Year |
Citation |
Score |
2022 |
Rossi R, Logan BE. Impact of reactor configuration on pilot-scale microbial fuel cell performance. Water Research. 225: 119179. PMID 36206685 DOI: 10.1016/j.watres.2022.119179 |
0.306 |
|
2021 |
Baek G, Shi L, Rossi R, Logan BE. The effect of high applied voltages on bioanodes of microbial electrolysis cells in the presence of chlorides Chemical Engineering Journal. 405: 126742. DOI: 10.1016/J.Cej.2020.126742 |
0.331 |
|
2020 |
Lawson K, Rossi R, Regan JM, Logan BE. Impact of cathodic electron acceptor on microbial fuel cell internal resistance. Bioresource Technology. 316: 123919. PMID 32771939 DOI: 10.1016/J.Biortech.2020.123919 |
0.39 |
|
2020 |
Rossi R, Logan BE. Impact of external resistance acclimation on charge transfer and diffusion resistance in bench-scale microbial fuel cells. Bioresource Technology. 123921. PMID 32768279 DOI: 10.1016/J.Biortech.2020.123921 |
0.323 |
|
2020 |
Fortunato J, Pena J, Benkaddour S, Zhang HJ, Huang J, Zhu M, Logan BE, Gorski CA. Surveying manganese oxides as electrode materials for harnessing salinity gradient energy. Environmental Science & Technology. PMID 32250598 DOI: 10.1021/Acs.Est.0C00096 |
0.395 |
|
2020 |
Son M, Pothanamkandath V, Yang W, Vrouwenvelder J, Gorski CA, Logan BE. Improving the Thermodynamic Energy Efficiency of Battery Electrode Deionization Using Flow-Through Electrodes. Environmental Science & Technology. PMID 32092271 DOI: 10.1021/Acs.Est.9B06843 |
0.343 |
|
2020 |
Son M, Kolvek E, Kim T, Yang W, Vrouwenvelder JS, Gorski CA, Logan BE. Stepwise ammonium enrichment using selective battery electrodes Environmental Science: Water Research & Technology. 6: 1649-1657. DOI: 10.1039/d0ew00010h |
0.466 |
|
2020 |
Rossi R, Pant D, Logan BE. Chronoamperometry and linear sweep voltammetry reveals the adverse impact of high carbonate buffer concentrations on anode performance in microbial fuel cells Journal of Power Sources. 476: 228715. DOI: 10.1016/J.Jpowsour.2020.228715 |
0.375 |
|
2020 |
Rossi R, Wang X, Logan BE. High performance flow through microbial fuel cells with anion exchange membrane Journal of Power Sources. 475: 228633. DOI: 10.1016/J.Jpowsour.2020.228633 |
0.431 |
|
2020 |
Yang W, Wang X, Son M, Logan BE. Simultaneously enhancing power density and coulombic efficiency with a hydrophobic Fe–N4/activated carbon air cathode for microbial fuel cells Journal of Power Sources. 465: 228264. DOI: 10.1016/J.Jpowsour.2020.228264 |
0.389 |
|
2020 |
Rossi R, Hall DM, Wang X, Regan JM, Logan BE. Quantifying the factors limiting performance and rates in microbial fuel cells using the electrode potential slope analysis combined with electrical impedance spectroscopy Electrochimica Acta. 348: 136330. DOI: 10.1016/J.Electacta.2020.136330 |
0.403 |
|
2020 |
Rossi R, Logan BE. Unraveling the contributions of internal resistance components in two-chamber microbial fuel cells using the electrode potential slope analysis Electrochimica Acta. 348: 136291. DOI: 10.1016/J.Electacta.2020.136291 |
0.35 |
|
2020 |
Yang W, Wang X, Rossi R, Logan BE. Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells Chemical Engineering Journal. 380: 122522. DOI: 10.1016/J.Cej.2019.122522 |
0.362 |
|
2020 |
Wu J, Han X, Li D, Logan BE, Liu J, Zhang Z, Feng Y. Efficient CO2 conversion to formic acid in a novel microbial photoelectrochemical cell using a visible-light responsive Co3O4 nanorod-arrayed photocathode Applied Catalysis B: Environmental. 276: 119102. DOI: 10.1016/J.Apcatb.2020.119102 |
0.331 |
|
2019 |
Wang X, Rossi R, Yan Z, Yang W, Hickner MA, Mallouk TE, Logan BE. Balancing water dissociation and current densities to enable sustainable hydrogen production with bipolar membranes in microbial electrolysis cells. Environmental Science & Technology. PMID 31713416 DOI: 10.1021/Acs.Est.9B05024 |
0.376 |
|
2019 |
Kim KY, Habas SE, Schaidle JA, Logan BE. Application of phase-pure nickel phosphide nanoparticles as cathode catalysts for hydrogen production in microbial electrolysis cells. Bioresource Technology. 293: 122067. PMID 31499330 DOI: 10.1016/J.Biortech.2019.122067 |
0.304 |
|
2019 |
Rossi R, Wang X, Yang W, Logan BE. Impact of cleaning procedures on restoring cathode performance for microbial fuel cells treating domestic wastewater. Bioresource Technology. 290: 121759. PMID 31323515 DOI: 10.1016/J.Biortech.2019.121759 |
0.342 |
|
2019 |
Huang L, Tian F, Pan Y, Shan L, Shi Y, Logan BE. Mutual benefits of acetate and mixed tungsten and molybdenum for their efficient removal in 40 L microbial electrolysis cells. Water Research. 162: 358-368. PMID 31295655 DOI: 10.1016/J.Watres.2019.07.003 |
0.325 |
|
2019 |
Son M, Kim T, Yang W, Gorski CA, Logan BE. Electro-Forward Osmosis. Environmental Science & Technology. PMID 31267728 DOI: 10.1021/Acs.Est.9B01481 |
0.493 |
|
2019 |
Cario BP, Rossi R, Kim KY, Logan BE. Applying the electrode potential slope method as a tool to quantitatively evaluate the performance of individual microbial electrolysis cell components. Bioresource Technology. 287: 121418. PMID 31078815 DOI: 10.1016/J.Biortech.2019.121418 |
0.379 |
|
2019 |
Logan BE, Rossi R, Ragab A, Saikaly PE. Electroactive microorganisms in bioelectrochemical systems. Nature Reviews. Microbiology. PMID 30846876 DOI: 10.1038/S41579-019-0173-X |
0.38 |
|
2019 |
Rossi R, Cario BP, Santoro C, Yang W, Saikaly PE, Logan BE. Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance. Environmental Science & Technology. PMID 30810037 DOI: 10.1021/Acs.Est.8B06004 |
0.383 |
|
2019 |
Rossi R, Evans PJ, Logan BE. Impact of flow recirculation and anode dimensions on performance of a large scale microbial fuel cell Journal of Power Sources. 412: 294-300. DOI: 10.1016/J.Jpowsour.2018.11.054 |
0.391 |
|
2019 |
Kim K, Logan BE. Nickel powder blended activated carbon cathodes for hydrogen production in microbial electrolysis cells International Journal of Hydrogen Energy. 44: 13169-13174. DOI: 10.1016/J.Ijhydene.2019.04.041 |
0.344 |
|
2018 |
Rossi R, Jones D, Myung J, Zikmund E, Yang W, Gallego YA, Pant D, Evans PJ, Page MA, Cropek DM, Logan BE. Evaluating a multi-panel air cathode through electrochemical and biotic tests. Water Research. 148: 51-59. PMID 30343198 DOI: 10.1016/J.Watres.2018.10.022 |
0.407 |
|
2018 |
Logan BE, Zikmund E, Yang W, Rossi R, Kim KY, Saikaly PE, Zhang F. The Impact of Ohmic Resistance on Measured Electrode Potentials and Maximum Power Production in Microbial Fuel Cells. Environmental Science & Technology. PMID 29965737 DOI: 10.1021/Acs.Est.8B02055 |
0.374 |
|
2018 |
Rossi R, Yang W, Zikmund E, Pant D, Logan BE. In situ biofilm removal from air cathodes in microbial fuel cells treating domestic wastewater. Bioresource Technology. 265: 200-206. PMID 29902652 DOI: 10.1016/J.Biortech.2018.06.008 |
0.36 |
|
2018 |
Kim KY, Yang W, Logan BE. Regenerable Nickel-functionalized Activated Carbon Cathodes Enhanced by Metal Adsorption to Improve Hydrogen Production in Microbial Electrolysis Cells. Environmental Science & Technology. PMID 29845859 DOI: 10.1021/Acs.Est.7B06005 |
0.345 |
|
2018 |
Zaybak Z, Logan BE, Pisciotta JM. Electrotrophic activity and electrosynthetic acetate production by Desulfobacterium autotrophicum HRM2. Bioelectrochemistry (Amsterdam, Netherlands). 123: 150-155. PMID 29753938 DOI: 10.1016/J.Bioelechem.2018.04.019 |
0.316 |
|
2018 |
Tian Y, He W, Liang D, Yang W, Logan BE, Ren N. Effective phosphate removal for advanced water treatment using low energy, migration electric-field assisted electrocoagulation. Water Research. 138: 129-136. PMID 29574200 DOI: 10.1016/J.Watres.2018.03.037 |
0.349 |
|
2018 |
Toczyłowska-Mamińska R, Szymona K, Król P, Gliniewicz K, Pielech-Przybylska K, Kloch M, Logan B. Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell Energies. 11: 124. DOI: 10.3390/En11010124 |
0.412 |
|
2018 |
Wu J, Li D, Liu J, Li C, Li Z, Logan BE, Feng Y. Enhanced Charge Separation of TiO2 Nanotubes Photoelectrode for Efficient Conversion of CO2 Acs Sustainable Chemistry & Engineering. 6: 12953-12960. DOI: 10.1021/Acssuschemeng.8B02375 |
0.308 |
|
2018 |
Kim T, Gorski CA, Logan BE. Ammonium Removal from Domestic Wastewater Using Selective Battery Electrodes Environmental Science & Technology Letters. 5: 578-583. DOI: 10.1021/Acs.Estlett.8B00334 |
0.527 |
|
2018 |
Song X, Liu J, Jiang Q, Qu Y, He W, Logan BE, Feng Y. Enhanced electricity generation and effective water filtration using graphene-based membrane air-cathodes in microbial fuel cells Journal of Power Sources. 395: 221-227. DOI: 10.1016/J.Jpowsour.2018.05.043 |
0.351 |
|
2018 |
Rahimi M, Kim T, Gorski CA, Logan BE. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity Journal of Power Sources. 373: 95-102. DOI: 10.1016/J.Jpowsour.2017.10.089 |
0.563 |
|
2018 |
Zikmund E, Kim K, Logan BE. Hydrogen production rates with closely-spaced felt anodes and cathodes compared to brush anodes in two-chamber microbial electrolysis cells International Journal of Hydrogen Energy. 43: 9599-9606. DOI: 10.1016/J.Ijhydene.2018.04.059 |
0.426 |
|
2018 |
Myung J, Saikaly PE, Logan BE. A two-staged system to generate electricity in microbial fuel cells using methane Chemical Engineering Journal. 352: 262-267. DOI: 10.1016/J.Cej.2018.07.017 |
