Year |
Citation |
Score |
2022 |
Ames E, Beyer F, Isenberg J, Oliynyk TA. Stability of asymptotic behaviour within polarized [Formula: see text]-symmetric vacuum solutions with cosmological constant. Philosophical Transactions. Series a, Mathematical, Physical, and Engineering Sciences. 380: 20210173. PMID 35282687 DOI: 10.1098/rsta.2021.0173 |
0.624 |
|
2019 |
Isenberg J, Knopf D, Šešum N. Non-Kähler Ricci flow singularities modeled on Kähler–Ricci solitons Pure and Applied Mathematics Quarterly. 15: 749-784. DOI: 10.4310/Pamq.2019.V15.N2.A5 |
0.309 |
|
2019 |
Isenberg J, Wu H. Mean curvature flow of noncompact hypersurfaces with Type-II curvature blow-up Journal FüR Die Reine Und Angewandte Mathematik (Crelles Journal). 2019: 225-251. DOI: 10.1515/Crelle-2017-0019 |
0.437 |
|
2019 |
Ames E, Beyer F, Isenberg J. Contracting asymptotics of the linearized lapse-scalar field sub-system of the Einstein-scalar field equations Journal of Mathematical Physics. 60: 102504. DOI: 10.1063/1.5115104 |
0.514 |
|
2019 |
Bahuaud E, Guenther C, Isenberg J. Convergence Stability for Ricci Flow The Journal of Geometric Analysis. 30: 310-336. DOI: 10.1007/S12220-018-00132-9 |
0.393 |
|
2019 |
Moncrief V, Isenberg J. Symmetries of Cosmological Cauchy Horizons with Non-Closed Orbits Communications in Mathematical Physics. 374: 145-186. DOI: 10.1007/S00220-019-03571-9 |
0.468 |
|
2019 |
Berger BK, Isenberg J, Layne A. Stability Within $$T^2$$-Symmetric Expanding Spacetimes Annales Henri Poincaré. 21: 675-703. DOI: 10.1007/S00023-019-00870-8 |
0.452 |
|
2018 |
Allen PT, Isenberg J, Lee JM, Stavrov Allen I. Weakly asymptotically hyperbolic manifolds Communications in Analysis and Geometry. 26: 1-61. DOI: 10.4310/Cag.2018.V26.N1.A1 |
0.605 |
|
2017 |
Ames E, Beyer F, Isenberg J, LeFloch PG. A class of solutions to the Einstein equations with AVTD behavior in generalized wave gauges Journal of Geometry and Physics. 121: 42-71. DOI: 10.1016/J.Geomphys.2017.06.005 |
0.674 |
|
2016 |
Dilts J, Isenberg J. Existence and blowup results for asymptotically Euclidean initial data sets generated by the conformal method Physical Review D. 94. DOI: 10.1103/Physrevd.94.104046 |
0.463 |
|
2016 |
Allen PT, Isenberg J, Lee JM, Allen IS. The shear-free condition and constant-mean-curvature hyperboloidal initial data Classical and Quantum Gravity. 33. DOI: 10.1088/0264-9381/33/11/115015 |
0.386 |
|
2016 |
Isenberg J, Knopf D, Šešum N. Ricci flow neckpinches without rotational symmetry Communications in Partial Differential Equations. 41: 1860-1894. DOI: 10.1080/03605302.2016.1233982 |
0.435 |
|
2015 |
Isenberg J. On Strong Cosmic Censorship Surveys in Differential Geometry. 20: 17-36. DOI: 10.4310/Sdg.2015.V20.N1.A2 |
0.497 |
|
2015 |
Angenent SB, Isenberg J, Knopf D. Degenerate neckpinches in Ricci flow Journal FüR Die Reine Und Angewandte Mathematik (Crelles Journal). 2015. DOI: 10.1515/Crelle-2013-0105 |
0.404 |
|
2014 |
Dilts J, Isenberg J, Mazzeo R, Meier C. Non-CMC solutions of the Einstein constraint equations on asymptotically Euclidean manifolds Classical and Quantum Gravity. 31. DOI: 10.1088/0264-9381/31/6/065001 |
