resonances and Partial Delocalization on the Complete Graph Annales Henri Poincare. 16: 1969-2003. DOI: 10.1007/S00023-014-0366-9 |
0.39 |
|
2013 |
Aizenman M, Warzel S. Resonant delocalization for random Schrödinger operators on tree graphs Journal of the European Mathematical Society. 15: 1167-1222. DOI: 10.4171/Jems/389 |
0.394 |
|
2012 |
Aizenman M, Warzel S. Absolutely continuous spectrum implies ballistic transport for quantum particles in a random potential on tree graphs Journal of Mathematical Physics. 53. DOI: 10.1063/1.4714617 |
0.332 |
|
2012 |
Aizenman M, Greenblatt RL, Lebowitz JL. Proof of rounding by quenched disorder of first order transitions in low-dimensional quantum systems Journal of Mathematical Physics. 53. DOI: 10.1063/1.3679069 |
0.523 |
|
2011 |
Aizenman M, Warzel S. Extended states in a Lifshitz tail regime for random Schrödinger operators on trees. Physical Review Letters. 106: 136804. PMID 21517407 DOI: 10.1103/Physrevlett.106.136804 |
0.42 |
|
2011 |
Aizenman M, Warzel S. Absence of mobility edge for the Anderson random potential on tree graphs at weak disorder Epl. 96. DOI: 10.1209/0295-5075/96/37004 |
0.37 |
|
2010 |
Aizenman M, Warzel S. Complete Dynamical Localization in Disordered Quantum Multi-Particle Systems Arxiv: Mathematical Physics. 556-565. DOI: 10.1142/9789814304634_0050 |
0.314 |
|
2010 |
Greenblatt RL, Aizenman M, Lebowitz JL. On spin systems with quenched randomness: Classical and quantum Physica a: Statistical Mechanics and Its Applications. 389: 2902-2906. DOI: 10.1016/J.Physa.2009.12.066 |
0.539 |
|
2010 |
Aizenman M, Jansen S, Jung P. Symmetry Breaking in Quasi-1D Coulomb Systems Annales Henri Poincare. 11: 1453-1485. DOI: 10.1007/S00023-010-0067-Y |
0.353 |
|
2009 |
Greenblatt RL, Aizenman M, Lebowitz JL. Rounding of first order transitions in low-dimensional quantum systems with quenched disorder. Physical Review Letters. 103: 197201. PMID 20365949 DOI: 10.1103/Physrevlett.103.197201 |
0.524 |
|
2009 |
Arguin LP, Aizenman M. On the structure of quasi-stationary competing particle systems Annals of Probability. 37: 1080-1113. DOI: 10.1214/08-Aop429 |
0.364 |
|
2009 |
Greenblatt RL, Aizenman M, Lebowitz JL. Rounding of first order transitions in low-dimensional quantum systems with quenched disorder Physical Review Letters. 103. DOI: 10.1103/PhysRevLett.103.197201 |
0.431 |
|
2009 |
Aizenman M, Warzel S. On the joint distribution of energy levels of random Schrödinger operators Journal of Physics a: Mathematical and Theoretical. 42. DOI: 10.1088/1751-8113/42/4/045201 |
0.417 |
|
2009 |
Aizenman M, Germinet F, Klein A, Warzel S. On Bernoulli decompositions for random variables, concentration bounds, and spectral localization Probability Theory and Related Fields. 143: 219-238. DOI: 10.1007/S00440-007-0125-7 |
0.368 |
|
2009 |
Aizenman M, Warzel S. Localization bounds for multiparticle systems Communications in Mathematical Physics. 290: 903-934. DOI: 10.1007/S00220-009-0792-6 |
0.422 |
|
2006 |
Stolz G, Aizenman M, Elgart A, Naboko S, Schenker JH. Fractional moment methods for Anderson localization in the continuum Xivth International Congress On Mathematical Physics: Lisbon, 28 July - 2 August 2003. 619-625. DOI: 10.1142/9789812704016_0063 |