0.424 |
|
2017 |
Yang W, Rossi R, Tian Y, Kim KY, Logan BE. Mitigating external and internal cathode fouling using a polymer bonded separator in microbial fuel cells. Bioresource Technology. PMID 29137930 DOI: 10.1016/J.Biortech.2017.10.109 |
0.366 |
|
2017 |
Yilmazel YD, Zhu X, Kim KY, Holmes DE, Logan BE. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari. Bioelectrochemistry (Amsterdam, Netherlands). 119: 142-149. PMID 28992595 DOI: 10.1016/J.Bioelechem.2017.09.012 |
0.363 |
|
2017 |
Stager JL, Zhang X, Logan BE. Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater. Bioelectrochemistry (Amsterdam, Netherlands). 118: 154-160. PMID 28834783 DOI: 10.1016/J.Bioelechem.2017.08.002 |
0.402 |
|
2017 |
Martinez CM, Zhu X, Logan BE. AQDS immobilized solid-phase redox mediators and their role during bioelectricity generation and RR2 decolorization in air-cathode single-chamber microbial fuel cells. Bioelectrochemistry (Amsterdam, Netherlands). 118: 123-130. PMID 28800558 DOI: 10.1016/J.Bioelechem.2017.07.007 |
0.418 |
|
2017 |
Ye Y, Saikaly PE, Logan BE. Simultaneous nitrogen and organics removal using membrane aeration and effluent ultrafiltration in an anaerobic fluidized membrane bioreactor. Bioresource Technology. 244: 456-462. PMID 28800555 DOI: 10.1016/J.Biortech.2017.07.183 |
0.326 |
|
2017 |
McAnulty MJ, G Poosarla V, Kim KY, Jasso-Chávez R, Logan BE, Wood TK. Electricity from methane by reversing methanogenesis. Nature Communications. 8: 15419. PMID 28513579 DOI: 10.1038/Ncomms15419 |
0.381 |
|
2017 |
Shehab NA, Ortiz-Medina JF, Katuri KP, Hari AR, Amy G, Logan BE, Saikaly PE. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula. Bioresource Technology. 239: 82-86. PMID 28500892 DOI: 10.1016/J.Biortech.2017.04.122 |
0.398 |
|
2017 |
Rossi R, Yang W, Setti L, Logan BE. Assessment of a metal-organic framework catalyst in air cathode microbial fuel cells over time with different buffers and solutions. Bioresource Technology. 233: 399-405. PMID 28288433 DOI: 10.1016/J.Biortech.2017.02.105 |
0.368 |
|
2017 |
Yang W, Kim K, Saikaly PE, Logan BE. The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry Energy & Environmental Science. 10: 1025-1033. DOI: 10.1039/C7Ee00910K |
0.36 |
|
2017 |
Kim T, Logan BE, Gorski CA. High power densities created from salinity differences by combining electrode and Donnan potentials in a concentration flow cell Energy & Environmental Science. 10: 1003-1012. DOI: 10.1039/C7Ee00188F |
0.536 |
|
2017 |
Kim T, Gorski CA, Logan BE. Low Energy Desalination Using Battery Electrode Deionization Environmental Science & Technology Letters. 4: 444-449. DOI: 10.1021/Acs.Estlett.7B00392 |
0.525 |
|
2017 |
Kim T, Logan BE, Gorski CA. A pH-Gradient Flow Cell for Converting Waste CO2 into Electricity Environmental Science & Technology Letters. 4: 49-53. DOI: 10.1021/Acs.Estlett.6B00467 |
0.556 |
|
2017 |
Rahimi M, D'Angelo A, Gorski CA, Scialdone O, Logan BE. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery Journal of Power Sources. 351: 45-50. DOI: 10.1016/J.Jpowsour.2017.03.074 |
0.396 |
|
2017 |
Wu S, He W, Yang W, Ye Y, Huang X, Logan BE. Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater Journal of Power Sources. 356: 348-355. DOI: 10.1016/J.Jpowsour.2017.01.041 |
0.421 |
|
2017 |
Rahimi M, Zhu L, Kowalski KL, Zhu X, Gorski CA, Hickner MA, Logan BE. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane Journal of Power Sources. 342: 956-963. DOI: 10.1016/J.Jpowsour.2017.01.003 |
0.372 |
|
2017 |
Sun D, Cheng S, Zhang F, Logan BE. Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms Journal of Power Sources. 356: 566-571. DOI: 10.1016/J.Jpowsour.2016.11.115 |
0.358 |
|
2017 |
Kim K, Zikmund E, Logan BE. Impact of catholyte recirculation on different 3-dimensional stainless steel cathodes in microbial electrolysis cells International Journal of Hydrogen Energy. 42: 29708-29715. DOI: 10.1016/J.Ijhydene.2017.10.099 |
0.384 |
|
2017 |
Ivanov I, Ahn Y, Poirson T, Hickner MA, Logan BE. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells International Journal of Hydrogen Energy. 42: 15739-15744. DOI: 10.1016/J.Ijhydene.2017.05.089 |
0.353 |
|
2016 |
Hari AR, Katuri KP, Logan BE, Saikaly PE. Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells. Scientific Reports. 6: 38690. PMID 27934925 DOI: 10.1038/Srep38690 |
0.342 |
|
2016 |
Zhu X, Kim T, Rahimi M, Gorski C, Logan B. Integrating reverse-electrodialysis stacks with flow batteries to achieve improved energy recovery from salinity gradients and energy storage. Chemsuschem. PMID 27911491 DOI: 10.1002/Cssc.201601220 |
0.527 |
|
2016 |
Rahimi M, Schoener Z, Zhu X, Zhang F, Gorski CA, Logan BE. Removal of copper from water using a thermally regenerative electrodeposition battery. Journal of Hazardous Materials. PMID 27776869 DOI: 10.1016/J.Jhazmat.2016.10.022 |
0.333 |
|
2016 |
He W, Wallack MJ, Kim KY, Zhang X, Yang W, Zhu X, Feng Y, Logan BE. The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant. Water Research. 105: 351-360. PMID 27639344 DOI: 10.1016/J.Watres.2016.09.008 |
0.407 |
|
2016 |
Kim KY, Yang W, Evans PJ, Logan BE. Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells. Bioresource Technology. 221: 96-101. PMID 27639229 DOI: 10.1016/J.Biortech.2016.09.031 |
0.386 |
|
2016 |
LaBarge N, Yilmazel YD, Hong PY, Logan BE. Effect of pre-acclimation of granular activated carbon on microbial electrolysis cell startup and performance. Bioelectrochemistry (Amsterdam, Netherlands). 113: 20-25. PMID 27622557 DOI: 10.1016/J.Bioelechem.2016.08.003 |
0.338 |
|
2016 |
Kim T, Rahimi M, Logan BE, Gorski CA. Harvesting energy from salinity differences using battery electrodes in a concentration flow cell. Environmental Science & Technology. PMID 27518198 DOI: 10.1021/Acs.Est.6B02554 |
0.568 |
|
2016 |
Zhang X, He W, Zhang R, Wang Q, Liang P, Huang X, Logan BE, Fellinger TP. High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells. Chemsuschem. PMID 27509893 DOI: 10.1002/Cssc.201600590 |
0.419 |
|
2016 |
Yang W, Logan BE. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells. Chemsuschem. PMID 27416965 DOI: 10.1002/Cssc.201600573 |
0.389 |
|
2016 |
Yang W, Watson VJ, Logan BE. Substantial Humic Acid Adsorption to Activated Carbon Air Cathodes Produces a Small Reduction in Catalytic Activity. Environmental Science & Technology. PMID 27414751 DOI: 10.1021/Acs.Est.6B00827 |
0.401 |
|
2016 |
Kim T, Rahimi M, Logan BE, Gorski CA. Evaluating Battery-like Reactions to Harvest Energy from Salinity Differences using Ammonium Bicarbonate Salt Solutions. Chemsuschem. PMID 27030080 DOI: 10.1002/Cssc.201501669 |
0.551 |
|
2016 |
Zhu X, Rahimi M, Gorski CA, Logan B. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat. Chemsuschem. PMID 26990485 DOI: 10.1002/Cssc.201501513 |
0.35 |
|
2016 |
Hari AR, Katuri KP, Gorron E, Logan BE, Saikaly PE. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate. Applied Microbiology and Biotechnology. PMID 26936773 DOI: 10.1007/S00253-016-7402-2 |
0.313 |
|
2016 |
Kim KY, Yang W, Ye Y, LaBarge N, Logan BE. Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater. Bioresource Technology. 208: 58-63. PMID 26921870 DOI: 10.1016/J.Biortech.2016.02.067 |
0.375 |
|
2016 |
Tian Y, He W, Zhu X, Yang W, Ren N, Logan BE. Improved Electrocoagulation Reactor for Rapid Removal of Phosphate from Wastewater Acs Sustainable Chemistry & Engineering. 5: 67-71. DOI: 10.1021/Acssuschemeng.6B01613 |
0.391 |
|
2016 |
He W, Yang W, Tian Y, Zhu X, Liu J, Feng Y, Logan BE. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells Journal of Power Sources. 332: 447-453. DOI: 10.1016/J.Jpowsour.2016.09.112 |
0.313 |
|
2016 |
Ye Y, Zhu X, Logan BE. Effect of buffer charge on performance of air-cathodes used in microbial fuel cells Electrochimica Acta. 194: 441-447. DOI: 10.1016/J.Electacta.2016.02.095 |
0.335 |
|
2016 |
Tian Y, He W, Zhu X, Yang W, Ren N, Logan BE. Energy efficient electrocoagulation using an air-breathing cathode to remove nutrients from wastewater Chemical Engineering Journal. 292: 308-314. DOI: 10.1016/J.Cej.2016.02.004 |
0.383 |
|
2016 |
Zhang X, He W, Zhang R, Wang Q, Liang P, Huang X, Logan BE, Fellinger T. Cover Picture: High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells (ChemSusChem 19/2016) Chemsuschem. 9: 2717-2717. DOI: 10.1002/Cssc.201601281 |
0.337 |
|
2015 |
Werner C, Katuri K, Ananda Rao H, Chen W, Lai Z, Logan BE, Amy GL, Saikaly PE. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors - Effect of configuration and applied voltage on performance and membrane fouling. Environmental Science & Technology. PMID 26691927 DOI: 10.1021/Acs.Est.5B02833 |
0.341 |
|
2015 |
Wang Q, Huang L, Pan Y, Zhou P, Quan X, Logan BE, Chen H. Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems. Bioresource Technology. 200: 565-571. PMID 26528907 DOI: 10.1016/J.Biortech.2015.10.084 |
0.323 |
|
2015 |
Yang W, Kim KY, Logan BE. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells. Bioresource Technology. 197: 318-22. PMID 26342345 DOI: 10.1016/J.Biortech.2015.08.119 |
0.374 |
|
2015 |
