David N. Spergel

Affiliations: 
Princeton University, Princeton, NJ 
Area:
Astronomy and Astrophysics
Website:
http://www.astro.princeton.edu/~dns/
Google:
"David Spergel"
Bio:

http://www.astro.princeton.edu/~dns/Spergel_CV.htm

Mean distance: 13.86
 

Parents

Sign in to add mentor
James Binney research assistant 1983 Oxford
William H. Press grad student 1985 Harvard
 (The astrophysical implications of weakly interacting, massive particles.)

Children

Sign in to add trainee
William Richard Coulton grad student
David Goldberg grad student
Shirley Ho grad student Princeton
Katharine Renee Long grad student 1990 Princeton
Julianne Dalcanton grad student 1995 Princeton (Astronomy Tree)
James Rhoads grad student 1992-1996 (Astronomy Tree)
Siang Peng Oh grad student 2000 Princeton
Eiichiro Komatsu grad student 2001 Tohoku University (Astronomy Tree)
Hiranya V. Peiris grad student 2003 Princeton
Niyayesh Afshordi grad student 2004 Princeton
Simon J. DeDeo grad student 2006 Princeton
Edwin Sirko grad student 2007 Princeton
Sudeep Das grad student 2008 Princeton
Janice A. Hester grad student 2008 Princeton
Beth A. Reid grad student 2008 Princeton
Aurelien A. Fraisse grad student 2010 Princeton
Khee-Gan Lee grad student 2012 Princeton
Blake D. Sherwin grad student 2013 Princeton
Anirban Roy grad student 2015-2019
Miles Cranmer grad student 2018-2023 Princeton
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Wadekar D, Thiele L, Villaescusa-Navarro F, et al. (2023) Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter. Proceedings of the National Academy of Sciences of the United States of America. 120: e2202074120
Jamieson D, Li Y, He S, et al. (2022) Simple lessons from complex learning: what a neural network model learns about cosmic structure formation. Pnas Nexus. 2: pgac250
Cranmer M, Tamayo D, Rein H, et al. (2021) A Bayesian neural network predicts the dissolution of compact planetary systems. Proceedings of the National Academy of Sciences of the United States of America. 118
Massara E, Villaescusa-Navarro F, Ho S, et al. (2021) Using the Marked Power Spectrum to Detect the Signature of Neutrinos in Large-Scale Structure. Physical Review Letters. 126: 011301
Tamayo D, Cranmer M, Hadden S, et al. (2020) Predicting the long-term stability of compact multiplanet systems. Proceedings of the National Academy of Sciences of the United States of America
Villaescusa-Navarro F, Hahn C, Massara E, et al. (2020) The Quijote simulations Astrophysical Journal Supplement Series. 250: 2
Safarzadeh M, Spergel DN. (2020) Ultra-light Dark Matter Is Incompatible with the Milky Way’s Dwarf Satellites The Astrophysical Journal. 893: 21
Philcox OHE, Massara E, Spergel DN. (2020) What does the marked power spectrum measure? Insights from perturbation theory Physical Review D. 102
Madhavacheril MS, Hill JC, Næss S, et al. (2020) Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effect Physical Review D. 102
Philcox OHE, Spergel DN, Villaescusa-Navarro F. (2020) Effective halo model: Creating a physical and accurate model of the matter power spectrum and cluster counts Physical Review D. 101: 123520
See more...