Year |
Citation |
Score |
2020 |
Mehdi S, Pandžić P, Vogan DA, Zierau R. Dirac index and associated cycles of Harish-Chandra modules Advances in Mathematics. 361: 106917. DOI: 10.1016/J.Aim.2019.106917 |
0.359 |
|
2018 |
Mehdi S, Pandžić P, Vogan D, Zierau R. Computing the associated cycles of certain Harish- Chandra modules Glasnik Matematicki. 53: 275-330. DOI: 10.3336/Gm.53.2.05 |
0.373 |
|
2018 |
Schlichtkrull H, Trapa PE, Vogan DA. Laplacians on spheres The SãO Paulo Journal of Mathematical Sciences. 12: 295-358. DOI: 10.1007/S40863-018-0100-5 |
0.376 |
|
2017 |
Mehdi S, Pandžić P, Vogan DA. Translation principle for Dirac index American Journal of Mathematics. 139: 1465-1491. DOI: 10.1353/Ajm.2017.0037 |
0.449 |
|
2017 |
Huang J, Pandžić P, Vogan D. On classifying unitary modules by their Dirac cohomology Science China-Mathematics. 60: 1937-1962. DOI: 10.1007/S11425-017-9097-8 |
0.41 |
|
2017 |
Vogan DA. The size of infinite dimensional representations Japanese Journal of Mathematics. 12: 172-178. DOI: 10.1007/Bfb0090118 |
0.393 |
|
2016 |
Adams J, Vogan DA. Contragredient representations and characterizing the local langlands correspondence American Journal of Mathematics. 138: 657-682. DOI: 10.1353/Ajm.2016.0024 |
0.376 |
|
2014 |
Lusztig G, Vogan DA. Quasisplit hecke algebras and symmetric spaces Duke Mathematical Journal. 163: 983-1034. DOI: 10.1215/00127094-2644684 |
0.3 |
|
2007 |
Adams J, Barbasch D, Paul A, Trapa P, Vogan DA. Unitary shimura correspondences for split real groups Journal of the American Mathematical Society. 20: 701-751. DOI: 10.1090/S0894-0347-06-00530-3 |
0.389 |
|
2001 |
Salamanca-Riba SA, Vogan DA. Strictly small representations and a reduction theorem for the unitary dual Representation Theory of the American Mathematical Society. 5: 93-110. DOI: 10.1090/S1088-4165-01-00127-3 |
0.353 |
|
1999 |
Vogan DA. Book Review: Lie groups: Beyond an introduction Bulletin of the American Mathematical Society. 36: 493-499. DOI: 10.1090/S0273-0979-99-00790-9 |
0.336 |
|
1998 |
Salamanca-Riba SA, Vogan DA. On the classification of unitary representations of reductive Lie groups Annals of Mathematics. 148: 1067-1133. DOI: 10.2307/121036 |
0.379 |
|
1998 |
Adams J, Huang J, Vogan DA. Functions on the model orbit in Representation Theory of the American Mathematical Society. 2: 224-263. DOI: 10.1090/S1088-4165-98-00048-X |
0.304 |
|
1998 |
Segal I, Vogan DA, Zhou Z. Spinor Currents as Vector Particles Journal of Functional Analysis. 156: 252-262. DOI: 10.1006/Jfan.1997.3234 |
0.397 |
|
1992 |
Adams J, Vogan DA. Harish-Chandra'S Method Of Descent American Journal of Mathematics. 114: 1243-1255. DOI: 10.2307/2374761 |
0.361 |
|
1992 |
Adams J, Vogan DA. L-groups, projective representations, and the Langlands classification American Journal of Mathematics. 114: 45-138. DOI: 10.2307/2374739 |
0.313 |
|
1990 |
Vogan DA, Wallach NR. Intertwining operators for real reductive groups Advances in Mathematics. 82: 203-243. DOI: 10.1016/0001-8708(90)90089-6 |
0.307 |
|
1987 |
Segal IE, Orsted B, Paneitz SM, Vogan DA. Explanation of parity nonconservation. Proceedings of the National Academy of Sciences of the United States of America. 84: 319-23. PMID 16593799 DOI: 10.1073/Pnas.84.2.319 |
0.399 |
|
1987 |
Vogan DA. Review: Anthony W. Knapp, Representation theory of semisimple groups. An overview based on examples Bulletin of the American Mathematical Society. 17: 392-396. DOI: 10.1090/S0273-0979-1987-15612-6 |
0.38 |
|
1987 |
Paneitz SM, Segal IE, Vogan DA. Analysis in space-time bundles IV. Natural bundles deforming into and composed of the same invariant factors as the spin and form bundles Journal of Functional Analysis. 75: 1-57. DOI: 10.1016/0022-1236(87)90106-6 |
0.351 |
|
1985 |
Barbasch D, Vogan DA. Unipotent representations of complex semisimple groups Annals of Mathematics. 121: 41-110. DOI: 10.2307/1971193 |
0.474 |
|
1984 |
Vogan DA. Unitarizability of Certain Series of Representations Annals of Mathematics. 120: 141. DOI: 10.2307/2007074 |
0.366 |
|
1984 |
Barbasch D, Vogan DA. Reducibility of standard representations Bulletin of the American Mathematical Society. 11: 383-385. DOI: 10.1090/S0273-0979-1984-15320-5 |
0.305 |
|
1983 |
Barbasch D, Vogan D. Primitive ideals and orbital integrals in complex exceptional groups Journal of Algebra. 80: 350-382. DOI: 10.1016/0021-8693(83)90006-6 |
0.408 |
|
1983 |
Vogan DA. Irreducible characters of semisimple lie groups III. Proof of Kazhdan-Lusztig conjecture in the integral case Inventiones Mathematicae. 71: 381-417. DOI: 10.1007/Bf01389104 |
0.388 |
|
1982 |
Vogan DA. Irreducible characters of semisimple lie groups iv. character-multiplicity duality Duke Mathematical Journal. 49: 943-1073. DOI: 10.1215/S0012-7094-82-04946-8 |
0.313 |
|
1982 |
Barbasch D, Vogan D. Primitive ideals and orbital integrals in complex classical groups Mathematische Annalen. 259: 153-200. DOI: 10.1007/Bf01457308 |
0.345 |
|
1980 |
Barbasch D, Vogan DA. The local structure of characters Journal of Functional Analysis. 37: 27-55. DOI: 10.1016/0022-1236(80)90026-9 |
0.471 |
|
1980 |
Speh B, Vogan DA. Reducibility of generalized principal series representations Acta Mathematica. 145: 227-299. DOI: 10.1007/Bf02414191 |
0.422 |
|
1979 |
Vogan DA. The Algebraic Structure of the Representations of Semisimple Lie Groups I Annals of Mathematics. 109: 1. DOI: 10.2307/1971266 |
0.436 |
|
1978 |
Vogan DA. Lie algebra cohomology and a multiplicity formula of Kostant Journal of Algebra. 51: 69-75. DOI: 10.1016/0021-8693(78)90135-7 |
0.379 |
|
1977 |
Speh B, Vogan D. A reducibility criterion for generalized principal series. Proceedings of the National Academy of Sciences of the United States of America. 74: 5252. PMID 16592471 DOI: 10.1073/Pnas.74.12.5252 |
0.39 |
|
1977 |
Vogan DA. Classification of the irreducible representations of semisimple Lie groups Proceedings of the National Academy of Sciences of the United States of America. 74: 2649-2650. PMID 16592410 DOI: 10.1073/Pnas.74.7.2649 |
0.454 |
|
Show low-probability matches. |