Year |
Citation |
Score |
2019 |
Moncrief V, Isenberg J. Symmetries of Cosmological Cauchy Horizons with Non-Closed Orbits Communications in Mathematical Physics. 374: 145-186. DOI: 10.1007/S00220-019-03571-9 |
0.472 |
|
2015 |
Moncrief V. Euclidean-signature semi-classical methods for quantum cosmology Surveys in Differential Geometry. 20: 277-319. DOI: 10.4310/Sdg.2015.V20.N1.A12 |
0.37 |
|
2014 |
Rinne O, Moncrief V. Evolution of the einstein equations to future null infinity Springer Proceedings in Physics. 157: 199-206. DOI: 10.1007/978-3-319-06761-2_25 |
0.424 |
|
2013 |
Rinne O, Moncrief V. Hyperboloidal einstein-matter evolution and tails for scalar and Yang-Mills fields Classical and Quantum Gravity. 30. DOI: 10.1088/0264-9381/30/9/095009 |
0.537 |
|
2013 |
Moncrief V. Reflections on the U(1) problem in general relativity Journal of Fixed Point Theory and Applications. 14: 397-418. DOI: 10.1007/S11784-014-0159-2 |
0.472 |
|
2012 |
Moncrief V, Marini A, Maitra R. Modified semi-classical methods for nonlinear quantum oscillations problems Journal of Mathematical Physics. 53. DOI: 10.1063/1.4755836 |
0.593 |
|
2011 |
Andersson L, Moncrief V. Einstein spaces as attractors for the einstein flow Journal of Differential Geometry. 89: 1-47. DOI: 10.4310/Jdg/1324476750 |
0.505 |
|
2011 |
Rinne O, Moncrief V. Evolution of the Einstein equations on constant mean curvature surfaces Oberwolfach Reports. 8: 3093-3096. DOI: 10.4171/Owr/2011/54 |
0.483 |
|
2009 |
Moncrief V, Rinne O. Regularity of the Einstein equations at future null infinity Classical and Quantum Gravity. 26. DOI: 10.1088/0264-9381/26/12/125010 |
0.517 |
|
2008 |
Moncrief V, Isenberg J. Symmetries of higher dimensional black holes Classical and Quantum Gravity. 25. DOI: 10.1088/0264-9381/25/19/195015 |
0.391 |
|
2007 |
Moncrief V. Relativistic Teichmüller theory: a Hamilton-Jacobi approach to 2+1–dimensional Einstein gravity Surveys in Differential Geometry. 12: 203-250. DOI: 10.4310/Sdg.2007.V12.N1.A6 |
0.567 |
|
2006 |
Moncrief V. Analytic reductions of self-force calculations in curved spacetimes Classical and Quantum Gravity. 23: S463-S475. DOI: 10.1088/0264-9381/23/16/S10 |
0.392 |
|
2006 |
Moncrief V. Can one ADM quantize relativistic bosonicstrings and membranes? General Relativity and Gravitation. 38: 561-575. DOI: 10.1007/S10714-006-0247-8 |
0.398 |
|
2005 |
Moncrief V. An integral equation for spacetime curvature in general relativity Surveys in Differential Geometry. 10: 109-146. DOI: 10.4310/Sdg.2005.V10.N1.A5 |
0.535 |
|
2004 |
Choquet-Bruhat Y, Isenberg J, Moncrief V. Topologically general U(1) symmetric vacuum space-times with AVTD behavior Nuovo Cimento Della Societa Italiana Di Fisica B. 119: 625-638. DOI: 10.1393/ncb/i2004-10174-x |
0.392 |
|
2003 |
Tanimoto M, Moncrief V, Yasuno K. Perturbations of spatially closed Bianchi III spacetimes Classical and Quantum Gravity. 20: 1879-1927. DOI: 10.1088/0264-9381/20/9/319 |
0.536 |
|
2003 |
Andersson L, Moncrief V. Elliptic-hyperbolic systems and the Einstein equations Annales Henri Poincare. 4: 1-34. DOI: 10.1007/S00023-003-0120-1 |
0.596 |
|
2002 |
Fischer AE, Moncrief V. Hamiltonian reduction and perturbations of continuously self-similar (n + 1)-dimensional Einstein vacuum spacetimes Classical and Quantum Gravity. 19: 5557-5589. DOI: 10.1088/0264-9381/19/21/318 |
