Year |
Citation |
Score |
2021 |
Liu Z, Yang X, Zhang B, Li W. High Thermal Conductivity of Wurtzite Boron Arsenide Predicted by Including Four-Phonon Scattering with Machine Learning Potential. Acs Applied Materials & Interfaces. PMID 34415723 DOI: 10.1021/acsami.1c11595 |
0.309 |
|
2021 |
Kundu A, Yang X, Ma J, Feng T, Carrete J, Ruan X, Madsen GKH, Li W. Ultrahigh Thermal Conductivity of θ-Phase Tantalum Nitride. Physical Review Letters. 126: 115901. PMID 33798386 DOI: 10.1103/PhysRevLett.126.115901 |
0.302 |
|
2020 |
Wen S, Ma J, Kundu A, Li W. Large lattice thermal conductivity, interplay between phonon-phonon, phonon-electron, and phonon-isotope scatterings, and electrical transport in molybdenum from first principles Physical Review B. 102. DOI: 10.1103/Physrevb.102.064303 |
0.405 |
|
2020 |
Dongre B, Carrete J, Wen S, Ma J, Li W, Mingo N, Madsen GKH. Combined treatment of phonon scattering by electrons and point defects explains the thermal conductivity reduction in highly-doped Si Journal of Materials Chemistry. 8: 1273-1278. DOI: 10.1039/C9Ta11424F |
0.413 |
|
2020 |
Meng F, Sun S, Ma J, Chronister C, He J, Li W. Anisotropic thermoelectric figure-of-merit in Mg3Sb2 Materials Today Physics. 13: 100217. DOI: 10.1016/J.Mtphys.2020.100217 |
0.312 |
|
2020 |
Kundu A, Ma J, Carrete J, Madsen GKH, Li W. Anomalously large lattice thermal conductivity in metallic tungsten carbide and its origin in the electronic structure Materials Today Physics. 13: 100214. DOI: 10.1016/J.Mtphys.2020.100214 |
0.39 |
|
2019 |
Rashid Z, Nissimagoudar AS, Li W. Phonon transport and thermoelectric properties of semiconducting BiTeX (X = S, Se, Te) monolayers. Physical Chemistry Chemical Physics : Pccp. PMID 30799478 DOI: 10.1039/C8Cp05793A |
0.445 |
|
2019 |
Zhu L, Li W, Ding F. Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering. Nanoscale. PMID 30623946 DOI: 10.1039/C8Nr08493A |
0.425 |
|
2019 |
Kundu A, Otte F, Carrete J, Erhart P, Li W, Mingo N, Madsen GKH. Effect of local chemistry and structure on thermal transport in doped GaAs Physical Review Materials. 3. DOI: 10.1103/Physrevmaterials.3.094602 |
0.403 |
|
2019 |
Chen Y, Ma J, Li W. Understanding the thermal conductivity and Lorenz number in tungsten from first principles Physical Review B. 99. DOI: 10.1103/Physrevb.99.020305 |
0.371 |
|
2018 |
Yang X, Li W. Optimizing phonon scattering by tuning surface-interdiffusion-driven intermixing to break the random-alloy limit of thermal conductivity Physical Review Materials. 2. DOI: 10.1103/Physrevmaterials.2.015401 |
0.352 |
|
2018 |
Rashid Z, Zhu L, Li W. Effect of confinement on anharmonic phonon scattering and thermal conductivity in pristine silicon nanowires Physical Review B. 97: 75441. DOI: 10.1103/Physrevb.97.075441 |
0.395 |
|
2018 |
Ma J, Nissimagoudar AS, Li W. First-principles study of electron and hole mobilities of Si and GaAs Physical Review B. 97: 45201. DOI: 10.1103/Physrevb.97.045201 |
0.33 |
|
2017 |
Nissimagoudar A, Ma J, Chen Y, Li W. Thermal transport in monolayer InSe. Journal of Physics. Condensed Matter : An Institute of Physics Journal. PMID 28644149 DOI: 10.1088/1361-648X/Aa7B63 |
0.398 |
|
2016 |
Zhu L, Li B, Li W. Phonon transport in silicon nanowires: The reduced group velocity and surface-roughness scattering Physical Review B. 94. DOI: 10.1103/Physrevb.94.115420 |
0.334 |
|
2016 |
Li W, Carrete J, Madsen GKH, Mingo N. Influence of the optical-acoustic phonon hybridization on phonon scattering and thermal conductivity Physical Review B. 93: 205203. DOI: 10.1103/Physrevb.93.205203 |
0.363 |
|
2016 |
Liu WL, Chen ML, Li XX, Dubey S, Xiong T, Dai ZM, Yin J, Guo WL, Ma JL, Chen YN, Tan J, Li D, Wang ZH, Li W, Bouchiat V, et al. Effect of aging-induced disorder on the quantum transport properties of few-layer WTe 2 Arxiv: Mesoscale and Nanoscale Physics. 4: 11011. DOI: 10.1088/2053-1583/4/1/011011 |
0.304 |
|
2016 |
Carrete J, Li W, Lindsay L, Broido DA, Gallego LJ, Mingo N. Physically founded phonon dispersions of few-layer materials and the case of borophene Materials Research Letters. 4: 204-211. DOI: 10.1080/21663831.2016.1174163 |
0.336 |
|
2016 |
Ding G, Carrete J, Li W, Gao GY, Yao K. Ultralow lattice thermal conductivity in topological insulator TlBiSe2 Applied Physics Letters. 108. DOI: 10.1063/1.4953588 |
