Harold E. Layton - Publications

Affiliations: 
Duke University, Durham, NC 
Area:
Mathematics, Animal Physiology Biology

56 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2019 Layton AT, Layton HE. A computational model of epithelial solute and water transport along a human nephron. Plos Computational Biology. 15: e1006108. PMID 30802242 DOI: 10.1371/Journal.Pcbi.1006108  0.462
2018 Li Q, McDonough AA, Layton HE, Layton AT. Functional Implications of Sexual Dimorphism of Transporter Patterns along the Rat Proximal Tubule: Modeling and Analysis. American Journal of Physiology. Renal Physiology. PMID 29846110 DOI: 10.1152/Ajprenal.00171.2018  0.318
2014 Sands JM, Layton HE. Advances in understanding the urine-concentrating mechanism. Annual Review of Physiology. 76: 387-409. PMID 24245944 DOI: 10.1146/Annurev-Physiol-021113-170350  0.401
2014 Dantzler WH, Layton AT, Layton HE, Pannabecker TL. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle. Clinical Journal of the American Society of Nephrology : Cjasn. 9: 1781-9. PMID 23908457 DOI: 10.2215/Cjn.08750812  0.5
2013 Nieves-González A, Clausen C, Marcano M, Layton AT, Layton HE, Moore LC. Fluid dilution and efficiency of Na(+) transport in a mathematical model of a thick ascending limb cell. American Journal of Physiology. Renal Physiology. 304: F634-52. PMID 23097469 DOI: 10.1152/Ajprenal.00100.2012  0.362
2013 Nieves-González A, Clausen C, Layton AT, Layton HE, Moore LC. Transport efficiency and workload distribution in a mathematical model of the thick ascending limb. American Journal of Physiology. Renal Physiology. 304: F653-64. PMID 23097466 DOI: 10.1152/Ajprenal.00101.2012  0.403
2012 Layton AT, Moore LC, Layton HE. Signal transduction in a compliant thick ascending limb. American Journal of Physiology. Renal Physiology. 302: F1188-202. PMID 22262482 DOI: 10.1152/Ajprenal.00732.2010  0.558
2011 Layton AT, Layton HE. Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney. American Journal of Physiology. Renal Physiology. 301: F1047-56. PMID 21753076 DOI: 10.1152/Ajprenal.00620.2010  0.385
2011 Layton AT, Bowen M, Wen A, Layton HE. Feedback-mediated dynamics in a model of coupled nephrons with compliant thick ascending limbs. Mathematical Biosciences. 230: 115-27. PMID 21329704 DOI: 10.1016/J.Mbs.2011.02.004  0.584
2011 Chen J, Sgouralis I, Moore LC, Layton HE, Layton AT. A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. American Journal of Physiology. Renal Physiology. 300: F669-81. PMID 21190949 DOI: 10.1152/Ajprenal.00382.2010  0.418
2011 Dantzler WH, Pannabecker TL, Layton AT, Layton HE. Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture Acta Physiologica (Oxford, England). 202: 361-378. PMID 21054810 DOI: 10.1111/J.1748-1716.2010.02214.X  0.346
2010 Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Functional implications of the three-dimensional architecture of the rat renal inner medulla. American Journal of Physiology. Renal Physiology. 298: F973-87. PMID 20053796 DOI: 10.1152/Ajprenal.00249.2009  0.415
2010 Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers. American Journal of Physiology. Renal Physiology. 298: F962-72. PMID 20042460 DOI: 10.1152/Ajprenal.00250.2009  0.46
2010 Marcano M, Layton AT, Layton HE. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney. Bulletin of Mathematical Biology. 72: 314-39. PMID 19915926 DOI: 10.1007/S11538-009-9448-0  0.413
2009 Layton AT, Layton HE, Dantzler WH, Pannabecker TL. The mammalian urine concentrating mechanism: hypotheses and uncertainties. Physiology (Bethesda, Md.). 24: 250-6. PMID 19675356 DOI: 10.1152/Physiol.00013.2009  0.348
2009 Sands JM, Layton HE. The physiology of urinary concentration: an update. Seminars in Nephrology. 29: 178-95. PMID 19523568 DOI: 10.1016/J.Semnephrol.2009.03.008  0.485
2009 Layton AT, Moore LC, Layton HE. Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons. Bulletin of Mathematical Biology. 71: 515-55. PMID 19205808 DOI: 10.1007/S11538-008-9370-X  0.524