0.436 |
|
2002 |
Isenberg J, Moncrief V. Asymptotic behaviour in polarized and half-polarized U(1) symmetric vacuum spacetimes Classical and Quantum Gravity. 19: 5361-5386. DOI: 10.1088/0264-9381/19/21/305 |
0.383 |
|
2001 |
Fischer AE, Moncrief V. The phase portrait of the reduced Einstein equations International Journal of Modern Physics D. 10: 825-831. DOI: 10.1142/S0218271801001852 |
0.446 |
|
2001 |
Fischer AE, Moncrief V. The reduced Einstein equations and the conformal volume collapse of 3-manifolds Classical and Quantum Gravity. 18: 4493-4515. DOI: 10.1088/0264-9381/18/21/308 |
0.484 |
|
2001 |
Choquet-Bruhat Y, Moncrief V. Future complete Einsteinian space times with U(1) isometry group | Existence globale d'univers en expansion Comptes Rendus De L'Academie Des Sciences - Series I: Mathematics. 332: 137-144. DOI: 10.1016/S0764-4442(00)01786-9 |
0.427 |
|
2001 |
Choquet-Bruhat Y, Moncrief V. Future global in time Einsteinian spacetimes with U(1) isometry group Annales Henri Poincare. 2: 1007-1064. DOI: 10.1007/S00023-001-8602-5 |
0.445 |
|
2000 |
Berger BK, Moncrief V. Signature for local mixmaster dynamics in U(1) symmetric cosmologies Physical Review D - Particles, Fields, Gravitation and Cosmology. 62: 1-9. DOI: 10.1103/Physrevd.62.123501 |
0.35 |
|
2000 |
Berger BK, Moncrief V. Exact U ( 1 ) symmetric cosmologies with local mixmaster dynamics Physical Review D. 62: 23509. DOI: 10.1103/Physrevd.62.023509 |
0.409 |
|
2000 |
Berger BK, Moncrief V. Exact U(1) symmetric cosmologies with local mix-master dynamics Physical Review D - Particles, Fields, Gravitation and Cosmology. 62: 1-8. |
0.318 |
|
2000 |
Fischer AE, Moncrief V. Hamiltonian reduction, the Einstein flow, and collapse of 3-manifolds Nuclear Physics B - Proceedings Supplements. 88: 83-102. |
0.305 |
|
1999 |
Fischer AE, Moncrief V. The Einstein flow, the σ-constant and the geometrization of 3-manifolds Classical and Quantum Gravity. 16: L79-L87. DOI: 10.1088/0264-9381/16/11/102 |
0.459 |
|
1998 |
Berger BK, Garfinkle D, Isenberg J, Moncrief V, Weaver M. The singularity in generic gravitational collapse is spacelike, local and oscillatory Modern Physics Letters A. 13: 1565-1573. DOI: 10.1142/S0217732398001649 |
0.522 |
|
1998 |
Berger BK, Moncrief V. Evidence for an oscillatory singularity in generic U(1) symmetric cosmologies on T3×R Physical Review D. 58. |
0.412 |
|
1997 |
Moncrief V, Nelson JE. Constants of motion and the conformal anti-de Sitter algebra in (2+1)-dimensional gravity International Journal of Modern Physics D. 6: 545-562. DOI: 10.1142/S0218271897000339 |
0.431 |
|
1997 |
Andersson L, Moncrief V, Tromba AJ. On the global evolution problem in 2 + 1 gravity Journal of Geometry and Physics. 23: 191-205. DOI: 10.1016/S0393-0440(97)87804-7 |
0.547 |
|
1997 |
Berger BK, Chruściel PT, Isenberg J, Moncrief V. Global foliations of vacuum spacetimes with T2 isometry Annals of Physics. 260: 117-148. DOI: 10.1006/Aphy.1997.5707 |
0.519 |
|
1997 |
Fischer AE, Moncrief V. Hamiltonian reduction of Einstein's equations of general relativity Nuclear Physics B - Proceedings Supplements. 57: 142-161. |
0.454 |
|
1996 |
