Year |
Citation |
Score |
2019 |
Layton AT, Layton HE. A computational model of epithelial solute and water transport along a human nephron. Plos Computational Biology. 15: e1006108. PMID 30802242 DOI: 10.1371/Journal.Pcbi.1006108 |
0.462 |
|
2018 |
Li Q, McDonough AA, Layton HE, Layton AT. Functional Implications of Sexual Dimorphism of Transporter Patterns along the Rat Proximal Tubule: Modeling and Analysis. American Journal of Physiology. Renal Physiology. PMID 29846110 DOI: 10.1152/Ajprenal.00171.2018 |
0.318 |
|
2014 |
Sands JM, Layton HE. Advances in understanding the urine-concentrating mechanism. Annual Review of Physiology. 76: 387-409. PMID 24245944 DOI: 10.1146/Annurev-Physiol-021113-170350 |
0.401 |
|
2014 |
Dantzler WH, Layton AT, Layton HE, Pannabecker TL. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle. Clinical Journal of the American Society of Nephrology : Cjasn. 9: 1781-9. PMID 23908457 DOI: 10.2215/Cjn.08750812 |
0.5 |
|
2013 |
Nieves-González A, Clausen C, Marcano M, Layton AT, Layton HE, Moore LC. Fluid dilution and efficiency of Na(+) transport in a mathematical model of a thick ascending limb cell. American Journal of Physiology. Renal Physiology. 304: F634-52. PMID 23097469 DOI: 10.1152/Ajprenal.00100.2012 |
0.362 |
|
2013 |
Nieves-González A, Clausen C, Layton AT, Layton HE, Moore LC. Transport efficiency and workload distribution in a mathematical model of the thick ascending limb. American Journal of Physiology. Renal Physiology. 304: F653-64. PMID 23097466 DOI: 10.1152/Ajprenal.00101.2012 |
0.403 |
|
2012 |
Layton AT, Moore LC, Layton HE. Signal transduction in a compliant thick ascending limb. American Journal of Physiology. Renal Physiology. 302: F1188-202. PMID 22262482 DOI: 10.1152/Ajprenal.00732.2010 |
0.558 |
|
2011 |
Layton AT, Layton HE. Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney. American Journal of Physiology. Renal Physiology. 301: F1047-56. PMID 21753076 DOI: 10.1152/Ajprenal.00620.2010 |
0.385 |
|
2011 |
Layton AT, Bowen M, Wen A, Layton HE. Feedback-mediated dynamics in a model of coupled nephrons with compliant thick ascending limbs. Mathematical Biosciences. 230: 115-27. PMID 21329704 DOI: 10.1016/J.Mbs.2011.02.004 |
0.584 |
|
2011 |
Chen J, Sgouralis I, Moore LC, Layton HE, Layton AT. A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. American Journal of Physiology. Renal Physiology. 300: F669-81. PMID 21190949 DOI: 10.1152/Ajprenal.00382.2010 |
0.418 |
|
2011 |
Dantzler WH, Pannabecker TL, Layton AT, Layton HE. Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture Acta Physiologica (Oxford, England). 202: 361-378. PMID 21054810 DOI: 10.1111/J.1748-1716.2010.02214.X |
0.346 |
|
2010 |
Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Functional implications of the three-dimensional architecture of the rat renal inner medulla. American Journal of Physiology. Renal Physiology. 298: F973-87. PMID 20053796 DOI: 10.1152/Ajprenal.00249.2009 |
0.415 |
|
2010 |
Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers. American Journal of Physiology. Renal Physiology. 298: F962-72. PMID 20042460 DOI: 10.1152/Ajprenal.00250.2009 |
0.46 |
|
2010 |
Marcano M, Layton AT, Layton HE. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney. Bulletin of Mathematical Biology. 72: 314-39. PMID 19915926 DOI: 10.1007/S11538-009-9448-0 |
0.413 |
|
2009 |
Layton AT, Layton HE, Dantzler WH, Pannabecker TL. The mammalian urine concentrating mechanism: hypotheses and uncertainties. Physiology (Bethesda, Md.). 24: 250-6. PMID 19675356 DOI: 10.1152/Physiol.00013.2009 |
0.348 |
|
2009 |
Sands JM, Layton HE. The physiology of urinary concentration: an update. Seminars in Nephrology. 29: 178-95. PMID 19523568 DOI: 10.1016/J.Semnephrol.2009.03.008 |
0.485 |
|
2009 |
Layton AT, Moore LC, Layton HE. Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons. Bulletin of Mathematical Biology. 71: 515-55. PMID 19205808 DOI: 10.1007/S11538-008-9370-X |
0.524 |
|
2008 |
Pannabecker TL, Dantzler WH, Layton HE, Layton AT. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. American Journal of Physiology. Renal Physiology. 295: F1271-85. PMID 18495796 DOI: 10.1152/Ajprenal.90252.2008 |