Liu J, Hou H, Chen X, Bazan GC, Kashima H, Logan BE. Conjugated oligoelectrolyte represses hydrogen oxidation by Geobacter sulfurreducens in microbial electrolysis cells. Bioelectrochemistry (Amsterdam, Netherlands). 106: 379-82. PMID 26265121 DOI: 10.1016/J.Bioelechem.2015.07.001 |
0.322 |
|
2015 |
Watson VJ, Hatzell M, Logan BE. Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation wastewater. Bioresource Technology. PMID 26051523 DOI: 10.1016/J.Biortech.2015.05.088 |
0.394 |
|
2015 |
Kim KY, Yang W, Logan BE. Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells. Water Research. 80: 41-6. PMID 25996751 DOI: 10.1016/J.Watres.2015.05.021 |
0.428 |
|
2015 |
Sun D, Cheng S, Wang A, Li F, Logan BE, Cen K. Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms. Environmental Science & Technology. 49: 5227-35. PMID 25810405 DOI: 10.1021/Acs.Est.5B00175 |
0.32 |
|
2015 |
Patil SA, Gildemyn S, Pant D, Zengler K, Logan BE, Rabaey K. A logical data representation framework for electricity-driven bioproduction processes. Biotechnology Advances. PMID 25765230 DOI: 10.1016/J.Biotechadv.2015.03.002 |
0.311 |
|
2015 |
Zhang F, LaBarge N, Yang W, Liu J, Logan BE. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures. Chemsuschem. 8: 1043-8. PMID 25684619 DOI: 10.1002/Cssc.201403290 |
0.347 |
|
2015 |
Werner CM, Hoppe-Jones C, Saikaly PE, Logan BE, Amy GL. Attenuation of trace organic compounds (TOrCs) in bioelectrochemical systems. Water Research. 73: 56-67. PMID 25644628 DOI: 10.1016/J.Watres.2015.01.013 |
0.373 |
|
2015 |
Zhang X, He W, Ren L, Stager J, Evans PJ, Logan BE. COD removal characteristics in air-cathode microbial fuel cells. Bioresource Technology. 176: 23-31. PMID 25460980 DOI: 10.1016/J.Biortech.2014.11.001 |
0.346 |
|
2015 |
Zhang F, Liu J, Yang W, Logan BE. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power Energy and Environmental Science. 8: 343-349. DOI: 10.1039/C4Ee02824D |
0.387 |
|
2015 |
Siegert M, Yates MD, Spormann AM, Logan BE. Methanobacterium Dominates Biocathodic Archaeal Communities in Methanogenic Microbial Electrolysis Cells Acs Sustainable Chemistry and Engineering. 3: 1668-1676. DOI: 10.1021/Acssuschemeng.5B00367 |
0.341 |
|
2015 |
Logan BE, Wallack MJ, Kim KY, He W, Feng Y, Saikaly PE. Assessment of Microbial Fuel Cell Configurations and Power Densities Environmental Science and Technology Letters. 2: 206-214. DOI: 10.1021/Acs.Estlett.5B00180 |
0.408 |
|
2015 |
Zhu X, He W, Logan BE. Influence of solution concentration and salt types on the performance of reverse electrodialysis cells Journal of Membrane Science. 494: 154-160. DOI: 10.1016/J.Memsci.2015.07.053 |
0.334 |
|
2015 |
Zhu X, He W, Logan BE. Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells Journal of Membrane Science. 486: 215-221. DOI: 10.1016/J.Memsci.2015.03.035 |
0.326 |
|
2015 |
Ullery ML, Logan BE. Anode acclimation methods and their impact on microbial electrolysis cells treating fermentation effluent International Journal of Hydrogen Energy. 40: 6782-6791. DOI: 10.1016/J.Ijhydene.2015.03.101 |
0.356 |
|
2014 |
Sun D, Call D, Wang A, Cheng S, Logan BE. Geobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions. Environmental Microbiology Reports. 6: 723-9. PMID 25756125 DOI: 10.1111/1758-2229.12193 |
0.345 |
|
2014 |
Siegert M, Li XF, Yates MD, Logan BE. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells. Frontiers in Microbiology. 5: 778. PMID 25642216 DOI: 10.3389/Fmicb.2014.00778 |
0.344 |
|
2014 |
Hatzell MC, Raju M, Watson VJ, Stack AG, van Duin AC, Logan BE. Effect of strong acid functional groups on electrode rise potential in capacitive mixing by double layer expansion. Environmental Science & Technology. 48: 14041-8. PMID 25365360 DOI: 10.1021/Es5043782 |
0.351 |
|
2014 |
Katuri KP, Werner CM, Jimenez-Sandoval RJ, Chen W, Jeon S, Logan BE, Lai Z, Amy GL, Saikaly PE. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environmental Science & Technology. 48: 12833-41. PMID 25310368 DOI: 10.1021/Es504392N |
0.374 |
|
2014 |
Hoskins DL, Zhang X, Hickner MA, Logan BE. Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities. Bioresource Technology. 172: 156-61. PMID 25260178 DOI: 10.1016/J.Biortech.2014.09.004 |
0.394 |
|
2014 |
Nam JY, Yates MD, Zaybak Z, Logan BE. Examination of protein degradation in continuous flow, microbial electrolysis cells treating fermentation wastewater. Bioresource Technology. 171: 182-6. PMID 25194912 DOI: 10.1016/J.Biortech.2014.08.065 |
0.355 |
|
2014 |
Ullery ML, Logan BE. Comparison of complex effluent treatability in different bench scale microbial electrolysis cells. Bioresource Technology. 170: 530-7. PMID 25164346 DOI: 10.1016/J.Biortech.2014.08.028 |
0.309 |
|
2014 |
Luo X, Zhang F, Liu J, Zhang X, Huang X, Logan BE. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions. Environmental Science & Technology. 48: 8911-8. PMID 25010133 DOI: 10.1021/Es501979Z |
0.396 |
|
2014 |
Ren L, Zhang X, He W, Logan BE. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate. Biotechnology and Bioengineering. 111: 2163-9. PMID 24889278 DOI: 10.1002/Bit.25290 |
0.348 |
|
2014 |
Zhu X, Yang W, Hatzell MC, Logan BE. Energy recovery from solutions with different salinities based on swelling and shrinking of hydrogels. Environmental Science & Technology. 48: 7157-63. PMID 24863559 DOI: 10.1021/Es500909Q |
0.307 |
|
2014 |
Zhu X, Hatzell MC, Logan BE. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration. Environmental Science & Technology Letters. 1: 231-235. PMID 24741666 DOI: 10.1021/Ez500073Q |
0.355 |
|
2014 |
Siegert M, Yates MD, Call DF, Zhu X, Spormann A, Logan BE. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis. Acs Sustainable Chemistry & Engineering. 2: 910-917. PMID 24741468 DOI: 10.1021/Sc400520X |
0.35 |
|
2014 |
Zhang F, Liu J, Ivanov I, Hatzell MC, Yang W, Ahn Y, Logan BE. Reference and counter electrode positions affect electrochemical characterization of bioanodes in different bioelectrochemical systems. Biotechnology and Bioengineering. 111: 1931-9. PMID 24729040 DOI: 10.1002/Bit.25253 |
0.348 |
|
2014 |
Cusick RD, Ullery ML, Dempsey BA, Logan BE. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Water Research. 54: 297-306. PMID 24583521 DOI: 10.1016/J.Watres.2014.01.051 |
0.399 |
|
2014 |
Ren L, Ahn Y, Logan BE. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment. Environmental Science & Technology. 48: 4199-206. PMID 24568605 DOI: 10.1021/Es500737M |
0.386 |
|
2014 |
Zhang X, Xia X, Ivanov I, Huang X, Logan BE. Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black. Environmental Science & Technology. 48: 2075-81. PMID 24422458 DOI: 10.1021/Es405029Y |
0.396 |
|
2014 |
Zhu X, Yates MD, Hatzell MC, Ananda Rao H, Saikaly PE, Logan BE. Microbial community composition is unaffected by anode potential. Environmental Science & Technology. 48: 1352-8. PMID 24364567 DOI: 10.1021/Es404690Q |
0.348 |
|
2014 |
Hatzell MC, Ivanov I, Cusick RD, Zhu X, Logan BE. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems. Physical Chemistry Chemical Physics : Pccp. 16: 1632-8. PMID 24322796 DOI: 10.1039/C3Cp54351J |
0.374 |
|
2014 |
Zhang F, Ahn Y, Logan BE. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations. Bioresource Technology. 152: 46-52. PMID 24275025 DOI: 10.1016/J.Biortech.2013.10.103 |
0.447 |
|
2014 |
Hatzell MC, Cusick RD, Logan BE. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents Energy and Environmental Science. 7: 1159-1165. DOI: 10.1039/C3Ee43823F |
0.397 |
|
2014 |
Mink JE, Qaisi RM, Logan BE, Hussain MM. Energy harvesting from organic liquids in micro-sized microbial fuel cells Npg Asia Materials. 6. DOI: 10.1038/Am.2014.1 |
0.368 |
|
2014 |
Hatzell MC, Zhu X, Logan BE. Simultaneous hydrogen generation and waste acid neutralization in a reverse electrodialysis system Acs Sustainable Chemistry and Engineering. 2: 2211-2216. DOI: 10.1021/Sc5004133 |
0.374 |
|
2014 |
Hatzell MC, Hatzell KB, Logan BE. Using Flow Electrodes in Multiple Reactors in Series for Continuous Energy Generation from Capacitive Mixing Environmental Science and Technology Letters. 1: 474-478. DOI: 10.1021/Ez5003314 |
0.403 |
|
2014 |
Yang W, He W, Zhang F, Hickner MA, Logan BE. Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells Environmental Science and Technology Letters. 1: 416-420. DOI: 10.1021/Ez5002769 |
0.395 |
|
2014 |
Shehab NA, Amy GL, Logan BE, Saikaly PE. Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC) Journal of Membrane Science. 469: 364-370. DOI: 10.1016/J.Memsci.2014.06.058 |
0.36 |
|
2014 |
Liu J, Zhang F, He W, Yang W, Feng Y, Logan BE. A microbial fluidized electrode electrolysis cell (MFEEC) for enhanced hydrogen production Journal of Power Sources. 271: 530-533. DOI: 10.1016/J.Jpowsour.2014.08.042 |
0.381 |
|
2014 |
Liu J, Geise GM, Luo X, Hou H, Zhang F, Feng Y, Hickner MA, Logan BE. Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells Journal of Power Sources. 271: 437-443. DOI: 10.1016/J.Jpowsour.2014.08.026 |
0.325 |
|
2014 |
Yang W, Zhang F, He W, Liu J, Hickner MA, Logan BE. Poly(vinylidene fluoride-co-hexafluoropropylene) phase inversion coating as a diffusion layer to enhance the cathode performance in microbial fuel cells Journal of Power Sources. 269: 379-384. DOI: 10.1016/J.Jpowsour.2014.06.119 |