0.697 |
|
2006 |
Zuk O, Domany E, Kanter I, Aizenman M. From finite-system entropy to entropy rate for a hidden Markov process Ieee Signal Processing Letters. 13: 517-520. DOI: 10.1109/Lsp.2006.874466 |
0.306 |
|
2006 |
Aizenman M, Warzel S. The canopy graph and level statistics for random operators on trees Mathematical Physics Analysis and Geometry. 9: 291-333. DOI: 10.1007/S11040-007-9018-3 |
0.397 |
|
2006 |
Aizenman M, Sims R, Warzel S. Stability of the absolutely continuous spectrum of random Schrödinger operators on tree graphs Probability Theory and Related Fields. 136: 363-394. DOI: 10.1007/S00440-005-0486-8 |
0.364 |
|
2006 |
Aizenman M, Elgart A, Naboko S, Schenker JH, Stolz G. Moment analysis for localization in random Schrödinger operators Inventiones Mathematicae. 163: 343-413. DOI: 10.1007/S00222-005-0463-Y |
0.715 |
|
2006 |
Aizenman M, Sims R, Warzel S. Absolutely continuous spectra of quantum tree graphs with weak disorder Communications in Mathematical Physics. 264: 371-389. DOI: 10.1007/S00220-005-1468-5 |
0.373 |
|
2006 |
Aizenman M, Lieb EH, Seiringer R, Solovej JP, Yngvason J. Bose-Einstein condensation as a quantum phase transition in an optical lattice Lecture Notes in Physics. 690: 199-215. DOI: 10.1007/3-540-34273-7_16 |
0.536 |
|
2005 |
Aizenman M, Warzel S. Persistence under Weak Disorder of AC Spectra of Quasi-Periodic Schrödinger Operators on Trees Graphs Moscow Mathematical Journal. 5: 499-506. DOI: 10.17323/1609-4514-2005-5-3-499-506 |
0.305 |
|
2005 |
Ruzmaikina A, Aizenman M. Characterization of invariant measures at the leading edge for competing particle systems Annals of Probability. 33: 82-113. DOI: 10.1214/009117904000000865 |
0.391 |
|
2005 |
Aizenman M, Lieb EH. On semi-classical bounds for eigenvalues of schrödinger operators The Stability of Matter: From Atoms to Stars: Fourth Edition. 241-243. DOI: 10.1016/0375-9601(78)90385-7 |
0.528 |
|
2004 |
Aizenman M, Lieb EH, Seiringer R, Solovej JP, Yngvason J. Bose-Einstein quantum phase transition in an optical lattice model Physical Review a - Atomic, Molecular, and Optical Physics. 70: 023612-1-0236121-2. DOI: 10.1103/Physreva.70.023612 |
0.543 |
|
2004 |
Douglas M, Lebowitz JL, Sarnak P, Aizenman M. Communications in Mathematical Physics: Preface Communications in Mathematical Physics. 252: 1. DOI: 10.1007/S00220-004-1230-4 |
0.395 |
|
2003 |
Aizenman M, Sims R, Starr SL. Extended variational principle for the Sherrington-Kirkpatrick spin-glass model Physical Review B - Condensed Matter and Materials Physics. 68: 2144031-2144034. DOI: 10.1103/Physrevb.68.214403 |
0.311 |
|
2001 |
Aizenman M, Goldstein S, Lebowitz JL. Bounded fluctuations and translation symmetry breaking in one-dimensional particle systems Journal of Statistical Physics. 103: 601-618. DOI: 10.1023/A:1010397401128 |
0.508 |
|
2001 |
Aizenman M, Schenker JH, Friedrich RM, Hundertmark D. Finite-volume fractional-moment criteria for Anderson localization Communications in Mathematical Physics. 224: 219-253. DOI: 10.1007/S002200100441 |
0.717 |
|