0.334 |
|
2007 |
Budu-Grajdeanu P, Moore LC, Layton HE. Effect of tubular inhomogeneities on filter properties of thick ascending limb of Henle's loop. Mathematical Biosciences. 209: 564-92. PMID 17499314 DOI: 10.1016/J.Mbs.2007.03.007 |
0.459 |
|
2006 |
Marcano M, Layton AT, Layton HE. An optimization algorithm for a distributed-loop model of an avian urine concentrating mechanism. Bulletin of Mathematical Biology. 68: 1625-60. PMID 16967257 DOI: 10.1007/S11538-006-9087-1 |
0.433 |
|
2006 |
Layton AT, Moore LC, Layton HE. Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats. American Journal of Physiology. Renal Physiology. 291: F79-97. PMID 16204416 DOI: 10.1152/Ajprenal.00048.2005 |
0.429 |
|
2005 |
Layton AT, Layton HE. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results. American Journal of Physiology. Renal Physiology. 289: F1346-66. PMID 15914776 DOI: 10.1152/Ajprenal.00346.2003 |
0.483 |
|
2005 |
Layton AT, Layton HE. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity. American Journal of Physiology. Renal Physiology. 289: F1367-81. PMID 15914775 DOI: 10.1152/Ajprenal.00347.2003 |
0.445 |
|
2004 |
Bruce Pitman E, Zaritski RM, Kesseler KJ, Moore LC, Layton HE. Feedback-mediated dynamics in two coupled nephrons. Bulletin of Mathematical Biology. 66: 1463-92. PMID 15522342 DOI: 10.1016/J.Bulm.2004.01.006 |
0.663 |
|
2004 |
Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Two modes for concentrating urine in rat inner medulla. American Journal of Physiology. Renal Physiology. 287: F816-39. PMID 15213067 DOI: 10.1152/Ajprenal.00398.2003 |
0.434 |
|
2003 |
Layton AT, Layton HE. A region-based model framework for the rat urine concentrating mechanism. Bulletin of Mathematical Biology. 65: 859-901. PMID 12909254 DOI: 10.1016/S0092-8240(03)00045-4 |
0.431 |
|
2003 |
Marcano-Velázquez M, Layton HE. An inverse algorithm for a mathematical model of an avian urine concentrating mechanism. Bulletin of Mathematical Biology. 65: 665-91. PMID 12875338 DOI: 10.1016/S0092-8240(03)00029-6 |
0.397 |
|
2003 |
Oldson DR, Moore LC, Layton HE. Effect of sustained flow perturbations on stability and compensation of tubuloglomerular feedback. American Journal of Physiology. Renal Physiology. 285: F972-89. PMID 12837687 DOI: 10.1152/Ajprenal.00377.2002 |
0.516 |
|
2003 |
Smith KM, Moore LC, Layton HE. Advective transport of nitric oxide in a mathematical model of the afferent arteriole. American Journal of Physiology. Renal Physiology. 284: F1080-96. PMID 12712988 DOI: 10.1152/Ajprenal.00141.2002 |
0.447 |
|
2003 |
Layton AT, Layton HE. An efficient numerical method for distributed-loop models of the urine concentrating mechanism. Mathematical Biosciences. 181: 111-32. PMID 12445757 DOI: 10.1016/S0025-5564(02)00176-1 |
0.452 |
|
2002 |
Layton AT, Layton HE. A numerical method for renal models that represent tubules with abrupt changes in membrane properties. Journal of Mathematical Biology. 45: 549-67. PMID 12439590 DOI: 10.1007/S00285-002-0166-6 |
0.426 |
|
2002 |
Layton AT, Layton HE. A semi-lagrangian semi-implicit numerical method for models of the urine concentrating mechanism Siam Journal On Scientific Computing. 23: 1526-1548. DOI: 10.1137/S1064827500381781 |
0.466 |
|
2000 |
Layton HE, Davies JM, Casotti G, Braun EJ. Mathematical model of an avian urine concentrating mechanism American Journal of Physiology - Renal Physiology. 279. PMID 11097634 DOI: 10.1152/Ajprenal.2000.279.6.F1139 |
0.494 |
|
2000 |
Layton HE, Pitman EB, Moore LC. Limit-cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery. American Journal of Physiology. Renal Physiology. 278: F287-301. PMID 10662733 DOI: 10.1152/Ajprenal.2000.278.2.F287 |
0.528 |
|
1998 |
Arthurs KM, Moore LC, Peskin CS, Pitman EB, Layton HE. Modeling arteriolar flow and mass transport using the immersed boundary method Journal of Computational Physics. 147: 402-440. DOI: 10.1006/Jcph.1998.6097 |
0.438 |
|
1997 |