2008 Pannabecker TL, Dantzler WH, Layton HE, Layton AT. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. American Journal of Physiology. Renal Physiology. 295: F1271-85. PMID 18495796 DOI: 10.1152/Ajprenal.90252.2008  0.334
2007 Budu-Grajdeanu P, Moore LC, Layton HE. Effect of tubular inhomogeneities on filter properties of thick ascending limb of Henle's loop. Mathematical Biosciences. 209: 564-92. PMID 17499314 DOI: 10.1016/J.Mbs.2007.03.007  0.459
2006 Marcano M, Layton AT, Layton HE. An optimization algorithm for a distributed-loop model of an avian urine concentrating mechanism. Bulletin of Mathematical Biology. 68: 1625-60. PMID 16967257 DOI: 10.1007/S11538-006-9087-1  0.433
2006 Layton AT, Moore LC, Layton HE. Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats. American Journal of Physiology. Renal Physiology. 291: F79-97. PMID 16204416 DOI: 10.1152/Ajprenal.00048.2005  0.429
2005 Layton AT, Layton HE. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results. American Journal of Physiology. Renal Physiology. 289: F1346-66. PMID 15914776 DOI: 10.1152/Ajprenal.00346.2003  0.483
2005 Layton AT, Layton HE. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity. American Journal of Physiology. Renal Physiology. 289: F1367-81. PMID 15914775 DOI: 10.1152/Ajprenal.00347.2003  0.445
2004 Bruce Pitman E, Zaritski RM, Kesseler KJ, Moore LC, Layton HE. Feedback-mediated dynamics in two coupled nephrons. Bulletin of Mathematical Biology. 66: 1463-92. PMID 15522342 DOI: 10.1016/J.Bulm.2004.01.006  0.663
2004 Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Two modes for concentrating urine in rat inner medulla. American Journal of Physiology. Renal Physiology. 287: F816-39. PMID 15213067 DOI: 10.1152/Ajprenal.00398.2003  0.434
2003 Layton AT, Layton HE. A region-based model framework for the rat urine concentrating mechanism. Bulletin of Mathematical Biology. 65: 859-901. PMID 12909254 DOI: 10.1016/S0092-8240(03)00045-4  0.431
2003 Marcano-Velázquez M, Layton HE. An inverse algorithm for a mathematical model of an avian urine concentrating mechanism. Bulletin of Mathematical Biology. 65: 665-91. PMID 12875338 DOI: 10.1016/S0092-8240(03)00029-6  0.397
2003 Oldson DR, Moore LC, Layton HE. Effect of sustained flow perturbations on stability and compensation of tubuloglomerular feedback. American Journal of Physiology. Renal Physiology. 285: F972-89. PMID 12837687 DOI: 10.1152/Ajprenal.00377.2002  0.516
2003 Smith KM, Moore LC, Layton HE. Advective transport of nitric oxide in a mathematical model of the afferent arteriole. American Journal of Physiology. Renal Physiology. 284: F1080-96. PMID 12712988 DOI: 10.1152/Ajprenal.00141.2002  0.447
2003 Layton AT, Layton HE. An efficient numerical method for distributed-loop models of the urine concentrating mechanism. Mathematical Biosciences. 181: 111-32. PMID 12445757 DOI: 10.1016/S0025-5564(02)00176-1  0.452
2002 Layton AT, Layton HE. A numerical method for renal models that represent tubules with abrupt changes in membrane properties. Journal of Mathematical Biology. 45: 549-67. PMID 12439590 DOI: 10.1007/S00285-002-0166-6  0.426
2002 Layton AT, Layton HE. A semi-lagrangian semi-implicit numerical method for models of the urine concentrating mechanism Siam Journal On Scientific Computing. 23: 1526-1548. DOI: 10.1137/S1064827500381781  0.466
2000 Layton HE, Davies JM, Casotti G, Braun EJ. Mathematical model of an avian urine concentrating mechanism American Journal of Physiology - Renal Physiology. 279. PMID 11097634 DOI: 10.1152/Ajprenal.2000.279.6.F1139  0.494
2000 Layton HE, Pitman EB, Moore LC. Limit-cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery. American Journal of Physiology. Renal Physiology. 278: F287-301. PMID 10662733 DOI: 10.1152/Ajprenal.2000.278.2.F287  0.528
1998 Arthurs KM, Moore LC, Peskin CS, Pitman EB, Layton HE. Modeling arteriolar flow and mass transport using the immersed boundary method Journal of Computational Physics. 147: 402-440. DOI: 10.1006/Jcph.1998.6097  0.438