2000 |
Schenker JH, Aizenman M. The creation of spectral gaps by graph decoration Letters in Mathematical Physics. 53: 253-262. DOI: 10.1023/A:1011032212489 |
0.662 |
|
2000 |
Aizenman M, Schenker JH, Friedrich RM, Hundertmark D. Constructive fractional-moment criteria for localization in random operators Physica a: Statistical Mechanics and Its Applications. 279: 369-377. DOI: 10.1016/S0378-4371(00)00012-1 |
0.712 |
|
1999 |
Aizenman M, Burchard A. Hölder regularity and dimension bounds for random curves Duke Mathematical Journal. 99: 419-453. DOI: 10.1215/S0012-7094-99-09914-3 |
0.382 |
|
1999 |
Aizenman M, Burchard A, Newman CM, Wilson DB. Scaling limits for minimal and random spanning trees in two dimensions Random Structures and Algorithms. 15: 319-367. DOI: 10.1002/(Sici)1098-2418(199910/12)15:3/4<319::Aid-Rsa8>3.0.Co;2-G |
0.362 |
|
1998 |
Aizenman M, Graf GM. Localization bounds for an electron gas Journal of Physics a: Mathematical and General. 31: 6783-6806. DOI: 10.1088/0305-4470/31/32/004 |
0.386 |
|
1994 |
AIZENMAN M. LOCALIZATION AT WEAK DISORDER: SOME ELEMENTARY BOUNDS Reviews in Mathematical Physics. 6: 1163-1182. DOI: 10.1142/S0129055X94000419 |
0.344 |
|
1994 |
Aizenman M. On the slow decay of O(2) correlations in the absence of topological excitations: Remark on the Patrascioiu-Seiler model Journal of Statistical Physics. 77: 351-359. DOI: 10.1007/Bf02186846 |
0.32 |
|
1994 |
Aizenman M, Nachtergaele B. Geometric aspects of quantum spin states Communications in Mathematical Physics. 164: 17-63. DOI: 10.1007/Bf02108805 |
0.362 |
|
1993 |
Aizenman M, Molchanov S. Localization at large disorder and at extreme energies: An elementary derivations Communications in Mathematical Physics. 157: 245-278. DOI: 10.1007/Bf02099760 |
0.372 |
|
1991 |
Aizenman M, Grimmett G. Strict monotonicity for critical points in percolation and ferromagnetic models Journal of Statistical Physics. 63: 817-835. DOI: 10.1007/Bf01029985 |
0.381 |
|
1990 |
Aizenman M, Lieb EH. Magnetic properties of some itinerant-electron systems at T>0. Physical Review Letters. 65: 1470-1473. PMID 10042274 DOI: 10.1103/Physrevlett.65.1470 |
0.498 |
|
1990 |
Aizenman M, Wehr J. Erratum: Rounding of first-order phase transitions in systems with quenched disorder [Phys. Rev. Lett. 62, 2503 (1989)] Physical Review Letters. 64: 1311. DOI: 10.1103/Physrevlett.64.1311 |
0.317 |
|
1990 |
Aizenman M, Wehr J. Rounding effects of quenched randomness on first-order phase transitions Communications in Mathematical Physics. 130: 489-528. DOI: 10.1007/Bf02096933 |
0.438 |
|
1990 |
Wehr J, Aizenman M. Fluctuations of extensive functions of quenched random couplings Journal of Statistical Physics. 60: 287-306. DOI: 10.1007/Bf01314921 |
0.363 |
|
1989 |
Aizenman M, Wehr J. Rounding of first-order phase transitions in systems with quenched disorder. Physical Review Letters. 62: 2503-2506. PMID 10040005 DOI: 10.1103/Physrevlett.62.2503 |
0.378 |
|
1988 |
Aizenman M, Lebowitz JL. Metastability effects in bootstrap percolation Journal of Physics a: Mathematical and General. 21: 3801-3813. DOI: 10.1088/0305-4470/21/19/017 |
0.477 |
|
1988 |