Layton HE, Pitman EB, Moore LC. Nonlinear filter properties of the thick ascending limb. American Journal of Physiology. Renal Physiology. 273: F625-F634. PMID 29587094 DOI: 10.1152/ajprenal.1997.273.4.F625 |
0.403 |
|
1997 |
Layton HE, Pitman EB, Moore LC. Spectral properties of the tubuloglomerular feedback system. American Journal of Physiology. Renal Physiology. 273: F635-F649. PMID 29587088 DOI: 10.1152/ajprenal.1997.273.4.F635 |
0.389 |
|
1997 |
Layton HE, Pitman EB, Moore LC. Spectral properties of the tubuloglomerular feedback system. The American Journal of Physiology. 273: F635-49. PMID 9362341 DOI: 10.1152/Ajprenal.1997.273.4.F635 |
0.487 |
|
1997 |
Layton HE, Pitman EB, Moore LC. Nonlinear filter properties of the thick ascending limb. The American Journal of Physiology. 273: F625-34. PMID 9362340 DOI: 10.1152/Ajprenal.1997.273.4.F625 |
0.495 |
|
1997 |
Layton HE, Casotti G, Davies JM, Braun EJ. Mathematical model of avian urine concentrating mechanism Faseb Journal. 11. |
0.36 |
|
1996 |
Layton HE, Knepper MA, Chou CL. Permeability criteria for effective function of passive countercurrent multiplier American Journal of Physiology. 270. PMID 8769818 DOI: 10.1152/Ajprenal.1996.270.1.F9 |
0.409 |
|
1996 |
Layton HE, Pitman EB, Moore LC. Spectral properties of the thick ascending limb Faseb Journal. 10. |
0.445 |
|
1996 |
Layton HE, Pitman EB, Moore LC. Spectral properties of the TGF pathway Zamm Zeitschrift Fur Angewandte Mathematik Und Mechanik. 76: 33-35. |
0.331 |
|
1995 |
Layton HE, Pitman EB, Moore LC. Instantaneous and steady-state gains in the tubuloglomerular feedback system. The American Journal of Physiology. 268: F163-74. PMID 7840242 DOI: 10.1152/Ajprenal.1995.268.1.F163 |
0.495 |
|
1995 |
Layton HE, Pitman EB, Knepper MA. A Dynamic Numerical Method for Models of the Urine Concentrating Mechanism Siam Journal On Applied Mathematics. 55: 1390-1418. DOI: 10.1137/S0036139993252864 |
0.46 |
|
1995 |
Layton HE, Pitman EB, Knepper MA. Dynamic numerical method for models of the urine concentrating mechanism Siam Journal On Applied Mathematics. 55: 1390-1418. |
0.344 |
|
1994 |
Pitman EB, Layton HE, Moore LC. Numerical simulation of propagating concentration profiles in renal tubules. Bulletin of Mathematical Biology. 56: 567-86. PMID 8087082 DOI: 10.1016/S0092-8240(05)80289-7 |
0.379 |
|
1994 |
Layton HE, Pitman EB. A dynamic numerical method for models of renal tubules Bulletin of Mathematical Biology. 56: 547-565. PMID 8087081 DOI: 10.1016/S0092-8240(05)80288-5 |
0.486 |
|
1993 |
Layton HE, Davies JM. Distributed solute and water reabsorption in a central core model of the renal medulla Mathematical Biosciences. 116: 169-196. PMID 8369598 DOI: 10.1016/0025-5564(93)90065-I |
0.441 |
|
1991 |
Layton HE, Pitman EB, Moore LC. Bifurcation analysis of TGF-mediated oscillations in SNGFR. The American Journal of Physiology. 261: F904-19. PMID 1951721 DOI: 10.1152/Ajprenal.1991.261.5.F904 |
0.494 |
|
1990 |
Layton HE. Urea transport in a distributed loop model of the urine-concentrating mechanism American Journal of Physiology - Renal Fluid and Electrolyte Physiology. 258. PMID 2330976 DOI: 10.1152/Ajprenal.1990.258.4.F1110 |
0.428 |
|
1990 |
Layton HE. Distributed loops of Henle in a central core model of the renal medulla: Where should the solute come out? Mathematical and Computer Modelling. 14: 533-537. DOI: 10.1016/0895-7177(90)90239-J |
0.441 |
|
1990 |
Layton HE, Pitman EB. Oscillations in a simple model of tubuloglomerular feedback Proceedings of the Annual Conference On Engineering in Medicine and Biology. 987-988. |
0.467 |
|
1989 |
Pitman EB, Layton HE. Tubuloglomerular feedback in a dynamic nephron Communications On Pure and Applied Mathematics. 42: 759-787. DOI: 10.1002/Cpa.3160420604 |
0.506 |
|
1987 |
Layton HE. Existence and uniqueness of solutions to a mathematical model of the urine concentrating mechanism Mathematical Biosciences. 84: 197-210. DOI: 10.1016/0025-5564(87)90092-7 |
0.425 |
|
1986 |
Layton HE. Distribution of Henle's loops may enhance urine concentrating capability Biophysical Journal. 49: 1033-1040. PMID 3708088 DOI: 10.1016/S0006-3495(86)83731-6 |
0.412 |
|
Show low-probability matches. |