0.516 |
|
2013 |
Isenberg J, Mazzeo R, Sesum N. Ricci flow on asymptotically conical surfaces with nontrivial topology Journal FüR Die Reine Und Angewandte Mathematik (Crelles Journal). 2013. DOI: 10.1515/Crelle.2011.186 |
0.315 |
|
2013 |
Luo X, Isenberg J. Power law inflation with electromagnetism Annals of Physics. 334: 420-454. DOI: 10.1016/J.Aop.2013.04.009 |
0.477 |
|
2013 |
Gimre K, Guenther C, Isenberg J. A geometric introduction to the two-loop renormalization group flow Journal of Fixed Point Theory and Applications. 14: 3-20. DOI: 10.1007/S11784-014-0162-7 |
0.328 |
|
2013 |
Ames E, Beyer F, Isenberg J, LeFloch PG. Quasilinear Hyperbolic Fuchsian Systems and AVTD Behavior in T2-Symmetric Vacuum Spacetimes Annales Henri Poincare. 14: 1445-1523. DOI: 10.1007/S00023-012-0228-2 |
0.662 |
|
2012 |
Garfinkle D, Isenberg J, Martin-Garcia JM. Constraint equations in Einstein-aether theories and the weak gravitational field limit Physical Review D - Particles, Fields, Gravitation and Cosmology. 86. DOI: 10.1103/Physrevd.86.084009 |
0.367 |
|
2011 |
Angenent SB, Isenberg J, Knopf D. Formal matched asymptotics for degenerate Ricci flow neckpinches Nonlinearity. 24: 2265-2280. DOI: 10.1088/0951-7715/24/8/007 |
0.394 |
|
2011 |
Chruściel PT, Corvino J, Isenberg J. Construction of N-Body Initial Data Sets in General Relativity Communications in Mathematical Physics. 304: 637-647. DOI: 10.1007/S00220-011-1244-7 |
0.454 |
|
2010 |
Chruściel PT, Corvino J, Isenberg J. Initial data for the relativistic gravitational N-body problem Classical and Quantum Gravity. 27. DOI: 10.1088/0264-9381/27/22/222002 |
0.378 |
|
2010 |
Isenberg J, Lee JM, Allen IS. Asymptotic Gluing of Asymptotically Hyperbolic Solutions to the Einstein Constraint Equations Annales Henri Poincaré. 11: 881-927. DOI: 10.1007/S00023-010-0049-0 |
0.489 |
|
2009 |
Isenberg J, Javaheri M. Convergence of ricci flow on R2 to flat space Journal of Geometric Analysis. 19: 809-816. DOI: 10.1007/S12220-009-9084-9 |
0.305 |
|
2008 |
Allen PT, Clausen A, Isenberg J. Near-Constant Mean Curvature Solutions of the Einstein Constraint Equations with Non-Negative Yamabe Metrics Classical and Quantum Gravity. 25: 75009. DOI: 10.1088/0264-9381/25/7/075009 |
0.67 |
|
2008 |
Moncrief V, Isenberg J. Symmetries of higher dimensional black holes Classical and Quantum Gravity. 25. DOI: 10.1088/0264-9381/25/19/195015 |
0.372 |
|
2008 |
Garfinkle D, Isenberg J. The modeling of degenerate neck pinch singularities in Ricci flow by Bryant solitons Journal of Mathematical Physics. 49. DOI: 10.1063/1.2948953 |
0.325 |
|
2007 |
Choquet-Bruhat Y, Isenberg J, Pollack D. The constraint equations for the Einstein-scalar field system on compact manifolds Classical and Quantum Gravity. 24: 809-828. DOI: 10.1088/0264-9381/24/4/004 |
0.473 |
|
2007 |
Clausen A, Isenberg J. Areal foliation and asymptotically velocity-term dominated behavior in T2 symmetric space-times with positive cosmological constant Journal of Mathematical Physics. 48. DOI: 10.1063/1.2767534 |
0.617 |
|
2006 |
