Year |
Citation |
Score |
2022 |
Ames E, Beyer F, Isenberg J, Oliynyk TA. Stability of asymptotic behaviour within polarized [Formula: see text]-symmetric vacuum solutions with cosmological constant. Philosophical Transactions. Series a, Mathematical, Physical, and Engineering Sciences. 380: 20210173. PMID 35282687 DOI: 10.1098/rsta.2021.0173 |
0.327 |
|
2018 |
Liu C, Oliynyk TA. Cosmological Newtonian Limits on Large Spacetime Scales Communications in Mathematical Physics. 364: 1195-1304. DOI: 10.1007/S00220-018-3214-9 |
0.527 |
|
2018 |
Liu C, Oliynyk TA. Newtonian Limits of Isolated Cosmological Systems on Long Time Scales Annales Henri Poincaré. 19: 2157-2243. DOI: 10.1007/S00023-018-0686-2 |
0.502 |
|
2017 |
Oliynyk TA. A priori estimates for relativistic liquid bodies Bulletin Des Sciences Mathematiques. 141: 105-222. DOI: 10.1016/J.Bulsci.2017.02.001 |
0.415 |
|
2016 |
Oliynyk TA. Classical-Quantum Limits Foundations of Physics. 1-22. DOI: 10.1007/S10701-016-0028-5 |
0.328 |
|
2016 |
Oliynyk TA. Future Stability of the FLRW Fluid Solutions in the Presence of a Positive Cosmological Constant Communications in Mathematical Physics. 1-20. DOI: 10.1007/S00220-015-2551-1 |
0.497 |
|
2015 |
Oliynyk TA. The Newtonian Limit on Cosmological Scales Communications in Mathematical Physics. 339: 455-512. DOI: 10.1007/S00220-015-2418-5 |
0.481 |
|
2015 |
Andersson L, Oliynyk TA, Schmidt BG. Dynamical Compact Elastic Bodies in General Relativity Archive For Rational Mechanics and Analysis. DOI: 10.1007/S00205-015-0943-1 |
0.454 |
|
2014 |
Oliynyk TA. Cosmological newtonian limit Physical Review D - Particles, Fields, Gravitation and Cosmology. 89. DOI: 10.1103/Physrevd.89.124002 |
0.468 |
|
2014 |
Andersson L, Oliynyk TA. A transmission problem for quasi-linear wave equations Journal of Differential Equations. 256: 2023-2078. DOI: 10.1016/J.Jde.2013.12.014 |
0.442 |
|
2012 |
Oliynyk TA. The fast Newtonian limit for perfect fluids Advances in Theoretical and Mathematical Physics. 16: 359-391. DOI: 10.4310/Atmp.2012.V16.N2.A1 |
0.524 |
|
2012 |
Oliynyk TA. Lagrange coordinates for the Einstein-Euler equations Physical Review D - Particles, Fields, Gravitation and Cosmology. 85. DOI: 10.1103/Physrevd.85.044019 |
0.407 |
|
2012 |
Oliynyk TA. On the existence of solutions to the relativistic Euler equations in two spacetime dimensions with a vacuum boundary Classical and Quantum Gravity. 29. DOI: 10.1088/0264-9381/29/15/155013 |
0.505 |
|
2012 |
Fisher M, Oliynyk TA. There are no Magnetically Charged Particle-like Solutions of the Einstein Yang-Mills Equations for Models with an Abelian Residual Group Communications in Mathematical Physics. 312: 137-177. DOI: 10.1007/S00220-011-1388-5 |
0.525 |
|
2011 |
Andersson L, Oliynyk TA, Schmidt BG. Dynamical elastic bodies in Newtonian gravity Classical and Quantum Gravity. 28. DOI: 10.1088/0264-9381/28/23/235006 |
0.427 |
|
2010 |
Gulcev L, Oliynyk TA, Woolgar E. On long-time existence for the flow of static metrics with rotational symmetry Communications in Analysis and Geometry. 18: 705-741. DOI: 10.4310/Cag.2010.V18.N4.A3 |
0.355 |
|
2010 |
Oliynyk TA. A rigorous formulation of the cosmological Newtonian limit without averaging Journal of Hyperbolic Differential Equations. 7: 405-431. DOI: 10.1142/S0219891610002189 |
0.523 |
|
2010 |