Isenberg J, Moncrief V. A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds Classical and Quantum Gravity. 13: 1819-1847. DOI: 10.1088/0264-9381/13/7/015 |
0.501 |
|
1996 |
Fischer AE, Moncrief V. Quantum conformal superspace General Relativity and Gravitation. 28: 221-237. DOI: 10.1007/Bf02105425 |
0.456 |
|
1996 |
Fischer AE, Moncrief V. A method of reduction of Einstein's equations of evolution and a natural symplectic structure on the space of gravitational degrees of freedom General Relativity and Gravitation. 28: 207-219. DOI: 10.1007/Bf02105424 |
0.504 |
|
1995 |
Berger BK, Chrusciel PT, Moncrief V. On "Asymptotically Flat" Space-Times with G2-Invariant Cauchy Surfaces Annals of Physics. 237: 322-354. DOI: 10.1006/Aphy.1995.1012 |
0.4 |
|
1994 |
Grubisic B, Moncrief V. Mixmaster spacetime, Geroch's transformation, and constants of motion. Physical Review D: Particles and Fields. 49: 2792-2800. PMID 10017272 DOI: 10.1103/Physrevd.49.2792 |
0.403 |
|
1993 |
Berger BK, Moncrief V. Numerical investigation of cosmological singularities. Physical Review D: Particles and Fields. 48: 4676-4687. PMID 10016121 DOI: 10.1103/Physrevd.48.4676 |
0.409 |
|
1992 |
Isenberg J, Moncrief V. On spacetimes containing Killing vector fields with non-closed orbits Classical and Quantum Gravity. 9: 1683-1691. DOI: 10.1088/0264-9381/9/7/004 |
0.414 |
|
1992 |
Moncrief V. Boost symmetries in spatially compact spacetimes with a cosmological constant Classical and Quantum Gravity. 9: 2515-2520. DOI: 10.1088/0264-9381/9/11/016 |
0.303 |
|
1991 |
Moncrief V, Ryan MP. Amplitude-real-phase exact solutions for quantum mixmaster universes. Physical Review D: Particles and Fields. 44: 2375-2379. PMID 10014118 DOI: 10.1103/Physrevd.44.2375 |
0.385 |
|
1990 |
Moncrief V. Reduction of the Einstein-Maxwell and Einstein-Maxwell-Higgs equations for cosmological spacetimes with spacelike U(1) isometry groups Classical and Quantum Gravity. 7: 329-352. DOI: 10.1088/0264-9381/7/3/008 |
0.461 |
|
1990 |
Chrusciel PT, Isenberg J, Moncrief V. Strong cosmic censorship in polarised Gowdy spacetimes Classical and Quantum Gravity. 7: 1671-1680. DOI: 10.1088/0264-9381/7/10/003 |
0.54 |
|
1990 |
Moncrief V. How solvable is (2+1)-dimensional Einstein gravity? Journal of Mathematical Physics. 31: 2978-2982. DOI: 10.1063/1.528950 |
0.572 |
|
1990 |
Isenberg J, Moncrief V. Asymptotic behavior of the gravitational field and the nature of singularities in gowdy spacetimes Annals of Physics. 199: 84-122. DOI: 10.1016/0003-4916(90)90369-Y |
0.482 |
|
1989 |
Moncrief V. Reduction of Einstein's equations for nonstationary cylindrical cosmic strings. Physical Review D: Particles and Fields. 39: 429-433. PMID 9959654 DOI: 10.1103/Physrevd.39.429 |
0.543 |
|
1989 |
Moncrief V. Reduction of Einsteins equations for nonstationary cylindrical cosmic strings Physical Review D. 39: 429-433. DOI: 10.1103/PhysRevD.39.429 |
0.463 |
|
1989 |
Moncrief V. Symmetry preserving deformations of generalized Taub-NUT space-times to all orders in perturbation theory Journal of Mathematical Physics. 30: 2297-2314. DOI: 10.1063/1.528559 |
0.561 |
|
1989 |
Moncrief V. Reduction of the Einstein equations in 2+1 dimensions to a Hamiltonian system over Teichmüller space Journal of Mathematical Physics. 30: 2907-2914. DOI: 10.1063/1.528475 |