0.342 |
|
2014 |
Ahn Y, Ivanov I, Nagaiah TC, Bordoloi A, Logan BE. Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells Journal of Power Sources. 269: 212-215. DOI: 10.1016/J.Jpowsour.2014.06.115 |
0.387 |
|
2014 |
Liu J, Zhang F, He W, Zhang X, Feng Y, Logan BE. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells Journal of Power Sources. 261: 278-284. DOI: 10.1016/J.Jpowsour.2014.03.071 |
0.404 |
|
2014 |
Ren L, Ahn Y, Hou H, Zhang F, Logan BE. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions Journal of Power Sources. 257: 454-460. DOI: 10.1016/J.Jpowsour.2013.11.085 |
0.398 |
|
2014 |
Ahn Y, Hatzell MC, Zhang F, Logan BE. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater Journal of Power Sources. 249: 440-445. DOI: 10.1016/J.Jpowsour.2013.10.081 |
0.413 |
|
2014 |
Lanas V, Ahn Y, Logan BE. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode Journal of Power Sources. 247: 228-234. DOI: 10.1016/J.Jpowsour.2013.08.110 |
0.402 |
|
2014 |
Ahn Y, Zhang F, Logan BE. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes Journal of Power Sources. 247: 655-659. DOI: 10.1016/J.Jpowsour.2013.08.084 |
0.363 |
|
2014 |
Hou H, Chen X, Liu J, Zhu X, Bazan GC, Logan BE. Repression of hydrogen uptake using conjugated oligoelectrolytes in microbial electrolysis cells International Journal of Hydrogen Energy. 39: 19407-19415. DOI: 10.1016/J.Ijhydene.2014.09.101 |
0.32 |
|
2014 |
Yates MD, Siegert M, Logan BE. Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes International Journal of Hydrogen Energy. DOI: 10.1016/J.Ijhydene.2014.08.015 |
0.377 |
|
2014 |
Zhu X, Logan BE. Copper anode corrosion affects power generation in microbial fuel cells Journal of Chemical Technology and Biotechnology. 89: 471-474. DOI: 10.1002/Jctb.4156 |
0.371 |
|
2013 |
Cusick RD, Hatzell M, Zhang F, Logan BE. Minimal RED cell pairs markedly improve electrode kinetics and power production in microbial reverse electrodialysis cells. Environmental Science & Technology. 47: 14518-24. PMID 24224718 DOI: 10.1021/Es4037995 |
0.428 |
|
2013 |
Zaybak Z, Pisciotta JM, Tokash JC, Logan BE. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. Journal of Biotechnology. 168: 478-85. PMID 24126154 DOI: 10.1016/J.Jbiotec.2013.10.001 |
0.355 |
|
2013 |
Lanas V, Logan BE. Evaluation of multi-brush anode systems in microbial fuel cells. Bioresource Technology. 148: 379-85. PMID 24063821 DOI: 10.1016/J.Biortech.2013.08.154 |
0.415 |
|
2013 |
Malaeb L, Katuri KP, Logan BE, Maab H, Nunes SP, Saikaly PE. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment. Environmental Science & Technology. 47: 11821-8. PMID 24016059 DOI: 10.1021/Es4030113 |
0.406 |
|
2013 |
Xia X, Zhang F, Zhang X, Liang P, Huang X, Logan BE. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells. Acs Applied Materials & Interfaces. 5: 7862-6. PMID 23902951 DOI: 10.1021/Am4018225 |
0.365 |
|
2013 |
Shehab N, Li D, Amy GL, Logan BE, Saikaly PE. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors. Applied Microbiology and Biotechnology. 97: 9885-95. PMID 23775270 DOI: 10.1007/S00253-013-5025-4 |
0.401 |
|
2013 |
Zhang X, Shi J, Liang P, Wei J, Huang X, Zhang C, Logan BE. Power generation by packed-bed air-cathode microbial fuel cells. Bioresource Technology. 142: 109-14. PMID 23732924 DOI: 10.1016/J.Biortech.2013.05.014 |
0.397 |
|
2013 |
Luo X, Nam JY, Zhang F, Zhang X, Liang P, Huang X, Logan BE. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Bioresource Technology. 140: 399-405. PMID 23711946 DOI: 10.1016/J.Biortech.2013.04.097 |
0.376 |
|
2013 |
Watson VJ, Nieto Delgado C, Logan BE. Influence of chemical and physical properties of activated carbon powders on oxygen reduction and microbial fuel cell performance. Environmental Science & Technology. 47: 6704-10. PMID 23692057 DOI: 10.1021/Es401722J |
0.385 |
|
2013 |
Ren L, Siegert M, Ivanov I, Pisciotta JM, Logan BE. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs). Bioresource Technology. 136: 322-8. PMID 23567698 DOI: 10.1016/J.Biortech.2013.03.060 |
0.324 |
|
2013 |
Zhu X, Logan BE. Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment. Journal of Hazardous Materials. 252: 198-203. PMID 23523911 DOI: 10.1016/J.Jhazmat.2013.02.051 |
0.395 |
|
2013 |
Ahn Y, Logan BE. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells. Bioresource Technology. 132: 436-9. PMID 23433978 DOI: 10.1016/J.Biortech.2013.01.113 |
0.382 |
|
2013 |
Zhang F, Xia X, Luo Y, Sun D, Call DF, Logan BE. Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells. Bioresource Technology. 133: 74-81. PMID 23425580 DOI: 10.1016/J.Biortech.2013.01.036 |
0.439 |
|
2013 |
Xia X, Tokash JC, Zhang F, Liang P, Huang X, Logan BE. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells Environmental Science and Technology. 47: 2085-2091. PMID 23360098 DOI: 10.1021/Es3027659 |
0.413 |
|
2013 |
Yang F, Ren L, Pu Y, Logan BE. Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells. Bioresource Technology. 128: 784-7. PMID 23186679 DOI: 10.1016/J.Biortech.2012.10.021 |
0.406 |
|
2013 |
Zhu X, Tokash JC, Hong Y, Logan BE. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Bioelectrochemistry (Amsterdam, Netherlands). 90: 30-5. PMID 23178374 DOI: 10.1016/J.Bioelechem.2012.10.004 |
0.396 |
|
2013 |
Ahn Y, Logan BE. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design. Applied Microbiology and Biotechnology. 97: 409-16. PMID 23053104 DOI: 10.1007/S00253-012-4455-8 |
0.406 |
|
2013 |
Davis RJ, Kim Y, Logan BE. Increasing desalination by mitigating anolyte ph imbalance using catholyte effluent addition in a multi-anode bench scale microbial desalination cell Acs Sustainable Chemistry and Engineering. 1: 1200-1206. DOI: 10.1021/Sc400148J |
0.391 |
|
2013 |
Geise GM, Hickner MA, Logan BE. Ammonium bicarbonate transport in anion exchange membranes for salinity gradient energy Acs Macro Letters. 2: 814-817. DOI: 10.1021/Mz4003408 |
0.306 |
|
2013 |
Ahn Y, Logan BE. Altering anode thickness to improve power production in microbial fuel cells with different electrode distances Energy and Fuels. 27: 271-276. DOI: 10.1021/Ef3015553 |
0.411 |
|
2013 |
Hatzell MC, Logan BE. Evaluation of flow fields on bubble removal and system performance in an ammonium bicarbonate reverse electrodialysis stack Journal of Membrane Science. 446: 449-455. DOI: 10.1016/J.Memsci.2013.06.019 |
0.33 |
|
2013 |
Werner CM, Logan BE, Saikaly PE, Amy GL. Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell Journal of Membrane Science. 428: 116-122. DOI: 10.1016/J.Memsci.2012.10.031 |
0.404 |
|
2013 |
Watson VJ, Nieto Delgado C, Logan BE. Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells Journal of Power Sources. 242: 756-761. DOI: 10.1016/J.Jpowsour.2013.05.135 |
0.383 |
|
2013 |
Hatzell MC, Kim Y, Logan BE. Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell Journal of Power Sources. 229: 198-202. DOI: 10.1016/J.Jpowsour.2012.12.006 |
0.392 |
|
2013 |
Ivanov I, Ren L, Siegert M, Logan BE. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment International Journal of Hydrogen Energy. 38: 13135-13142. DOI: 10.1016/J.Ijhydene.2013.07.123 |
0.346 |
|
2013 |
Ribot-Llobet E, Nam JY, Tokash JC, Guisasola A, Logan BE. Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells International Journal of Hydrogen Energy. 38: 2951-2956. DOI: 10.1016/J.Ijhydene.2012.12.037 |
0.373 |
|
2013 |
Tenca A, Cusick RD, Schievano A, Oberti R, Logan BE. Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells International Journal of Hydrogen Energy. 38: 1859-1865. DOI: 10.1016/J.Ijhydene.2012.11.103 |
0.358 |
|
2013 |
Wei B, Tokash JC, Zhang F, Kim Y, Logan BE. Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells Electrochimica Acta. 89: 45-51. DOI: 10.1016/J.Electacta.2012.11.004 |
0.349 |
|
2013 |
Chen G, Zhang F, Logan BE, Hickner MA. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells Electrochemistry Communications. 34: 150-152. DOI: 10.1016/J.Elecom.2013.05.026 |
0.402 |
|
2013 |
Zhu X, Hatzell MC, Cusick RD, Logan BE. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production Electrochemistry Communications. 31: 52-55. DOI: 10.1016/J.Elecom.2013.03.010 |
0.366 |
|
2013 |
Qu Y, Feng Y, Liu J, He W, Shi X, Yang Q, Lv J, Logan BE. Salt removal using multiple microbial desalination cells under continuous flow conditions Desalination. 317: 17-22. DOI: 10.1016/J.Desal.2013.02.016 |
0.346 |
|
2013 |
Kim Y, Logan BE. Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems Desalination. 308: 115-121. DOI: 10.1016/J.Desal.2012.07.031 |
0.409 |
|
2013 |
Kim Y, Logan BE. Microbial desalination cells for energy production and desalination Desalination. 308: 122-130. DOI: 10.1016/J.Desal.2012.07.022 |
0.363 |
|
2013 |
Luo Y, Zhang F, Wei B, Liu G, Zhang R, Logan BE. The use of cloth fabric diffusion layers for scalable microbial fuel cells Biochemical Engineering Journal. 73: 49-52. DOI: 10.1016/J.Bej.2013.01.011 |
0.384 |
|
2012 |
Chen G, Wei B, Luo Y, Logan BE, Hickner MA. Polymer separators for high-power, high-efficiency microbial fuel cells. Acs Applied Materials & Interfaces. 4: 6454-7. PMID 23167669 DOI: 10.1021/Am302301T |
0.383 |
|
2012 |