Aizenman M, Lebowitz JL, Ruelle D. Some rigorous results on the Sherrington-Kirkpatrick spin glass model Communications in Mathematical Physics. 116: 527. DOI: 10.1007/Bf01229207 |
0.411 |
|
1988 |
Aizenman M, Chayes JT, Chayes L, Newman CM. Discontinuity of the magnetization in one-dimensional 1/|x-y|2 Ising and Potts models Journal of Statistical Physics. 50: 1-40. DOI: 10.1007/Bf01022985 |
0.664 |
|
1988 |
Aizenman M, Fernández R. Critical exponents for long-range interactions Letters in Mathematical Physics. 16: 39-49. DOI: 10.1007/Bf00398169 |
0.352 |
|
1987 |
Aizenman M, Chayes JT, Chayes L, Newman CM. The phase boundary in dilute and random Ising and Potts ferromagnets Journal of Physics a: General Physics. 20: L313-L318. DOI: 10.1088/0305-4470/20/5/010 |
0.31 |
|
1987 |
Aizenman M, Kesten H, Newman CM. Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation Communications in Mathematical Physics. 111: 505-531. DOI: 10.1007/Bf01219071 |
0.336 |
|
1987 |
Aizenman M, Barsky DJ. Sharpness of the phase transition in percolation models Communications in Mathematical Physics. 108: 489-526. DOI: 10.1007/Bf01212322 |
0.381 |
|
1987 |
Aizenman M, Bricmont J, Lebowitz JL. Percolation of the minority spins in high-dimensional Ising models Journal of Statistical Physics. 49: 859-865. DOI: 10.1007/Bf01009363 |
0.465 |
|
1987 |
Aizenman M, Barsky DJ, Fernández R. The phase transition in a general class of Ising-type models is sharp Journal of Statistical Physics. 47: 343-374. DOI: 10.1007/Bf01007515 |
0.38 |
|
1986 |
Aizenman M. Rigorous studies of critical behavior Physica a: Statistical Mechanics and Its Applications. 140: 225-231. DOI: 10.1016/0378-4371(86)90226-8 |
0.349 |
|
1986 |
Aizenman M, Newman CM. Discontinuity of the percolation density in one dimensional 1/|x-y|2 percolation models Communications in Mathematical Physics. 107: 611-647. DOI: 10.1007/Bf01205489 |
0.324 |
|
1986 |
Aizenman M, Fernández R. On the critical behavior of the magnetization in high-dimensional Ising models Journal of Statistical Physics. 44: 393-454. DOI: 10.1007/Bf01011304 |
0.361 |
|
1985 |
Aizenman M. The intersection of Brownian paths as a case study of a renormalization group method for quantum field theory Communications in Mathematical Physics. 97: 91-110. DOI: 10.1007/Bf01206180 |
0.334 |
|
1984 |
Aizenman M, Newman CM. Tree graph inequalities and critical behavior in percolation models Journal of Statistical Physics. 36: 107-143. DOI: 10.1007/Bf01015729 |
0.363 |
|
1983 |
Aizenman M, Graham R. On the renormalized coupling constant and the susceptibility in φ4 4 field theory and the Ising model in four dimensions Nuclear Physics, Section B. 225: 261-288. DOI: 10.1016/0550-3213(83)90053-6 |
0.313 |
|
1983 |
Aizenman M, Chayes JT, Chayes L, Fröhlich J, Russo L. On a sharp transition from area law to perimeter law in a system of random surfaces Communications in Mathematical Physics. 92: 19-69. DOI: 10.1007/Bf01206313 |
0.358 |
|
1982 |
Aizenman M. Geometric analysis of φ4 fields and Ising models. Parts I and II Communications in Mathematical Physics. 86: 1-48. DOI: 10.1007/Bf01205659 |
0.377 |
|
1981 |