Bartnik R, Fisher M, Oliynyk TA. Static spherically symmetric solutions of the SO(5) Einstein Yang-Mills equations Journal of Mathematical Physics. 51. DOI: 10.1063/1.3309500 |
0.599 |
|
2010 |
Oliynyk TA. Cosmological post-newtonian expansions to arbitrary order Communications in Mathematical Physics. 295: 431-463. DOI: 10.1007/S00220-009-0931-0 |
0.525 |
|
2009 |
Oliynyk TA. The second-order renormalization group flow for nonlinear sigma models in two dimensions Classical and Quantum Gravity. 26. DOI: 10.1088/0264-9381/26/10/105020 |
0.482 |
|
2009 |
Oliynyk TA, Schmidt B. Existence of families of spacetimes with a Newtonian limit General Relativity and Gravitation. 41: 2093-2111. DOI: 10.1007/S10714-009-0843-5 |
0.303 |
|
2009 |
Oliynyk TA. Post-newtonian expansions for perfect fluids Communications in Mathematical Physics. 288: 847-886. DOI: 10.1007/S00220-009-0738-Z |
0.513 |
|
2008 |
Guenther C, Oliynyk TA. Stability of the (two-loop) renormalization group flow for nonlinear sigma models Letters in Mathematical Physics. 84: 149-157. DOI: 10.1007/S11005-008-0245-8 |
0.33 |
|
2007 |
Oliynyk TA, Woolgar E. Rotationally symmetric Ricci flow on asymptotically flat manifolds Communications in Analysis and Geometry. 15: 535-568. DOI: 10.4310/Cag.2007.V15.N3.A4 |
0.363 |
|
2007 |
Oliynyk TA, Suneeta V, Woolgar E. Metric for gradient renormalization group flow of the worldsheet sigma model beyond first order Physical Review D. 76: 45001. DOI: 10.1103/Physrevd.76.045001 |
0.38 |
|
2007 |
Oliynyk TA. The Newtonian limit for perfect fluids Communications in Mathematical Physics. 276: 131-188. DOI: 10.1007/S00220-007-0334-Z |
0.491 |
|
2006 |
Oliynyk TA, Suneeta V, Woolgar E. A gradient flow for worldsheet nonlinear sigma models Nuclear Physics. 739: 441-458. DOI: 10.1016/J.Nuclphysb.2006.01.036 |
0.395 |
|
2006 |
Künzle HP, Oliynyk TA. Spherical symmetry of generalized EYMH fields Journal of Geometry and Physics. 56: 1856-1874. DOI: 10.1016/J.Geomphys.2005.10.011 |
0.646 |
|
2006 |
Oliynyk TA. An existence proof for the gravitating BPS monopole Annales Henri Poincare. 7: 199-232. DOI: 10.1007/S00023-005-0247-3 |
0.455 |
|
2005 |
Oliynyk TA. Newtonian perturbations and the Einstein-Yang-Mills-dilaton equations Classical and Quantum Gravity. 22: 2269-2294. DOI: 10.1088/0264-9381/22/11/022 |
0.542 |
|
2005 |
Oliynyk TA, Suneeta V, Woolgar E. Irreversibility of world-sheet renormalization group flow Physics Letters B. 610: 115-121. DOI: 10.1016/J.Physletb.2005.01.077 |
0.384 |
|
2005 |
Künzle HP, Oliynyk TA. Spherically symmetric Einstein-Yang-Mills-Higgs fields for general compact gauge groups Nonlinear Analysis, Theory, Methods and Applications. 63. DOI: 10.1016/J.Na.2005.02.086 |
0.644 |
|
2003 |
Oliynyk TA, Künzle HP. On global properties of static spherically symmetric EYM fields with compact gauge groups Classical and Quantum Gravity. 20: 4653-4682. DOI: 10.1088/0264-9381/20/21/007 |
0.685 |
|
2002 |
Oliynyk TA, Künzle HP. On all possible static spherically symmetric EYM solitons and black holes Classical and Quantum Gravity. 19: 457-482. DOI: 10.1088/0264-9381/19/3/303 |
0.696 |
|
2002 |
Oliynyk TA, Künzle HP. Local existence proofs for the boundary value problem for static spherically symmetric Einstein-Yang-Mills fields with compact gauge groups Journal of Mathematical Physics. 43: 2363-2393. DOI: 10.1063/1.1463216 |
0.705 |
|
Show low-probability matches. |