Logan BE, Elimelech M. Membrane-based processes for sustainable power generation using water Nature. 488: 313-319. PMID 22895336 DOI: 10.1038/Nature11477 |
0.338 |
|
2012 |
Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science (New York, N.Y.). 337: 686-90. PMID 22879507 DOI: 10.1126/Science.1217412 |
0.355 |
|
2012 |
Pisciotta JM, Zaybak Z, Call DF, Nam JY, Logan BE. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Applied and Environmental Microbiology. 78: 5212-9. PMID 22610438 DOI: 10.1128/Aem.00480-12 |
0.403 |
|
2012 |
Yates MD, Kiely PD, Call DF, Rismani-Yazdi H, Bibby K, Peccia J, Regan JM, Logan BE. Convergent development of anodic bacterial communities in microbial fuel cells. The Isme Journal. 6: 2002-13. PMID 22572637 DOI: 10.1038/Ismej.2012.42 |
0.387 |
|
2012 |
Logan BE. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. Chemsuschem. 5: 988-94. PMID 22517564 DOI: 10.1002/Cssc.201100604 |
0.372 |
|
2012 |
Nam JY, Cusick RD, Kim Y, Logan BE. Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution. Environmental Science & Technology. 46: 5240-6. PMID 22463373 DOI: 10.1021/Es300228M |
0.373 |
|
2012 |
Huang L, Gan L, Wang N, Quan X, Logan BE, Chen G. Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells. Biotechnology and Bioengineering. 109: 2211-21. PMID 22392229 DOI: 10.1002/Bit.24489 |
0.336 |
|
2012 |
Cusick RD, Kim Y, Logan BE. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science (New York, N.Y.). 335: 1474-7. PMID 22383807 DOI: 10.1126/Science.1219330 |
0.384 |
|
2012 |
Huang L, Chai X, Quan X, Logan BE, Chen G. Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresource Technology. 111: 167-74. PMID 22357291 DOI: 10.1016/J.Biortech.2012.01.171 |
0.365 |
|
2012 |
Qu Y, Feng Y, Wang X, Logan BE. Use of a coculture to enable current production by geobacter sulfurreducens. Applied and Environmental Microbiology. 78: 3484-7. PMID 22344663 DOI: 10.1128/Aem.00073-12 |
0.344 |
|
2012 |
Yang Q, Feng Y, Logan BE. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells. Bioresource Technology. 110: 273-7. PMID 22342583 DOI: 10.1016/J.Biortech.2012.01.121 |
0.399 |
|
2012 |
Ahn Y, Logan BE. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design. Applied Microbiology and Biotechnology. 93: 2241-8. PMID 22314518 DOI: 10.1007/S00253-012-3916-4 |
0.432 |
|
2012 |
Mink JE, Rojas JP, Logan BE, Hussain MM. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μL) microbial fuel cell. Nano Letters. 12: 791-5. PMID 22268850 DOI: 10.1021/Nl203801H |
0.396 |
|
2012 |
Ishii S, Logan BE, Sekiguchi Y. Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell. Applied Microbiology and Biotechnology. 94: 1087-94. PMID 22223104 DOI: 10.1007/S00253-011-3844-8 |
0.4 |
|
2012 |
Wagner RC, Porter-Gill S, Logan BE. Immobilization of anode-attached microbes in a microbial fuel cell. Amb Express. 2: 2. PMID 22214379 DOI: 10.1186/2191-0855-2-2 |
0.369 |
|
2012 |
Cusick RD, Logan BE. Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresource Technology. 107: 110-5. PMID 22212692 DOI: 10.1016/J.Biortech.2011.12.038 |
0.376 |
|
2012 |
Qu Y, Feng Y, Wang X, Liu J, Lv J, He W, Logan BE. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresource Technology. 106: 89-94. PMID 22200556 DOI: 10.1016/J.Biortech.2011.11.045 |
0.381 |
|
2012 |
Sun D, Call DF, Kiely PD, Wang A, Logan BE. Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances. Biotechnology and Bioengineering. 109: 405-14. PMID 22006545 DOI: 10.1002/Bit.23348 |
0.362 |
|
2012 |
Wei B, Tokash JC, Chen G, Hickner MA, Logan BE. Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells Rsc Advances. 2: 12751-12758. DOI: 10.1039/C2Ra21572A |
0.354 |
|
2012 |
Chen G, Wei B, Logan BE, Hickner MA. Cationic fluorinated polymer binders for microbial fuel cell cathodes Rsc Advances. 2: 5856-5862. DOI: 10.1039/C2Ra20705B |
0.345 |
|
2012 |
Zhang F, Chen G, Hickner MA, Logan BE. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes Journal of Power Sources. 218: 100-105. DOI: 10.1016/J.Jpowsour.2012.06.088 |
0.404 |
|
2012 |
Nam JY, Logan BE. Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells International Journal of Hydrogen Energy. 37: 18622-18628. DOI: 10.1016/J.Ijhydene.2012.09.140 |
0.352 |
|
2012 |
Ren L, Tokash JC, Regan JM, Logan BE. Current generation in microbial electrolysis cells with addition of amorphous ferric hydroxide, Tween 80, or DNA International Journal of Hydrogen Energy. 37: 16943-16950. DOI: 10.1016/J.Ijhydene.2012.08.119 |
0.392 |
|
2012 |
Zhu X, Yates MD, Logan BE. Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms Electrochemistry Communications. 22: 116-119. DOI: 10.1016/J.Elecom.2012.06.013 |
0.305 |
|
2011 |
Zuo Y, Logan BE. Power generation in MFCs with architectures based on tubular cathodes or fully tubular reactors. Water Science and Technology : a Journal of the International Association On Water Pollution Research. 64: 2253-8. PMID 22156130 DOI: 10.2166/Wst.2011.429 |
0.371 |
|
2011 |
Call DF, Logan BE. Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA. Applied and Environmental Microbiology. 77: 8791-4. PMID 22003020 DOI: 10.1128/Aem.06434-11 |
0.32 |
|
2011 |
Zhang X, Sun H, Liang P, Huang X, Chen X, Logan BE. Air-cathode structure optimization in separator-coupled microbial fuel cells Biosensors and Bioelectronics. 30: 267-271. PMID 21996324 DOI: 10.1016/J.Bios.2011.09.023 |
0.397 |
|
2011 |
Zhang F, Pant D, Logan BE. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosensors & Bioelectronics. 30: 49-55. PMID 21937216 DOI: 10.1016/J.Bios.2011.08.025 |
0.413 |
|
2011 |
Kim Y, Logan BE. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proceedings of the National Academy of Sciences of the United States of America. 108: 16176-81. PMID 21930953 DOI: 10.1073/Pnas.1106335108 |
0.372 |
|
2011 |
Hong Y, Call DF, Werner CM, Logan BE. Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells Biosensors and Bioelectronics. 28: 71-76. PMID 21831626 DOI: 10.1016/J.Bios.2011.06.045 |
0.358 |
|
2011 |
Huang L, Gan L, Zhao Q, Logan BE, Lu H, Chen G. Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell. Bioresource Technology. 102: 8762-8. PMID 21824764 DOI: 10.1016/J.Biortech.2011.07.063 |
0.351 |
|
2011 |
Kim Y, Logan BE. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environmental Science & Technology. 45: 5840-5. PMID 21671676 DOI: 10.1021/Es200584Q |
0.389 |
|
2011 |
Call DF, Logan BE. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosensors & Bioelectronics. 26: 4526-31. PMID 21652198 DOI: 10.1016/J.Bios.2011.05.014 |
0.373 |
|
2011 |
Kim Y, Logan BE. Microbial reverse electrodialysis cells for synergistically enhanced power production. Environmental Science & Technology. 45: 5834-9. PMID 21644573 DOI: 10.1021/Es200979B |
0.443 |
|
2011 |
Liu G, Yates MD, Cheng S, Call DF, Sun D, Logan BE. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments. Bioresource Technology. 102: 7301-6. PMID 21601444 DOI: 10.1016/J.Biortech.2011.04.087 |
0.346 |
|
2011 |
Huang L, Chai X, Chen G, Logan BE. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environmental Science & Technology. 45: 5025-31. PMID 21528902 DOI: 10.1021/Es103875D |
0.333 |
|
2011 |
Kiely PD, Regan JM, Logan BE. The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Current Opinion in Biotechnology. 22: 378-85. PMID 21441020 DOI: 10.1016/J.Copbio.2011.03.003 |
0.315 |
|
2011 |
Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan BE. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Applied Microbiology and Biotechnology. 89: 2053-63. PMID 21305277 DOI: 10.1007/S00253-011-3130-9 |
0.384 |
|
2011 |
Cheng S, Logan BE. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresource Technology. 102: 4468-73. PMID 21273062 DOI: 10.1016/J.Biortech.2010.12.104 |
0.391 |
|
2011 |
Wang A, Sun D, Cao G, Wang H, Ren N, Wu WM, Logan BE. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresource Technology. 102: 4137-43. PMID 21216594 DOI: 10.1016/J.Biortech.2010.10.137 |
0.383 |
|
2011 |
Cheng S, Logan BE. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresource Technology. 102: 3571-4. PMID 21036036 DOI: 10.1016/J.Biortech.2010.10.025 |
0.359 |
|
2011 |
Saito T, Mehanna M, Wang X, Cusick RD, Feng Y, Hickner MA, Logan BE. Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresource Technology. 102: 395-8. PMID 20889061 DOI: 10.1016/J.Biortech.2010.05.063 |
0.399 |
|
2011 |
Cheng S, Jang JH, Dempsey BA, Logan BE. Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Water Research. 45: 303-7. PMID 20701945 DOI: 10.1016/J.Watres.2010.07.054 |
0.348 |
|
2011 |
Cheng S, Kiely P, Logan BE. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs Bioresource Technology. 102: 367-371. PMID 20580223 DOI: 10.1016/J.Biortech.2010.05.083 |
0.405 |
|
2011 |
Kiely PD, Rader G, Regan JM, Logan BE. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts Bioresource Technology. 102: 361-366. PMID 20570144 DOI: 10.1016/J.Biortech.2010.05.017 |
0.365 |
|
2011 |
Zhang X, Cheng S, Liang P, Huang X, Logan BE. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes Bioresource Technology. 102: 372-375. PMID 20566288 DOI: 10.1016/J.Biortech.2010.05.090 |
0.378 |
|
2011 |