Isenberg J, Jackson M, Lu P. Ricci flow on locally homogeneous closed 4-manifolds Communications in Analysis and Geometry. 14: 345-386. DOI: 10.4310/Cag.2006.V14.N2.A5 |
0.308 |
|
2006 |
Dafermos M, Isenberg J. Mathematical Aspects of General Relativity Oberwolfach Reports. 9: 2269-2333. DOI: 10.4171/Owr/2009/46 |
0.4 |
|
2006 |
Guenther C, Isenberg J, Knopf DF. Linear stability of homogeneous Ricci solitons International Mathematics Research Notices. 2006: 96253. DOI: 10.1155/Imrn/2006/96253 |
0.401 |
|
2006 |
Allen P, Andersson L, Isenberg J. Timelike Minimal Submanifolds of General Co-dimension in Minkowski SpaceTime Journal of Hyperbolic Differential Equations. 3: 691-700. DOI: 10.1142/S0219891606000963 |
0.568 |
|
2006 |
Bartnik R, Isenberg J. Spherically symmetric dynamical horizons Classical and Quantum Gravity. 23: 2559-2569. DOI: 10.1088/0264-9381/23/7/020 |
0.423 |
|
2006 |
Choquet-Bruhat Y, Isenberg J. Half polarized (1) symmetric vacuum spacetimes with AVTD behavior Journal of Geometry and Physics. 56: 1199-1214. DOI: 10.1016/J.Geomphys.2005.06.011 |
0.377 |
|
2006 |
Choquet-Bruhat Y, Isenberg J, Pollack D. Applications of theorems of Jean Leray to the Einstein-scalar field equations Journal of Fixed Point Theory and Applications. 1: 31-46. DOI: 10.1007/S11784-006-0006-1 |
0.415 |
|
2006 |
Choquet-Bruhat Y, Isenberg J, Pollack D. The Einstein-Scalar Field Constraints on Asymptotically Euclidean Manifolds* Chinese Annals of Mathematics, Series B. 27: 31-52. DOI: 10.1007/S11401-005-0280-Z |
0.398 |
|
2005 |
Isenberg J, Maxwell D, Pollack D. A gluing construction for non-vacuum solutions of the Einstein-constraint equations Advances in Theoretical and Mathematical Physics. 9: 129-172. DOI: 10.4310/Atmp.2005.V9.N1.A3 |
0.454 |
|
2005 |
Chruściel PT, Isenberg J, Pollack D. Initial data engineering Communications in Mathematical Physics. 257: 29-42. DOI: 10.1007/S00220-005-1345-2 |
0.406 |
|
2004 |
Chruściel PT, Isenberg J, Pollack D. Gluing initial data sets for general relativity. Physical Review Letters. 93: 081101. PMID 15447167 DOI: 10.1103/Physrevlett.93.081101 |
0.391 |
|
2004 |
Choquet-Bruhat Y, Isenberg J, Moncrief V. Topologically general U(1) symmetric vacuum space-times with AVTD behavior Nuovo Cimento Della Societa Italiana Di Fisica B. 119: 625-638. DOI: 10.1393/ncb/i2004-10174-x |
0.344 |
|
2004 |
Berger B, Isenberg J. Vincent Moncrief and mathematical relativity Classical and Quantum Gravity. 21. DOI: 10.1088/0264-9381/21/3/E01 |
0.442 |
|
2004 |
Isenberg J, Murchadha NO. Non-CMC conformal data sets which do not produce solutions of the Einstein constraint equations Classical and Quantum Gravity. 21. DOI: 10.1088/0264-9381/21/3/013 |
0.46 |
|
2003 |
Isenberg J, Weaver M. On the area of the symmetry orbits in T2 symmetric spacetimes Classical and Quantum Gravity. 20: 3783-3796. DOI: 10.1088/0264-9381/20/16/316 |
0.356 |
|
2003 |
Isenberg J, Mazzeo R, Pollack D. On the topology of vacuum spacetimes Annales Henri Poincare. 4: 369-383. DOI: 10.1007/S00023-003-0133-9 |
0.541 |
|
2002 |
Isenberg J. Constructing solutions of the Einstein constraint equations Arxiv: General Relativity and Quantum Cosmology. 174-191. DOI: 10.1142/9789812776556_0008 |