Aizenman M, Fröhlich J. States of one-dimensional Coulomb systems as simple examples of θ vacua and confinement Journal of Statistical Physics. 26: 347-364. DOI: 10.1007/Bf01013176 |
0.383 |
|
1981 |
Aizenman M, Lieb EH. The third law of thermodynamics and the degeneracy of the ground state for lattice systems Journal of Statistical Physics. 24: 279-297. DOI: 10.1007/Bf01007649 |
0.569 |
|
1980 |
Aizenman M, Simon B. A comparison of plane rotor and Ising models Physics Letters A. 76: 281-282. DOI: 10.1016/0375-9601(80)90493-4 |
0.305 |
|
1980 |
Aizenman M, Simon B. Local Ward identities and the decay of correlations in ferromagnets Communications in Mathematical Physics. 77: 137-143. DOI: 10.1007/Bf01982713 |
0.347 |
|
1980 |
Aizenman M. Translation invariance and instability of phase coexistence in the two dimensional Ising system Communications in Mathematical Physics. 73: 83-94. DOI: 10.1007/Bf01942696 |
0.377 |
|
1980 |
Aizenman M, Martin PA. Structure of gibbs states of one dimensional Coulomb systems Communications in Mathematical Physics. 78: 99-116. DOI: 10.1007/Bf01941972 |
0.352 |
|
1980 |
Aizenman M, Delyon F, Souillard B. Lower bounds on the cluster size distribution Journal of Statistical Physics. 23: 267-280. DOI: 10.1007/Bf01011369 |
0.368 |
|
1979 |
Aizenman M. Instability of phase coexistence and translation invariance in two dimensions Physical Review Letters. 43: 407-409. DOI: 10.1103/Physrevlett.43.407 |
0.314 |
|
1979 |
Aizenman M, Spohn H. Probabilistic methods for stationary problems of linear transport theory Journal of Statistical Physics. 21: 23-32. DOI: 10.1007/Bf01011478 |
0.347 |
|
1978 |
Aizenman M, Davies EB, Lieb EH. Positive linear maps which are order bounded on C* subalgebras Advances in Mathematics. 28: 84-86. DOI: 10.1016/0001-8708(78)90046-4 |
0.538 |
|
1978 |
Aizenman M, Goldstein S, Lebowitz JL. Conditional equilibrium and the equivalence of microcanonical and grandcanonical ensembles in the thermodynamic limit Communications in Mathematical Physics. 62: 279-302. DOI: 10.1007/Bf01202528 |
0.506 |
|
1978 |
Aizenman M, Lebowitz J, Marro J. Time-displaced correlation functions in an infinite one-dimensional mixture of hard rods with different diameters Journal of Statistical Physics. 18: 179-190. DOI: 10.1007/Bf01014309 |
0.496 |
|
1977 |
Aizenman M, Goldstein S, Gruber C, Lebowitz JL, Martin P. On the equivalence between KMS-states and equilibrium states for classical systems Communications in Mathematical Physics. 53: 209-220. DOI: 10.1007/Bf01609847 |
0.499 |
|
1976 |
Aizenman M, Gallavotti G, Goldstein S, Lebowitz JL. Stability and equilibrium states of infinite classical systems Communications in Mathematical Physics. 48: 1-14. DOI: 10.1007/Bf01609407 |
0.498 |
|
1975 |
Aizenman M, Goldstein S, Lebowitz JL. Ergodic properties of an infinite one dimensional hard rod system Communications in Mathematical Physics. 39: 289-301. DOI: 10.1007/Bf01705376 |
0.485 |
|
1973 |
Aizenman M, Gutfreund H. Momentum distribution in the Tomonaga model at finite temperatures Journal of Mathematical Physics. 15: 643-647. DOI: 10.1063/1.1666700 |
0.312 |
|
Show low-probability matches. |