Kiely PD, Cusick R, Call DF, Selembo PA, Regan JM, Logan BE. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresource Technology. 102: 388-94. PMID 20554197 DOI: 10.1016/J.Biortech.2010.05.019 |
0.37 |
|
2011 |
Kim Y, Hatzell MC, Hutchinson AJ, Logan BE. Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal Energy and Environmental Science. 4: 4662-4667. DOI: 10.1039/C1Ee02451E |
0.352 |
|
2011 |
Saito T, Roberts TH, Long TE, Logan BE, Hickner MA. Neutral hydrophilic cathode catalyst binders for microbial fuel cells Energy and Environmental Science. 4: 928-934. DOI: 10.1039/C0Ee00229A |
0.37 |
|
2011 |
Luo Y, Zhang F, Wei B, Liu G, Zhang R, Logan BE. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells Journal of Power Sources. 196: 9317-9321. DOI: 10.1016/J.Jpowsour.2011.07.077 |
0.331 |
|
2011 |
Hutchinson AJ, Tokash JC, Logan BE. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells Journal of Power Sources. 196: 9213-9219. DOI: 10.1016/J.Jpowsour.2011.07.040 |
0.404 |
|
2011 |
Hays S, Zhang F, Logan BE. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater Journal of Power Sources. 196: 8293-8300. DOI: 10.1016/J.Jpowsour.2011.06.027 |
0.398 |
|
2011 |
Watson VJ, Saito T, Hickner MA, Logan BE. Polymer coatings as separator layers for microbial fuel cell cathodes Journal of Power Sources. 196: 3009-3014. DOI: 10.1016/J.Jpowsour.2010.11.105 |
0.367 |
|
2011 |
Zhang F, Merrill MD, Tokash JC, Saito T, Cheng S, Hickner MA, Logan BE. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors Journal of Power Sources. 196: 1097-1102. DOI: 10.1016/J.Jpowsour.2010.08.011 |
0.393 |
|
2011 |
Nam JY, Logan BE. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell International Journal of Hydrogen Energy. 36: 15105-15110. DOI: 10.1016/J.Ijhydene.2011.08.106 |
0.411 |
|
2011 |
Nam JY, Tokash JC, Logan BE. Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential International Journal of Hydrogen Energy. 36: 10550-10556. DOI: 10.1016/J.Ijhydene.2011.05.148 |
0.35 |
|
2011 |
Tokash JC, Logan BE. Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells International Journal of Hydrogen Energy. 36: 9439-9445. DOI: 10.1016/J.Ijhydene.2011.05.080 |
0.359 |
|
2011 |
Wang X, Cheng S, Zhang X, Li XY, Logan BE. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs) International Journal of Hydrogen Energy. 36: 13900-13906. DOI: 10.1016/J.Ijhydene.2011.03.052 |
0.398 |
|
2011 |
Ambler JR, Logan BE. Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production International Journal of Hydrogen Energy. 36: 160-166. DOI: 10.1016/J.Ijhydene.2010.09.044 |
0.367 |
|
2011 |
Watson VJ, Logan BE. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells Electrochemistry Communications. 13: 54-56. DOI: 10.1016/J.Elecom.2010.11.011 |
0.376 |
|
2010 |
Mehanna M, Kiely PD, Call DF, Logan BE. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environmental Science & Technology. 44: 9578-83. PMID 21077623 DOI: 10.1021/Es1025646 |
0.438 |
|
2010 |
Liu W, Wang A, Cheng S, Logan BE, Yu H, Deng Y, Nostrand JD, Wu L, He Z, Zhou J. Geochip-based functional gene analysis of anodophilic communities in microbial electrolysis cells under different operational modes. Environmental Science & Technology. 44: 7729-35. PMID 20831218 DOI: 10.1021/Es100608A |
0.333 |
|
2010 |
Wagner RC, Call DF, Logan BE. Optimal set anode potentials vary in bioelectrochemical systems. Environmental Science & Technology. 44: 6036-41. PMID 20704197 DOI: 10.1021/Es101013E |
0.316 |
|
2010 |
Kiely PD, Call DF, Yates MD, Regan JM, Logan BE. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Applied Microbiology and Biotechnology. 88: 371-80. PMID 20632002 DOI: 10.1007/S00253-010-2757-2 |
0.375 |
|
2010 |
Lu L, Xing D, Xie T, Ren N, Logan BE. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells. Biosensors & Bioelectronics. 25: 2690-5. PMID 20537524 DOI: 10.1016/J.Bios.2010.05.003 |
0.355 |
|
2010 |
Wang A, Sun D, Ren N, Liu C, Liu W, Logan BE, Wu WM. A rapid selection strategy for an anodophilic consortium for microbial fuel cells. Bioresource Technology. 101: 5733-5. PMID 20219354 DOI: 10.1016/J.Biortech.2010.02.056 |
0.374 |
|
2010 |
Feng Y, Cui YH, Liu J, Logan BE. Factors affecting the electro-catalytic characteristics of Eu doped SnO2/Sb electrode. Journal of Hazardous Materials. 178: 29-34. PMID 20167422 DOI: 10.1016/J.Jhazmat.2009.12.101 |
0.32 |
|
2010 |
Zhang F, Saito T, Cheng S, Hickner MA, Logan BE. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environmental Science & Technology. 44: 1490-5. PMID 20099808 DOI: 10.1021/Es903009D |
0.362 |
|
2010 |
Zhang X, Cheng S, Huang X, Logan BE. Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosensors & Bioelectronics. 25: 1825-8. PMID 20022480 DOI: 10.1016/J.Bios.2009.11.018 |
0.368 |
|
2010 |
Nam JY, Kim HW, Lim KH, Shin HS, Logan BE. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells. Biosensors & Bioelectronics. 25: 1155-9. PMID 19896357 DOI: 10.1016/J.Bios.2009.10.005 |
0.386 |
|
2010 |
Watson VJ, Logan BE. Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures. Biotechnology and Bioengineering. 105: 489-98. PMID 19787640 DOI: 10.1002/Bit.22556 |
0.344 |
|
2010 |
Mehanna M, Saito T, Yan J, Hickner M, Cao X, Huang X, Logan BE. Using microbial desalination cells to reduce water salinity prior to reverse osmosis Energy & Environmental Science. 3: 1114. DOI: 10.1039/C002307H |
0.375 |
|
2010 |
Zhang X, Cheng S, Huang X, Logan BE. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells Energy & Environmental Science. 3: 659. DOI: 10.1039/B927151A |
0.355 |
|
2010 |
Feng Y, Yang Q, Wang X, Logan BE. Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells Journal of Power Sources. 195: 1841-1844. DOI: 10.1016/J.Jpowsour.2009.10.030 |
0.365 |
|
2010 |
Deng Q, Li X, Zuo J, Ling A, Logan BE. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell Journal of Power Sources. 195: 1130-1135. DOI: 10.1016/J.Jpowsour.2009.08.092 |
0.364 |
|
2010 |
Zhang Y, Merrill MD, Logan BE. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells International Journal of Hydrogen Energy. 35: 12020-12028. DOI: 10.1016/J.Ijhydene.2010.08.064 |
0.387 |
|
2010 |
Cusick RD, Kiely PD, Logan BE. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters International Journal of Hydrogen Energy. 35: 8855-8861. DOI: 10.1016/J.Ijhydene.2010.06.077 |
0.364 |
|
2010 |
Rader GK, Logan BE. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate International Journal of Hydrogen Energy. 35: 8848-8854. DOI: 10.1016/J.Ijhydene.2010.06.033 |
0.375 |
|
2010 |
Selembo PA, Merrill MD, Logan BE. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells International Journal of Hydrogen Energy. 35: 428-437. DOI: 10.1016/J.Ijhydene.2009.11.014 |
0.374 |
|
2010 |
Saito T, Merrill MD, Watson VJ, Logan BE, Hickner MA. Investigation of ionic polymer cathode binders for microbial fuel cells Electrochimica Acta. 55: 3398-3403. DOI: 10.1016/J.Electacta.2010.01.009 |
0.38 |
|
2009 |
Logan BE. Scaling up microbial fuel cells and other bioelectrochemical systems. Applied Microbiology and Biotechnology. 85: 1665-71. PMID 20013119 DOI: 10.1007/S00253-009-2378-9 |
0.36 |
|
2009 |
Zhang X, Cheng S, Wang X, Huang X, Logan BE. Separator characteristics for increasing performance of microbial fuel cells. Environmental Science & Technology. 43: 8456-61. PMID 19924984 DOI: 10.1021/Es901631P |
0.409 |
|
2009 |
Call DF, Wagner RC, Logan BE. Hydrogen production by geobacter species and a mixed consortium in a microbial electrolysis cell. Applied and Environmental Microbiology. 75: 7579-87. PMID 19820150 DOI: 10.1128/Aem.01760-09 |
0.365 |
|
2009 |
Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE. A new method for water desalination using microbial desalination cells. Environmental Science & Technology. 43: 7148-52. PMID 19806756 DOI: 10.1021/Es901950J |
0.381 |
|
2009 |
Xing D, Cheng S, Logan BE, Regan JM. Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Applied Microbiology and Biotechnology. 85: 1575-87. PMID 19779712 DOI: 10.1007/S00253-009-2240-0 |
0.341 |
|
2009 |
Wang X, Cheng S, Feng Y, Merrill MD, Saito T, Logan BE. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environmental Science & Technology. 43: 6870-4. PMID 19764262 DOI: 10.1021/Es900997W |
0.392 |
|
2009 |
Ahn Y, Logan BE. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technology. 101: 469-75. PMID 19734045 DOI: 10.1016/J.Biortech.2009.07.039 |
0.362 |
|
2009 |
Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N, Li N, Wang E, Lee H, Logan BE. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environmental Science & Technology. 43: 6088-93. PMID 19731723 DOI: 10.1021/Es900391B |
0.415 |
|
2009 |
Oh SE, Kim JR, Joo JH, Logan BE. Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Science and Technology : a Journal of the International Association On Water Pollution Research. 60: 1311-7. PMID 19717919 DOI: 10.2166/Wst.2009.444 |
0.385 |
|
2009 |
Selembo PA, Perez JM, Lloyd WA, Logan BE. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnology and Bioengineering. 104: 1098-106. PMID 19623563 DOI: 10.1002/Bit.22487 |
0.306 |
|
2009 |
Xing D, Cheng S, Regan JM, Logan BE. Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosensors & Bioelectronics. 25: 105-11. PMID 19574034 DOI: 10.1016/J.Bios.2009.06.013 |