0.476 |
|
2002 |
Isenberg J, Moncrief V. Asymptotic behaviour in polarized and half-polarized U(1) symmetric vacuum spacetimes Classical and Quantum Gravity. 19: 5361-5386. DOI: 10.1088/0264-9381/19/21/305 |
0.415 |
|
2002 |
Isenberg J, Mazzeo R, Pollack D. Gluing and wormholes for the Einstein constraint equations Communications in Mathematical Physics. 231: 529-568. DOI: 10.1007/S00220-002-0722-3 |
0.513 |
|
2001 |
Berger BK, Isenberg J, Weaver M. Oscillatory approach to the singularity in vacuum spacetimes with T2 isometry Physical Review D. 64. DOI: 10.1103/Physrevd.64.084006 |
0.443 |
|
2000 |
Choquet-Bruhat Y, Isenberg J, York JW. Einstein constraints on asymptotically Euclidean manifolds Physical Review D. 61. DOI: 10.1103/Physrevd.61.084034 |
0.367 |
|
2000 |
Garfinkle D, Gundlach C, Isenberg J, ÓMurchadha N. Existence, uniqueness and other properties of the BCT (minimal strain lapse and shift) gauge Classical and Quantum Gravity. 17: 3899-3904. DOI: 10.1088/0264-9381/17/18/321 |
0.339 |
|
2000 |
Liebling SL, Hirschmann EW, Isenberg J. Critical Phenomena in Nonlinear Sigma Models Journal of Mathematical Physics. 41: 5691-5700. DOI: 10.1063/1.533432 |
0.426 |
|
1999 |
Isenberg J, Kichenassamy S. Asymptotic behavior in polarized T2-symmetric vacuum space–times Journal of Mathematical Physics. 40: 340-352. DOI: 10.1063/1.532775 |
0.476 |
|
1998 |
BERGER BK, GARFINKLE D, ISENBERG J, MONCRIEF V, WEAVER M. THE SINGULARITY IN GENERIC GRAVITATIONAL COLLAPSE IS SPACELIKE, LOCAL AND OSCILLATORY Modern Physics Letters A. 13: 1565-1573. DOI: 10.1142/S0217732398001649 |
0.315 |
|
1998 |
Berger BK, Garfinkle D, Isenberg J, Moncrief V, Weaver M. The singularity in generic gravitational collapse is spacelike, local and oscillatory Modern Physics Letters A. 13: 1565-1573. DOI: 10.1142/S0217732398001649 |
0.431 |
|
1998 |
Weaver M, Isenberg J, Berger BK. Mixmaster Behavior in Inhomogeneous Cosmological Spacetimes Physical Review Letters. 80: 2984-2987. DOI: 10.1103/Physrevlett.80.2984 |
0.417 |
|
1998 |
Isenberg J, Rendall AD. Cosmological spacetimes not covered by a constant mean curvature slicing Classical and Quantum Gravity. 15: 3679-3688. DOI: 10.1088/0264-9381/15/11/025 |
0.466 |
|
1997 |
Isenberg J, Park J. Asymptotically hyperbolic non-constant mean curvature solutions of the Einstein constraint equations Classical and Quantum Gravity. 14: A189-A201. DOI: 10.1088/0264-9381/14/1A/016 |
0.499 |
|
1997 |
Berger BK, Chruściel PT, Isenberg J, Moncrief V. Global foliations of vacuum spacetimes with T2 isometry Annals of Physics. 260: 117-148. DOI: 10.1006/Aphy.1997.5707 |
0.483 |
|
1996 |
Isenberg J, Moncrief V. A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds Classical and Quantum Gravity. 13: 1819-1847. DOI: 10.1088/0264-9381/13/7/015 |
0.484 |
|
1995 |
Isenberg J. Constant mean curvature solutions of the Einstein constraint equations on closed manifolds Classical and Quantum Gravity. 12: 2249-2274. DOI: 10.1088/0264-9381/12/9/013 |
0.515 |
|
1993 |