0.438 |
|
2016 |
Ma J, Li W, Luo X. Ballistic thermal transport in monolayer transition-metal dichalcogenides: Role of atomic mass Applied Physics Letters. 108: 82102. DOI: 10.1063/1.4942451 |
0.392 |
|
2015 |
Li W, Mingo N. Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe 4 Sb1 2 due to the flat avoided-crossing filler modes Physical Review B. 91: 144304. DOI: 10.1103/Physrevb.91.144304 |
0.354 |
|
2014 |
Carrete J, Li W, Mingo N, Wang S, Curtarolo S. Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling Physical Review X. 4. DOI: 10.1103/Physrevx.4.011019 |
0.342 |
|
2014 |
Li W, Mingo N. Lattice dynamics and thermal conductivity of skutterudites CoSb 3 and IrSb 3 from first principles: Why IrSb 3 is a better thermal conductor than CoSb 3 Physical Review B. 90: 94302. DOI: 10.1103/Physrevb.90.094302 |
0.374 |
|
2014 |
Katcho NA, Carrete J, Li W, Mingo N. Effect of nitrogen and vacancy defects on the thermal conductivity of diamond: Anab initioGreen's function approach Physical Review B. 90. DOI: 10.1103/Physrevb.90.094117 |
0.356 |
|
2014 |
Ma J, Li W, Luo X. Examining the Callaway model for lattice thermal conductivity Physical Review B. 90: 35203. DOI: 10.1103/Physrevb.90.035203 |
0.372 |
|
2014 |
Li W, Mingo N. Thermal conductivity of fully filled skutterudites: Role of the filler Physical Review B. 89: 184304. DOI: 10.1103/Physrevb.89.184304 |
0.371 |
|
2014 |
Lindsay L, Li W, Carrete J, Mingo N, Broido DA, Reinecke TL. Phonon thermal transport in strained and unstrained graphene from first principles Physical Review B - Condensed Matter and Materials Physics. 89. DOI: 10.1103/Physrevb.89.155426 |
0.357 |
|
2014 |
Ma J, Li W, Luo X. Intrinsic thermal conductivity and its anisotropy of wurtzite InN Applied Physics Letters. 105: 82103. DOI: 10.1063/1.4893882 |
0.379 |
|
2013 |
Chen P, Katcho NA, Feser JP, Li W, Glaser M, Schmidt OG, Cahill DG, Mingo N, Rastelli A. Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices. Physical Review Letters. 111: 115901. PMID 24074107 DOI: 10.1103/Physrevlett.111.115901 |
0.343 |
|
2013 |
Li W, Carrete J, Mingo N. Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles Applied Physics Letters. 103: 253103. DOI: 10.1063/1.4850995 |
0.375 |
|
2013 |
Li W, Mingo N. Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles Journal of Applied Physics. 114: 183505. DOI: 10.1063/1.4827419 |
0.372 |
|
2013 |
Li W, Mingo N. Alloy enhanced anisotropy in the thermal conductivity of SixGe1−x nanowires Journal of Applied Physics. 114: 54307. DOI: 10.1063/1.4817523 |
0.374 |
|
2012 |
Li W, Lindsay L, Broido DA, Stewart DA, Mingo N. Thermal conductivity of bulk and nanowire Mg2Si xSn1-x alloys from first principles Physical Review B - Condensed Matter and Materials Physics. 86. DOI: 10.1103/Physrevb.86.174307 |
0.341 |
|
2012 |
Li W, Mingo N, Lindsay L, Broido DA, Stewart DA, Katcho NA. Thermal conductivity of diamond nanowires from first principles Physical Review B - Condensed Matter and Materials Physics. 85. DOI: 10.1103/Physrevb.85.195436 |
0.362 |
|
2012 |
Cruz CAd, Li W, Katcho NA, Mingo N. Role of phonon anharmonicity in time-domain thermoreflectance measurements Applied Physics Letters. 101: 83108. DOI: 10.1063/1.4746275 |
0.322 |
|
2011 |
Sevinçli H, Li W, Mingo N, Cuniberti G, Roche S. Effects of domains in phonon conduction through hybrid boron nitride and graphene sheets Physical Review B. 84. DOI: 10.1103/Physrevb.84.205444 |
0.487 |
|
2011 |
Li W, Sevinçli H, Roche S, Cuniberti G. Efficient linear scaling method for computing the thermal conductivity of disordered materials Physical Review B. 83. DOI: 10.1103/Physrevb.83.155416 |
0.551 |
|
2010 |
Li W, Sevinçli H, Cuniberti G, Roche S. Phonon transport in large scale carbon-based disordered materials: Implementation of an efficient order-Nand real-space Kubo methodology Physical Review B. 82. DOI: 10.1103/Physrevb.82.041410 |
0.541 |
|
2010 |
Nozaki D, Sevinçli H, Li W, Gutiérrez R, Cuniberti G. Engineering the figure of merit and thermopower in single-molecule devices connected to semiconducting electrodes Physical Review B - Condensed Matter and Materials Physics. 81. DOI: 10.1103/Physrevb.81.235406 |
0.449 |
|
Show low-probability matches. |