0.343 |
|
2009 |
Cheng S, Xing D, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology. 43: 3953-8. PMID 19544913 DOI: 10.1021/Es803531G |
0.403 |
|
2009 |
Huang L, Cheng S, Rezaei F, Logan BE. Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells. Environmental Technology. 30: 499-504. PMID 19507441 DOI: 10.1080/09593330902788244 |
0.4 |
|
2009 |
Velasquez-Orta SB, Curtis TP, Logan BE. Energy from algae using microbial fuel cells. Biotechnology and Bioengineering. 103: 1068-76. PMID 19418564 DOI: 10.1002/Bit.22346 |
0.409 |
|
2009 |
Lu L, Ren N, Xing D, Logan BE. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosensors & Bioelectronics. 24: 3055-60. PMID 19375299 DOI: 10.1016/J.Bios.2009.03.024 |
0.368 |
|
2009 |
Call DF, Merrill MD, Logan BE. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environmental Science & Technology. 43: 2179-83. PMID 19368232 DOI: 10.1021/Es803074X |
0.394 |
|
2009 |
Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Applied and Environmental Microbiology. 75: 3673-8. PMID 19346362 DOI: 10.1128/Aem.02600-08 |
0.349 |
|
2009 |
Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews. Microbiology. 7: 375-81. PMID 19330018 DOI: 10.1038/Nrmicro2113 |
0.381 |
|
2009 |
Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Research. 43: 1480-8. PMID 19138783 DOI: 10.1016/J.Watres.2008.12.037 |
0.362 |
|
2009 |
Zuo Y, Cheng S, Logan BE. Ion exchange membrane cathodes for scalable microbial fuel cells. Environmental Science & Technology. 42: 6967-72. PMID 18853817 DOI: 10.1021/Es801055R |
0.428 |
|
2009 |
Cheng S, Logan BE. Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs). Water Science and Technology : a Journal of the International Association On Water Pollution Research. 58: 853-7. PMID 18776621 DOI: 10.2166/Wst.2008.617 |
0.332 |
|
2009 |
Rezaei F, Richard TL, Logan BE. Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid–substrate microbial fuel cells Journal of Power Sources. 192: 304-309. DOI: 10.1016/J.Jpowsour.2009.03.023 |
0.309 |
|
2009 |
Merrill MD, Logan BE. Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells Journal of Power Sources. 191: 203-208. DOI: 10.1016/J.Jpowsour.2009.02.077 |
0.329 |
|
2009 |
Selembo PA, Merrill MD, Logan BE. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells Journal of Power Sources. 190: 271-278. DOI: 10.1016/J.Jpowsour.2008.12.144 |
0.369 |
|
2009 |
Oh SE, Zuo Y, Zhang H, Guiltinan MJ, Logan BE, Regan JM. Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique International Journal of Hydrogen Energy. 34: 9347-9353. DOI: 10.1016/J.Ijhydene.2009.09.084 |
0.313 |
|
2009 |
Lalaurette E, Thammannagowda S, Mohagheghi A, Maness P, Logan BE. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis International Journal of Hydrogen Energy. 34: 6201-6210. DOI: 10.1016/J.Ijhydene.2009.05.112 |
0.333 |
|
2009 |
Selembo PA, Perez JM, Lloyd WA, Logan BE. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells International Journal of Hydrogen Energy. 34: 5373-5381. DOI: 10.1016/J.Ijhydene.2009.05.002 |
0.369 |
|
2009 |
Wang A, Liu W, Cheng S, Xing D, Zhou J, Logan BE. Source of methane and methods to control its formation in single chamber microbial electrolysis cells International Journal of Hydrogen Energy. 34: 3653-3658. DOI: 10.1016/J.Ijhydene.2009.03.005 |
0.319 |
|
2009 |
Zhang F, Cheng S, Pant D, Bogaert GV, Logan BE. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell Electrochemistry Communications. 11: 2177-2179. DOI: 10.1016/J.Elecom.2009.09.024 |
0.414 |
|
2008 |
Logan BE, Call D, Cheng S, Hamelers HV, Sleutels TH, Jeremiasse AW, Rozendal RA. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environmental Science & Technology. 42: 8630-40. PMID 19192774 DOI: 10.1021/Es801553Z |
0.372 |
|
2008 |
Ishii S, Watanabe K, Yabuki S, Logan BE, Sekiguchi Y. Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell. Applied and Environmental Microbiology. 74: 7348-55. PMID 18836002 DOI: 10.1128/Aem.01639-08 |
0.409 |
|
2008 |
Rezaei F, Richard TL, Logan BE. Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnology and Bioengineering. 101: 1163-9. PMID 18683248 DOI: 10.1002/Bit.22015 |
0.379 |
|
2008 |
Huang L, Logan BE. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Applied Microbiology and Biotechnology. 80: 655-64. PMID 18626640 DOI: 10.1007/S00253-008-1588-X |
0.406 |
|
2008 |
Xing D, Zuo Y, Cheng S, Regan JM, Logan BE. Electricity generation by Rhodopseudomonas palustris DX-1. Environmental Science & Technology. 42: 4146-51. PMID 18589979 DOI: 10.1021/Es800312V |
0.38 |
|
2008 |
Shimoyama T, Komukai S, Yamazawa A, Ueno Y, Logan BE, Watanabe K. Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Applied Microbiology and Biotechnology. 80: 325-30. PMID 18581110 DOI: 10.1007/S00253-008-1516-0 |
0.42 |
|
2008 |
Huang L, Logan BE. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied Microbiology and Biotechnology. 80: 349-55. PMID 18542943 DOI: 10.1007/S00253-008-1546-7 |
0.408 |
|
2008 |
Call D, Logan BE. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environmental Science & Technology. 42: 3401-6. PMID 18522125 DOI: 10.1021/Es8001822 |
0.366 |
|
2008 |
Zuo Y, Xing D, Regan JM, Logan BE. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Applied and Environmental Microbiology. 74: 3130-7. PMID 18359834 DOI: 10.1128/Aem.02732-07 |
0.337 |
|
2008 |
Kim JR, Dec J, Bruns MA, Logan BE. Removal of odors from Swine wastewater by using microbial fuel cells. Applied and Environmental Microbiology. 74: 2540-3. PMID 18310428 DOI: 10.1128/Aem.02268-07 |
0.6 |
|
2008 |
Feng Y, Wang X, Logan BE, Lee H. Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology. 78: 873-880. PMID 18246346 DOI: 10.1007/S00253-008-1360-2 |
0.393 |
|
2008 |
Kim JR, Zuo Y, Regan JM, Logan BE. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnology and Bioengineering. 99: 1120-7. PMID 17972328 DOI: 10.1002/Bit.21687 |
0.618 |
|
2008 |
Logan B. Microbial fuels for the future Nature. 454: 943-944. DOI: 10.1038/454943A |
0.308 |
|
2008 |
Liu H, Cheng S, Huang L, Logan BE. Scale-up of membrane-free single-chamber microbial fuel cells Journal of Power Sources. 179: 274-279. DOI: 10.1016/J.Jpowsour.2007.12.120 |
0.414 |
|
2008 |
Yu EH, Cheng S, Logan BE, Scott K. Electrochemical reduction of oxygen with iron phthalocyanine in neutral media Journal of Applied Electrochemistry. 39: 705-711. DOI: 10.1007/S10800-008-9712-2 |
0.304 |
|
2007 |
Cheng S, Dempsey BA, Logan BE. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environmental Science & Technology. 41: 8149-53. PMID 18186351 DOI: 10.1021/Es0712221 |
0.39 |
|
2007 |
Cheng S, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proceedings of the National Academy of Sciences of the United States of America. 104: 18871-3. PMID 18000052 DOI: 10.1073/Pnas.0706379104 |
0.362 |
|
2007 |
Feng Y, Cui Y, Logan B, Liu Z. Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol. Chemosphere. 70: 1629-36. PMID 17920102 DOI: 10.1016/J.Chemosphere.2007.07.083 |
0.32 |
|
2007 |
Rezaei F, Richard TL, Brennan RA, Logan BE. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environmental Science & Technology. 41: 4053-8. PMID 17612189 DOI: 10.1021/Es070426E |
0.4 |
|
2007 |
Zuo Y, Cheng S, Call D, Logan BE. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environmental Science & Technology. 41: 3347-53. PMID 17539548 DOI: 10.1021/Es0627601 |
0.378 |
|
2007 |
Logan B, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology. 41: 3341-6. PMID 17539547 DOI: 10.1021/Es062644Y |
0.411 |
|
2007 |
Kim JR, Cheng S, Oh SE, Logan BE. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology. 41: 1004-9. PMID 17328216 DOI: 10.1021/Es062202M |
0.573 |
|
2007 |
HaoYu E, Cheng S, Scott K, Logan B. Microbial fuel cell performance with non-Pt cathode catalysts Journal of Power Sources. 171: 275-281. DOI: 10.1016/J.Jpowsour.2007.07.010 |
0.348 |
|
2007 |
Oh S, Logan B. Voltage reversal during microbial fuel cell stack operation Journal of Power Sources. 167: 11-17. DOI: 10.1016/J.Jpowsour.2007.02.016 |
0.364 |
|
2007 |
DITZIG J, LIU H, LOGAN B. Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR) International Journal of Hydrogen Energy. 32: 2296-2304. DOI: 10.1016/J.Ijhydene.2007.02.035 |
0.382 |
|
2007 |
Cheng S, Logan BE. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells Electrochemistry Communications. 9: 492-496. DOI: 10.1016/J.Elecom.2006.10.023 |
0.415 |
|
2006 |
Kim JR, Jung SH, Regan JM, Logan BE. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology. 98: 2568-77. PMID 17097875 DOI: 10.1016/J.Biortech.2006.09.036 |
0.606 |
|
2006 |
Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology. 14: 512-8. PMID 17049240 DOI: 10.1016/J.Tim.2006.10.003 |
0.343 |
|
2006 |
Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, ... ... Logan B, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America. 103: 11358-63. PMID 16849424 DOI: 10.1073/Pnas.0604517103 |
0.323 |
|
2006 |
Heilmann J, Logan BE. Production of electricity from proteins using a microbial fuel cell Water Environment Research. 78: 531-537. PMID 16752614 DOI: 10.2175/106143005X73046 |
0.394 |
|
2006 |