Hamilton R, Isenberg J. Quasi-convergence of Ricci flow for a class of metrics Communications in Analysis and Geometry. 1: 543-559. DOI: 10.4310/Cag.1993.V1.N4.A3 |
0.327 |
|
1992 |
Isenberg J, Jackson M. Ricci flow of locally homogeneous geometries on closed manifolds Journal of Differential Geometry. 35: 723-741. DOI: 10.4310/Jdg/1214448265 |
0.315 |
|
1992 |
Isenberg J, Moncrief V. On spacetimes containing Killing vector fields with non-closed orbits Classical and Quantum Gravity. 9: 1683-1691. DOI: 10.1088/0264-9381/9/7/004 |
0.358 |
|
1990 |
Carfora M, Isenberg J, Jackson M. Convergence of the Ricci flow for metrics with indefinite Ricci curvature Journal of Differential Geometry. 31: 249-263. DOI: 10.4310/Jdg/1214444096 |
0.325 |
|
1990 |
Chrusciel PT, Isenberg J, Moncrief V. Strong cosmic censorship in polarised Gowdy spacetimes Classical and Quantum Gravity. 7: 1671-1680. DOI: 10.1088/0264-9381/7/10/003 |
0.484 |
|
1990 |
Isenberg J, Moncrief V. Asymptotic behavior of the gravitational field and the nature of singularities in gowdy spacetimes Annals of Physics. 199: 84-122. DOI: 10.1016/0003-4916(90)90369-Y |
0.474 |
|
1987 |
Isenberg J. Parametrization of the space of solutions of Einstein's equations Physical Review Letters. 59: 2389-2392. DOI: 10.1103/Physrevlett.59.2389 |
0.485 |
|
1986 |
Isenberg J. Steering the universe Foundations of Physics. 16: 651-665. DOI: 10.1007/Bf01889627 |
0.325 |
|
1986 |
Eardley D, Isenberg J, Marsden J, Moncrief V. Homothetic and conformal symmetries of solutions to Einstein's equations Communications in Mathematical Physics. 106: 137-158. DOI: 10.1007/Bf01210929 |
0.496 |
|
1985 |
Bao D, Choquet‐Bruhat Y, Isenberg J, Yasskin PB. The well‐posedness of (N=1) classical supergravity Journal of Mathematical Physics. 26: 329-333. DOI: 10.1063/1.526663 |
0.466 |
|
1985 |
Isenberg J, Moncrief V. Symmetries of cosmological Cauchy horizons with exceptional orbits Journal of Mathematical Physics. 26: 1024-1027. DOI: 10.1063/1.526587 |
0.468 |
|
1985 |
Bao D, Isenberg J, Yasskin PB. The dynamics of the Einstein-Dirac system. I. A principal bundle formulation of the theory and its canonical analysis Annals of Physics. 164: 103-171. DOI: 10.1016/0003-4916(85)90006-5 |
0.438 |
|
1984 |
Isenberg() J, Marsden() JE. The York map is a canonical transformation Journal of Geometry and Physics. 1: 85-105. DOI: 10.1016/0393-0440(84)90015-9 |
0.311 |
|
1983 |
Moncrief V, Isenberg J. Symmetries of cosmological Cauchy horizons Communications in Mathematical Physics. 89: 387-413. DOI: 10.1007/Bf01214662 |
0.405 |
|
1982 |
Isenberg J, Marsden JE. A slice theorem for the space of solutions of Einstein's equations Physics Reports. 89: 179-222. DOI: 10.1016/0370-1573(82)90066-7 |
0.449 |
|
1982 |
Isenberg J, Moncrief V. The existence of constant mean curvature foliations of Gowdy 3-torus spacetimes Communications in Mathematical Physics. 86: 485-493. DOI: 10.1007/Bf01214884 |
0.464 |
|
1974 |
Pnueli D, Isenberg J. The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity Journal of Engineering Mathematics. 8: 297-302. DOI: 10.1007/BF02353495 |
0.3 |
|
Show low-probability matches. |