Year |
Citation |
Score |
2021 |
Yang Y, Sauve AA. Assays for Determination of Cellular and Mitochondrial NAD and NADH Content. Methods in Molecular Biology (Clifton, N.J.). 2310: 271-285. PMID 34096008 DOI: 10.1007/978-1-0716-1433-4_15 |
0.365 |
|
2018 |
Zhang N, Sauve AA. Regulatory Effects of NAD+ Metabolic Pathways on Sirtuin Activity. Progress in Molecular Biology and Translational Science. 154: 71-104. PMID 29413178 DOI: 10.1016/bs.pmbts.2017.11.012 |
0.347 |
|
2015 |
Li W, Sauve AA. NAD⁺ content and its role in mitochondria. Methods in Molecular Biology (Clifton, N.J.). 1241: 39-48. PMID 25308486 DOI: 10.1007/978-1-4939-1875-1_4 |
0.317 |
|
2014 |
Li W, Sauve AA. NAD+ content and its role in mitochondria Mitochondrial Regulation: Methods and Protocols. 39-48. DOI: 10.1007/978-1-4939-1875-1-4 |
0.303 |
|
2013 |
Cantó C, Sauve AA, Bai P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Molecular Aspects of Medicine. 34: 1168-201. PMID 23357756 DOI: 10.1016/j.mam.2013.01.004 |
0.399 |
|
2011 |
Bai P, Cantó C, Oudart H, Brunyánszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, Schoonjans K, Schreiber V, Sauve AA, Menissier-de Murcia J, Auwerx J. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metabolism. 13: 461-8. PMID 21459330 DOI: 10.1016/j.cmet.2011.03.004 |
0.328 |
|
2011 |
Bai P, Canto C, Brunyánszki A, Huber A, Szántó M, Cen Y, Yamamoto H, Houten SM, Kiss B, Oudart H, Gergely P, Menissier-de Murcia J, Schreiber V, Sauve AA, Auwerx J. PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metabolism. 13: 450-60. PMID 21459329 DOI: 10.1016/j.cmet.2011.03.013 |
0.304 |
|
2010 |
French JB, Cen Y, Vrablik TL, Xu P, Allen E, Hanna-Rose W, Sauve AA. Characterization of nicotinamidases: steady state kinetic parameters, classwide inhibition by nicotinaldehydes, and catalytic mechanism. Biochemistry. 49: 10421-39. PMID 20979384 DOI: 10.1021/Bi1012518 |
0.678 |
|
2010 |
French JB, Cen Y, Sauve AA, Ealick SE. High-resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into the catalytic mechanism and inhibition by aldehydes . Biochemistry. 49: 8803-12. PMID 20853856 DOI: 10.1021/Bi1012436 |
0.456 |
|
2010 |
Sauve AA. Sirtuin chemical mechanisms. Biochimica Et Biophysica Acta. 1804: 1591-603. PMID 20132909 DOI: 10.1016/j.bbapap.2010.01.021 |
0.396 |
|
2009 |
Sauve AA. Pharmaceutical strategies for activating sirtuins. Current Pharmaceutical Design. 15: 45-56. PMID 19149602 DOI: 10.2174/138161209787185797 |
0.392 |
|
2008 |
Sauve AA. A SIR-tain acetyl complex is caught by a sulfur trap. Structure (London, England : 1993). 16: 1289-92. PMID 18786390 DOI: 10.1016/j.str.2008.08.004 |
0.302 |
|
2008 |
French JB, Cen Y, Sauve AA. Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. Biochemistry. 47: 10227-39. PMID 18729382 DOI: 10.1021/Bi800767T |
0.367 |
|
2008 |
Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Developmental Cell. 14: 661-73. PMID 18477450 DOI: 10.1016/J.Devcel.2008.02.004 |
0.3 |
|
2008 |
Sauve AA. NAD+ and vitamin B3: from metabolism to therapies. The Journal of Pharmacology and Experimental Therapeutics. 324: 883-93. PMID 18165311 DOI: 10.1124/jpet.107.120758 |
0.364 |
|
2007 |
Tempel W, Rabeh WM, Bogan KL, Belenky P, Wojcik M, Seidle HF, Nedyalkova L, Yang T, Sauve AA, Park HW, Brenner C. Nicotinamide riboside kinase structures reveal new pathways to NAD+. Plos Biology. 5: e263. PMID 17914902 DOI: 10.1371/Journal.Pbio.0050263 |
0.352 |
|
2006 |
Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annual Review of Biochemistry. 75: 435-65. PMID 16756498 DOI: 10.1146/Annurev.Biochem.74.082803.133500 |
0.333 |
|
2005 |
Sauve AA, Moir RD, Schramm VL, Willis IM. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition. Molecular Cell. 17: 595-601. PMID 15721262 DOI: 10.1016/J.Molcel.2004.12.032 |
0.376 |
|
2004 |
Sauve AA, Schramm VL. SIR2: The biochemical mehanism of NAD+-dependent protein deacetylation and ADP-ribosyl enzyme intermediates Current Medicinal Chemistry. 11: 807-826. PMID 15078167 DOI: 10.2174/0929867043455675 |
0.396 |
|
2003 |
Sauve AA, Schramm VL. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry Biochemistry. 42: 9249-9256. PMID 12899610 DOI: 10.1021/Bi034959L |
0.441 |
|
2002 |
Sauve AA, Schramm VL. Mechanism-based inhibitors of CD38: A mammalian cyclic ADP-ribose synthetase Biochemistry. 41: 8455-8463. PMID 12081495 DOI: 10.1021/Bi0258795 |
0.327 |
|
2002 |
Sauve AA, Groves JT. Synthesis of trithiolanes and tetrathianes from thiiranes catalyzed by ruthenium salen nitrosyl complexes. Journal of the American Chemical Society. 124: 4770-8. PMID 11971726 DOI: 10.1021/Ja017462C |
0.477 |
|
2001 |
Sauve AA, Celic I, Avalos J, Deng H, Boeke JD, Schramm VL. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry. 40: 15456-63. PMID 11747420 DOI: 10.1021/Bi011858J |
0.301 |
|
1998 |
Sauve AA, Munshi C, Lee HC, Schramm VL. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries Biochemistry. 37: 13239-13249. PMID 9748331 DOI: 10.1021/Bi981248S |
0.353 |
|
Show low-probability matches. |