0.57 |
|
1989 |
Moncrief V. The asymptotic behavior of nonlinear waves near a cosmological Cauchy horizon Journal of Mathematical Physics. 30: 1760-1768. DOI: 10.1063/1.528264 |
0.502 |
|
1986 |
Moncrief V. Reduction of Einstein's equations for vacuum space-times with spacelike U(1) isometry groups Annals of Physics. 167: 118-142. DOI: 10.1016/S0003-4916(86)80009-4 |
0.499 |
|
1986 |
Eardley D, Isenberg J, Marsden J, Moncrief V. Homothetic and conformal symmetries of solutions to Einstein's equations Communications in Mathematical Physics. 106: 137-158. DOI: 10.1007/Bf01210929 |
0.521 |
|
1985 |
Burzlaff J, Moncrief V. The global existence of time-dependent vortex solutions Journal of Mathematical Physics. 26: 1368-1372. DOI: 10.1063/1.526948 |
0.47 |
|
1985 |
Isenberg J, Moncrief V. Symmetries of cosmological Cauchy horizons with exceptional orbits Journal of Mathematical Physics. 26: 1024-1027. DOI: 10.1063/1.526587 |
0.531 |
|
1984 |
Moncrief V. The space of (generalized) Taub-Nut spacetimes Journal of Geometry and Physics. 1: 107-130. DOI: 10.1016/0393-0440(84)90016-0 |
0.493 |
|
1983 |
Moncrief V. Finite-difference approach to solving operator equations of motion in quantum theory Physical Review D. 28: 2485-2490. DOI: 10.1103/Physrevd.28.2485 |
0.506 |
|
1983 |
Moncrief V, Isenberg J. Symmetries of cosmological Cauchy horizons Communications in Mathematical Physics. 89: 387-413. DOI: 10.1007/Bf01214662 |
0.411 |
|
1983 |
Moncrief VE. Classical and quantum models of strong cosmic censorship General Relativity and Gravitation. 15: 309-314. DOI: 10.1007/Bf00759158 |
0.551 |
|
1982 |
Moncrief V. Neighborhoods of Cauchy horizons in cosmological spacetimes with one killing field Annals of Physics. 141: 83-103. DOI: 10.1016/0003-4916(82)90273-1 |
0.549 |
|
1982 |
Arms JM, Marsden JE, Moncrief V. The structure of the space of solutions of Einstein's equations II: several Killing fields and the Einstein-Yang-Mills equations Annals of Physics. 144: 81-106. DOI: 10.1016/0003-4916(82)90105-1 |
0.579 |
|
1982 |
Eardley DM, Moncrief V. The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space - II. Completion of proof Communications in Mathematical Physics. 83: 193-212. DOI: 10.1007/Bf01976041 |
0.438 |
|
1982 |
Eardley DM, Moncrief V. The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space - I. Local existence and smoothness properties Communications in Mathematical Physics. 83: 171-191. DOI: 10.1007/Bf01976040 |
0.493 |
|
1982 |
Isenberg J, Moncrief V. The existence of constant mean curvature foliations of Gowdy 3-torus spacetimes Communications in Mathematical Physics. 86: 485-493. DOI: 10.1007/Bf01214884 |
0.457 |
|
1981 |
Moncrief V. Infinite-dimensional family of vacuum cosmological models with Taub-NUT (Newman-Unti-Tamburino)-type extensions Physical Review D. 23: 312-315. DOI: 10.1103/Physrevd.23.312 |
0.404 |
|
1981 |
Moncrief V. Global properties of Gowdy spacetimes with T3 × R topology Annals of Physics. 132: 87-107. DOI: 10.1016/0003-4916(81)90270-0 |
0.368 |
|
1981 |
Arms JM, Marsden JE, Moncrief V. Symmetry and bifurcations of momentum mappings Communications in Mathematical Physics. 78: 455-478. DOI: 10.1007/Bf02046759 |
0.52 |
|
1981 |