1997 Layton HE, Pitman EB, Moore LC. Nonlinear filter properties of the thick ascending limb. American Journal of Physiology. Renal Physiology. 273: F625-F634. PMID 29587094 DOI: 10.1152/ajprenal.1997.273.4.F625  0.403
1997 Layton HE, Pitman EB, Moore LC. Spectral properties of the tubuloglomerular feedback system. American Journal of Physiology. Renal Physiology. 273: F635-F649. PMID 29587088 DOI: 10.1152/ajprenal.1997.273.4.F635  0.389
1997 Layton HE, Pitman EB, Moore LC. Spectral properties of the tubuloglomerular feedback system. The American Journal of Physiology. 273: F635-49. PMID 9362341 DOI: 10.1152/Ajprenal.1997.273.4.F635  0.487
1997 Layton HE, Pitman EB, Moore LC. Nonlinear filter properties of the thick ascending limb. The American Journal of Physiology. 273: F625-34. PMID 9362340 DOI: 10.1152/Ajprenal.1997.273.4.F625  0.495
1997 Layton HE, Casotti G, Davies JM, Braun EJ. Mathematical model of avian urine concentrating mechanism Faseb Journal. 11.  0.36
1996 Layton HE, Knepper MA, Chou CL. Permeability criteria for effective function of passive countercurrent multiplier American Journal of Physiology. 270. PMID 8769818 DOI: 10.1152/Ajprenal.1996.270.1.F9  0.409
1996 Layton HE, Pitman EB, Moore LC. Spectral properties of the thick ascending limb Faseb Journal. 10.  0.445
1996 Layton HE, Pitman EB, Moore LC. Spectral properties of the TGF pathway Zamm Zeitschrift Fur Angewandte Mathematik Und Mechanik. 76: 33-35.  0.331
1995 Layton HE, Pitman EB, Moore LC. Instantaneous and steady-state gains in the tubuloglomerular feedback system. The American Journal of Physiology. 268: F163-74. PMID 7840242 DOI: 10.1152/Ajprenal.1995.268.1.F163  0.495
1995 Layton HE, Pitman EB, Knepper MA. A Dynamic Numerical Method for Models of the Urine Concentrating Mechanism Siam Journal On Applied Mathematics. 55: 1390-1418. DOI: 10.1137/S0036139993252864  0.46
1995 Layton HE, Pitman EB, Knepper MA. Dynamic numerical method for models of the urine concentrating mechanism Siam Journal On Applied Mathematics. 55: 1390-1418.  0.344
1994 Pitman EB, Layton HE, Moore LC. Numerical simulation of propagating concentration profiles in renal tubules. Bulletin of Mathematical Biology. 56: 567-86. PMID 8087082 DOI: 10.1016/S0092-8240(05)80289-7  0.379
1994 Layton HE, Pitman EB. A dynamic numerical method for models of renal tubules Bulletin of Mathematical Biology. 56: 547-565. PMID 8087081 DOI: 10.1016/S0092-8240(05)80288-5  0.486
1993 Layton HE, Davies JM. Distributed solute and water reabsorption in a central core model of the renal medulla Mathematical Biosciences. 116: 169-196. PMID 8369598 DOI: 10.1016/0025-5564(93)90065-I  0.441
1991 Layton HE, Pitman EB, Moore LC. Bifurcation analysis of TGF-mediated oscillations in SNGFR. The American Journal of Physiology. 261: F904-19. PMID 1951721 DOI: 10.1152/Ajprenal.1991.261.5.F904  0.494
1990 Layton HE. Urea transport in a distributed loop model of the urine-concentrating mechanism American Journal of Physiology - Renal Fluid and Electrolyte Physiology. 258. PMID 2330976 DOI: 10.1152/Ajprenal.1990.258.4.F1110  0.428
1990 Layton HE. Distributed loops of Henle in a central core model of the renal medulla: Where should the solute come out? Mathematical and Computer Modelling. 14: 533-537. DOI: 10.1016/0895-7177(90)90239-J  0.441
1990 Layton HE, Pitman EB. Oscillations in a simple model of tubuloglomerular feedback Proceedings of the Annual Conference On Engineering in Medicine and Biology. 987-988.  0.467
1989 Pitman EB, Layton HE. Tubuloglomerular feedback in a dynamic nephron Communications On Pure and Applied Mathematics. 42: 759-787. DOI: 10.1002/Cpa.3160420604  0.506
1987 Layton HE. Existence and uniqueness of solutions to a mathematical model of the urine concentrating mechanism Mathematical Biosciences. 84: 197-210. DOI: 10.1016/0025-5564(87)90092-7  0.425
1986 Layton HE. Distribution of Henle's loops may enhance urine concentrating capability Biophysical Journal. 49: 1033-1040. PMID 3708088 DOI: 10.1016/S0006-3495(86)83731-6  0.412
Show low-probability matches.