Cheng S, Liu H, Logan BE. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology. 40: 2426-32. PMID 16646485 DOI: 10.1021/Es051652W |
0.382 |
|
2006 |
Zhang H, Bruns MA, Logan BE. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Research. 40: 728-34. PMID 16427113 DOI: 10.1016/J.Watres.2005.11.041 |
0.316 |
|
2006 |
Oh SE, Logan BE. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research. 39: 4673-82. PMID 16289673 DOI: 10.1016/J.Watres.2005.09.019 |
0.361 |
|
2006 |
Park W, Hyun SH, Oh SE, Logan BE, Kim IS. Removal of headspace CO2 increases biological hydrogen production. Environmental Science & Technology. 39: 4416-20. PMID 16047775 DOI: 10.1021/Es048569D |
0.302 |
|
2006 |
Cheng S, Liu H, Logan BE. Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells Environmental Science & Technology. 40: 364-369. DOI: 10.1021/Es0512071 |
0.383 |
|
2006 |
Zuo Y, Maness P, Logan BE. Electricity Production from Steam-Exploded Corn Stover Biomass Energy & Fuels. 20: 1716-1721. DOI: 10.1021/Ef060033L |
0.402 |
|
2006 |
Cheng S, Liu H, Logan BE. Increased performance of single-chamber microbial fuel cells using an improved cathode structure Electrochemistry Communications. 8: 489-494. DOI: 10.1016/J.Elecom.2006.01.010 |
0.397 |
|
2005 |
Min B, Kim J, Oh S, Regan JM, Logan BE. Electricity generation from swine wastewater using microbial fuel cells. Water Research. 39: 4961-8. PMID 16293279 DOI: 10.1016/J.Watres.2005.09.039 |
0.404 |
|
2005 |
Oh SE, Logan BE. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology. 70: 162-9. PMID 16167143 DOI: 10.1007/S00253-005-0066-Y |
0.378 |
|
2005 |
Van Ginkel SW, Logan B. Increased biological hydrogen production with reduced organic loading. Water Research. 39: 3819-26. PMID 16129472 DOI: 10.1016/J.Watres.2005.07.021 |
0.306 |
|
2005 |
Liu H, Cheng S, Logan BE. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology. 39: 5488-93. PMID 16082985 DOI: 10.1021/Es050316C |
0.417 |
|
2005 |
Zhang H, Logan BE, Regan JM, Achenbach LA, Bruns MA. Molecular assessment of inoculated and indigenous bacteria in biofilms from a pilot-scale perchlorate-reducing bioreactor. Microbial Ecology. 49: 388-98. PMID 16003477 DOI: 10.1007/S00248-004-0273-6 |
0.322 |
|
2005 |
Liu H, Grot S, Logan BE. Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology. 39: 4317-20. PMID 15984815 DOI: 10.1021/Es050244P |
0.348 |
|
2005 |
Min B, Cheng S, Logan BE. Electricity generation using membrane and salt bridge microbial fuel cells. Water Research. 39: 1675-86. PMID 15899266 DOI: 10.1016/J.Watres.2005.02.002 |
0.404 |
|
2005 |
Logan BE, Murano C, Scott K, Gray ND, Head IM. Electricity generation from cysteine in a microbial fuel cell. Water Research. 39: 942-52. PMID 15743641 DOI: 10.1016/J.Watres.2004.11.019 |
0.424 |
|
2005 |
Liu H, Cheng S, Logan BE. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology. 39: 658-62. PMID 15707069 DOI: 10.1021/Es048927C |
0.424 |
|
2005 |
Kim JR, Min B, Logan BE. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Applied Microbiology and Biotechnology. 68: 23-30. PMID 15647935 DOI: 10.1007/S00253-004-1845-6 |
0.644 |
|
2005 |
Zhang JJ, Li XY, Oh SE, Logan BE. Physical and hydrodynamic properties of flocs produced during biological hydrogen production. Biotechnology and Bioengineering. 88: 854-60. PMID 15538742 DOI: 10.1002/Bit.20297 |
0.333 |
|
2005 |
Logan B, Min B, Kim J, Heilmann J, Oh S, Liu H. MICROBIAL POWER: ELECTRICITY GENERATION FROM DOMESTIC AND AGRICULTURAL WASTEWATERS USING MICROBIAL FUEL CELLS Proceedings of the Water Environment Federation. 2005: 93-99. DOI: 10.2175/193864705783868142 |
0.567 |
|
2005 |
Logan B. Simultaneous wastewater treatment and biological electricity generation Water Science and Technology. 52: 31-37. DOI: 10.2166/Wst.2005.0495 |
0.384 |
|
2005 |
VANGINKEL S, OH S, LOGAN B. Biohydrogen gas production from food processing and domestic wastewaters International Journal of Hydrogen Energy. 30: 1535-1542. DOI: 10.1016/J.Ijhydene.2004.09.017 |
0.307 |
|
2004 |
Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell Environmental Science and Technology. 38: 5809-5814. PMID 15575304 DOI: 10.1021/Es0491026 |
0.437 |
|
2004 |
Oh S, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science & Technology. 38: 4900-4. PMID 15487802 DOI: 10.1021/Es049422P |
0.427 |
|
2004 |
Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology. 38: 4040-6. PMID 15298217 DOI: 10.1021/Es0499344 |
0.449 |
|
2004 |
Oh SE, Iyer P, Bruns MA, Logan BE. Biological hydrogen production using a membrane bioreactor. Biotechnology and Bioengineering. 87: 119-27. PMID 15211496 DOI: 10.1002/Bit.20127 |
0.327 |
|
2004 |
Logan BE. Extracting hydrogen and electricity from renewable resources. Environmental Science & Technology. 38: 160A-167A. PMID 15180042 DOI: 10.1021/Es040468S |
0.338 |
|
2004 |
Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology. 38: 2281-5. PMID 15112835 DOI: 10.1021/Es034923G |
0.422 |
|
2004 |
Song Y, Logan BE. Effect of O2 exposure on perchlorate reduction by Dechlorosoma sp. KJ. Water Research. 38: 1626-32. PMID 15016540 DOI: 10.1016/J.Watres.2003.11.033 |
0.317 |
|
2004 |
Xu J, Trimble JJ, Steinberg L, Logan BE. Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA. Water Research. 38: 673-80. PMID 14723936 DOI: 10.1016/J.Watres.2003.10.017 |
0.306 |
|
2004 |
Oh SE, Van Ginkel S, Logan BE. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environmental Science & Technology. 37: 5186-90. PMID 14655706 DOI: 10.1021/Es034291Y |
0.316 |
|
2004 |
Min B, Evans PJ, Chu AK, Logan BE. Perchlorate removal in sand and plastic media bioreactors. Water Research. 38: 47-60. PMID 14630102 DOI: 10.1016/J.Watres.2003.09.019 |
0.328 |
|
2003 |
Logan BE, LaPoint D. Treatment of perchlorate- and nitrate-contaminated groundwater in an autotrophic, gas phase, packed-bed bioreactor. Water Research. 36: 3647-53. PMID 12230211 DOI: 10.1016/S0043-1354(02)00049-0 |
0.327 |
|
2002 |
Zhang H, Bruns MA, Logan BE. Perchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacterium. Environmental Microbiology. 4: 570-6. PMID 12366751 DOI: 10.1046/J.1462-2920.2002.00338.X |
0.327 |
|
2002 |
Shellenberger K, Logan BE. Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environmental Science & Technology. 36: 184-9. PMID 11827052 DOI: 10.1021/Es015515K |
0.304 |
|
2002 |
Kim K, Logan BE. Microbial reduction of perchlorate in pure and mixed culture packed-bed bioreactors. Water Research. 35: 3071-6. PMID 11487102 DOI: 10.1016/S0043-1354(01)00014-8 |
0.303 |
|
2002 |
Logan BE, Wu J. Enhanced Toluene Degradation Under Chlorate-Reducing Conditions by Bioaugmentation of Sand Columns with Chlorate- and Toluene-Degrading Enrichments Bioremediation Journal. 6: 87-95. DOI: 10.1080/10588330208951205 |
0.327 |
|
2001 |
Logan BE. Analysis of Overall Perchlorate Removal Rates in Packed-Bed Bioreactors Journal of Environmental Engineering. 127: 469-471. DOI: 10.1061/(Asce)0733-9372(2001)127:5(469) |
0.337 |
|
2000 |
Miller JP, Logan BE. Sustained Perchlorate Degradation in an Autotrophic, Gas-Phase, Packed-Bed Bioreactor Environmental Science & Technology. 34: 3018-3022. DOI: 10.1021/Es991155D |
0.361 |
|
1998 |
Camesano TA, Logan BE. Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media Environmental Science and Technology. 32: 1699-1708. DOI: 10.1021/Es970996M |
0.332 |
|
1998 |
Confer DR, Logan BE. A conceptual model describing macromolecule degradation by suspended cultures and biofilms Water Science and Technology. 37: 231-234. DOI: 10.1016/S0273-1223(98)00112-7 |
0.308 |
|
1998 |
CONFER DR, LOGAN BE. LOCATION OF PROTEIN AND POLYSACCHARIDE HYDROLYTIC ACTIVITY IN SUSPENDED AND BIOFILM WASTEWATER CULTURES Water Research. 32: 31-38. DOI: 10.1016/S0043-1354(97)00194-2 |
0.316 |
|
1997 |
Aiken BS, Logan BE. Degradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium grown in ammonium lignosulphonate media. Biodegradation. 7: 175-82. PMID 8782389 DOI: 10.1007/Bf00058177 |
0.302 |
|
1997 |
Logan BE, Patnaik R. A gas chromatographic-based headspace biochemical oxygen demand test Water Environment Research. 69: 206-214. DOI: 10.2175/106143097X125362 |
0.302 |
|
1997 |
Confer DR, Logan BE. Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures I. Bovine serum albumin Water Research. 31: 2127-2136. DOI: 10.1016/S0043-1354(97)00049-3 |
0.303 |
|
1996 |
Johnson WP, Martin MJ, Gross MJ, Logan BE. Facilitation of bacterial transport through porous media by changes in solution and surface properties Colloids and Surfaces a: Physicochemical and Engineering Aspects. 107: 263-271. DOI: 10.1016/0927-7757(95)03349-1 |
0.343 |
|
1995 |
Alleman BC, Logan BE, Gilbertson RL. Degradation of pentachlorophenol by fixed films of white rot fungi in rotating tube bioreactors Water Research. 29: 61-67. DOI: 10.1016/0043-1354(94)E0106-G |
0.304 |
|
1989 |
Logan BE, Alldredge AL. Potential for increased nutrient uptake by flocculating diatoms Marine Biology. 101: 443-450. DOI: 10.1007/Bf00541645 |
0.309 |
|
1987 |
Logan BE, Hermanowicz SW. Application of the penetration theory to oxygen transfer to biofilms. Biotechnology and Bioengineering. 29: 762-6. PMID 18576513 DOI: 10.1002/Bit.260290615 |
0.596 |
|
Show low-probability matches. |