Moncrief V, Eardley DM. The global existence problem and cosmic censorship in general relativity General Relativity and Gravitation. 13: 887-892. DOI: 10.1007/Bf00764275 |
0.482 |
|
1980 |
Demaret J, Moncrief V. Hamiltonian formalism for perfect fluids in general relativity Physical Review D. 21: 2785-2793. DOI: 10.1103/Physrevd.21.2785 |
0.363 |
|
1980 |
Moncrief V. Global existence of Maxwell–Klein–Gordon fields in (2+1)‐dimensional space‐time Journal of Mathematical Physics. 21: 2291-2296. DOI: 10.1063/1.524669 |
0.542 |
|
1979 |
Chodos A, Moncrief V. Geometrical gauge conditions in Yang-Mills theory: Some nonexistence results Journal of Mathematical Physics. 21: 364-371. DOI: 10.1063/1.524424 |
0.394 |
|
1979 |
Moncrief V. Quantum linearization instabilities General Relativity and Gravitation. 10: 93-97. DOI: 10.1007/Bf00756792 |
0.461 |
|
1978 |
Moncrief V. Invariant states and quantized gravitational perturbations Physical Review D. 18: 983-989. DOI: 10.1103/Physrevd.18.983 |
0.414 |
|
1978 |
Moncrief V. Gribov degenracies: Coulomb gauge conditions and initial value constraints Journal of Mathematical Physics. 20: 579-585. DOI: 10.1063/1.524126 |
0.468 |
|
1978 |
Moncrief V. Coherent states and quantum nonperturbing measurements Annals of Physics. 114: 201-214. DOI: 10.1016/0003-4916(78)90266-X |
0.309 |
|
1977 |
Moncrief V. Hamiltonian formalism for relativistic perfect fluids Physical Review D. 16: 1702-1705. DOI: 10.1103/Physrevd.16.1702 |
0.457 |
|
1977 |
Moncrief V. Gauge symmetries of Yang-Mills fields Annals of Physics. 108: 387-400. DOI: 10.1016/0003-4916(77)90018-5 |
0.579 |
|
1975 |
Moncrief V. Gauge-invariant perturbations of Reissner-Nordström black holes Physical Review D. 12: 1526-1537. DOI: 10.1103/PhysRevD.12.1526 |
0.391 |
|
1975 |
Moncrief V. Space-time symmetries and linearization stability of the Einstein equations. II Journal of Mathematical Physics. 17: 1893-1902. DOI: 10.1063/1.522814 |
0.566 |
|
1974 |
Moncrief V. Odd-parity stability of a Reissner-Nordström black hole Physical Review D. 9: 2707-2709. DOI: 10.1103/PhysRevD.9.2707 |
0.439 |
|
1974 |
Moncrief V. Stability of Reissner-Nordström black holes Physical Review D. 10: 1057-1059. DOI: 10.1103/PhysRevD.10.1057 |
0.397 |
|
1974 |
Moncrief V. Decompositions of gravitational perturbations Journal of Mathematical Physics. 16: 1556-1560. DOI: 10.1063/1.522723 |
0.584 |
|
1974 |
Moncrief V. Gravitational perturbations of spherically symmetric systems. I. The exterior problem Annals of Physics. 88: 323-342. DOI: 10.1016/0003-4916(74)90173-0 |
0.489 |
|
1974 |
Moncrief V. Spacetime symmetries and linearization stability of the Einstein equations. I Journal of Mathematical Physics. 16: 493-498. |
0.385 |
|
1972 |
Moncrief V, Teitelboim C. Momentum constraints as integrability conditions for the hamiltonian constraint in general relativity Physical Review D. 6: 966-969. DOI: 10.1103/PhysRevD.6.966 |
0.386 |
|
1972 |
Moncrief V. Redundancy of constraints in the classical and quantum theories of gravitation Physical Review D. 5: 277-281. DOI: 10.1103/Physrevd.5.277 |
0.523 |
|
1972 |
Berger BK, Chitre DM, Moncrief VE, Nutku Y. Hamiltonian formulation of spherically symmetric gravitational fields Physical Review D. 5: 2467-2470. DOI: 10.1103/Physrevd.5.2467 |
0.698 |
|
Show low-probability matches. |