Year |
Citation |
Score |
2014 |
Chen J, Cui X, Shifman M, Vainshtein A. N= (0,2) deformation of (2, 2) sigma models: Geometric structure, holomorphic anomaly, and exact β functions Physical Review D - Particles, Fields, Gravitation and Cosmology. 90. DOI: 10.1103/Physrevd.90.045014 |
0.317 |
|
2014 |
Melnikov K, Vainshtein A, Voloshin M. Remarks on the effect of bound states and threshold in g-2 Physical Review D - Particles, Fields, Gravitation and Cosmology. 90. DOI: 10.1103/Physrevd.90.017301 |
0.315 |
|
2008 |
Dvali G, Redi M, Sibiryakov S, Vainshtein A. Gravity cutoff in theories with large discrete symmetries. Physical Review Letters. 101: 151603. PMID 18999587 DOI: 10.1103/PhysRevLett.101.151603 |
0.33 |
|
2005 |
Smilga A, Vainshtein A. Background field calculations and nonrenormalization theorems in 4d supersymmetric gauge theories and their low-dimensional descendants Nuclear Physics B. 704: 445-474. DOI: 10.1016/j.nuclphysb.2004.10.010 |
0.401 |
|
2002 |
Ritz A, Shifman M, Vainshtein A. Counting domain walls in N=1 super Yang-Mills theory Physical Review D. 66. DOI: 10.1103/Physrevd.66.065015 |
0.328 |
|
2002 |
Deffayet C, Dvali G, Gabadadze G, Vainshtein A. Nonperturbative continuity in graviton mass versus perturbative discontinuity Physical Review D. 65. DOI: 10.1103/Physrevd.65.044026 |
0.301 |
|
2001 |
Vainshtein A, Yung A. Type I superconductivity upon monopole condensation in Seiberg-Witten theory Nuclear Physics B. 614: 3-25. DOI: 10.1016/S0550-3213(01)00394-7 |
0.326 |
|
1999 |
Shifman M, Vainshtein A, Voloshin M. Anomaly and quantum corrections to solitons in two-dimensional theories with minimal supersymmetry Physical Review D - Particles, Fields, Gravitation and Cosmology. 59: 1-25. |
0.478 |
|
1994 |
Vainshtein AI, Zakharov VI. Ultraviolet-renormalon calculus Physical Review Letters. 73: 1207-1210. DOI: 10.1103/PhysRevLett.73.1207 |
0.323 |
|
1991 |
Shifman MA, Vainshtein AI. Comments on the space-symmetry interpretation of the gauge orientations of the instanton in the higgs phase Nuclear Physics, Section B. 362: 21-32. DOI: 10.1016/0550-3213(91)90553-A |
0.328 |
|
1985 |
Vainshtein AD, Shapiro BZ. Higher-dimensional analogs of the theorems of Newton and Ivory Functional Analysis and Its Applications. 19: 17-20. DOI: 10.1007/BF01086020 |
0.382 |
|
Show low-probability matches. |