William E. Slofstra, Ph.D. - Publications

Affiliations: 
2011 Mathematics University of California, Berkeley, Berkeley, CA, United States 
Area:
Lie groups, Algebraic geometry, Topology, Quantum field theory

10 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Richmond E, Slofstra W, Woo A. The Nash blow-up of a cominuscule Schubert variety Journal of Algebra. 559: 580-600. DOI: 10.1016/J.Jalgebra.2020.04.020  0.344
2019 Slofstra W. The Set Of Quantum Correlations Is Not Closed Forum of Mathematics, Pi. 7. DOI: 10.1017/Fmp.2018.3  0.364
2018 Billey SC, Konvalinka M, Petersen TK, Slofstra W, Tenner BE. Parabolic Double Cosets in Coxeter Groups The Electronic Journal of Combinatorics. 25. DOI: 10.37236/6741  0.421
2017 Richmond E, Slofstra W. Staircase diagrams and enumeration of smooth Schubert varieties Journal of Combinatorial Theory, Series A. 150: 328-376. DOI: 10.1016/J.Jcta.2017.03.009  0.39
2016 Slofstra W. Twisted strong Macdonald theorems and adjoint orbits Journal of Algebra. 449: 565-614. DOI: 10.1016/J.Jalgebra.2015.10.026  0.353
2016 Slofstra W. A pattern avoidance criterion for free inversion arrangements Journal of Algebraic Combinatorics. 44: 201-221. DOI: 10.1007/S10801-015-0663-5  0.372
2015 Slofstra W. Rationally smooth Schubert varieties and inversion hyperplane arrangements Advances in Mathematics. 285: 709-736. DOI: 10.1016/J.Aim.2015.07.034  0.361
2012 Slofstra W. A Brylinski filtration for affine Kac–Moody algebras Advances in Mathematics. 229: 968-983. DOI: 10.1016/J.Aim.2011.10.014  0.363
2010 Goulden IP, Slofstra W. Annular embeddings of permutations for arbitrary genus Journal of Combinatorial Theory, Series A. 117: 272-288. DOI: 10.1016/J.Jcta.2009.11.009  0.343
2008 Cleve R, Slofstra W, Unger F, Upadhyay S. Perfect Parallel Repetition Theorem for Quantum Xor Proof Systems Computational Complexity. 17: 282-299. DOI: 10.1007/S00037-008-0250-4  0.316
Show low-probability matches.