Year |
Citation |
Score |
2025 |
Sutherland E, Harding CJ, du Monceau de Bergendal T, Florence GJ, Ackermann K, Bode BE, Synowsky S, Sundaramoorthy R, Czekster CM. Broad substrate scope C-C oxidation in cyclodipeptides catalysed by a flavin-dependent filament. Nature Communications. 16: 995. PMID 39856061 DOI: 10.1038/s41467-025-56127-y |
0.73 |
|
2024 |
Antonio Hernández Martínez S, Tang P, Parra-Saldívar R, Melchor-Martínez EM, Czekster CM. Immobilized Nucleoside 2'-Deoxyribosyltransferases from Extremophiles for Nucleoside Biocatalysis. Acs Omega. 10: 1067-1076. PMID 39829460 DOI: 10.1021/acsomega.4c08364 |
0.446 |
|
2024 |
Alvarado-Ramírez L, Sutherland E, Melchor-Martínez EM, Parra-Saldívar R, Bonaccorso AD, Czekster CM. The Immobilization of a Cyclodipeptide Synthase Enables Biocatalysis for Cyclodipeptide Production. Acs Sustainable Chemistry & Engineering. 12: 13080-13089. PMID 39239621 DOI: 10.1021/acssuschemeng.4c01230 |
0.48 |
|
2024 |
Tang P, Harding CJ, Dickson AL, da Silva RG, Harrison DJ, Czekster CM. Snapshots of the Reaction Coordinate of a Thermophilic 2'-Deoxyribonucleoside/ribonucleoside Transferase. Acs Catalysis. 14: 3090-3102. PMID 38449528 DOI: 10.1021/acscatal.3c06260 |
0.76 |
|
2023 |
Simpson MC, Harding CJ, Czekster RM, Remmel L, Bode BE, Czekster CM. Unveiling the Catalytic Mechanism of a Processive Metalloaminopeptidase. Biochemistry. 62: 3188-3205. PMID 37924287 DOI: 10.1021/acs.biochem.3c00420 |
0.722 |
|
2023 |
Harding CJ, Bischoff M, Bergkessel M, Czekster CM. An anti-biofilm cyclic peptide targets a secreted aminopeptidase from P. aeruginosa. Nature Chemical Biology. PMID 37386135 DOI: 10.1038/s41589-023-01373-8 |
0.627 |
|
2023 |
Fisher G, Pečaver E, Read BJ, Leese SK, Laing E, Dickson AL, Czekster CM, da Silva RG. Catalytic Cycle of the Bifunctional Enzyme Phosphoribosyl-ATP Pyrophosphohydrolase/Phosphoribosyl-AMP Cyclohydrolase. Acs Catalysis. 13: 7669-7679. PMID 37288093 DOI: 10.1021/acscatal.3c01111 |
0.768 |
|
2022 |
Sutherland E, Harding CJ, Czekster CM. Active site remodelling of a cyclodipeptide synthase redefines substrate scope. Communications Chemistry. 5: 101. PMID 36518199 DOI: 10.1038/s42004-022-00715-2 |
0.723 |
|
2022 |
Sweeney P, Galliford A, Kumar A, Raju D, Krishna NB, Sutherland E, Leo CJ, Fisher G, Lalitha R, Muthuraj L, Sigamani G, Oehler V, Synowsky S, Shirran SL, Gloster TM, ... Czekster CM, et al. Structure, dynamics, and molecular inhibition of the Staphylococcus aureus mA22-tRNA methyltransferase TrmK. The Journal of Biological Chemistry. 102040. PMID 35595101 DOI: 10.1016/j.jbc.2022.102040 |
0.716 |
|
2021 |
Harding CJ, Sutherland E, Hanna JG, Houston DR, Czekster CM. Correction: Bypassing the requirement for aminoacyl-tRNA by a cyclodipeptide synthase enzyme. Rsc Chemical Biology. 2: 942-943. PMID 34458818 DOI: 10.1039/d1cb90009a |
0.642 |
|
2021 |
Harding CJ, Sutherland E, Hanna JG, Houston DR, Czekster CM. Bypassing the requirement for aminoacyl-tRNA by a cyclodipeptide synthase enzyme. Rsc Chemical Biology. 2: 230-240. PMID 33937777 DOI: 10.1039/d0cb00142b |
0.716 |
|
2020 |
Athukoralage JS, Graham S, Rouillon C, Grüschow S, Czekster CM, White MF. The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling. Elife. 9. PMID 32338598 DOI: 10.7554/Elife.55852 |
0.357 |
|
2020 |
Athukoralage JS, Graham S, Rouillon C, Grüschow S, Czekster CM, White MF. Author response: The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling Elife. DOI: 10.7554/Elife.55852.Sa2 |
0.352 |
|
2019 |
Ge Y, Czekster CM, Miller OK, Botting CH, Schwarz-Linek U, Naismith JH. Insights into the mechanism of the cyanobactin heterocyclase enzyme. Biochemistry. PMID 30912640 DOI: 10.1021/Acs.Biochem.9B00084 |
0.671 |
|
2018 |
Fisher G, Thomson CM, Stroek R, Czekster CM, Hirschi JS, da Silva RG. Allosteric activation shifts the rate-limiting step in a short-form ATP phosphoribosyltransferase. Biochemistry. PMID 29940105 DOI: 10.1021/Acs.Biochem.8B00559 |
0.767 |
|
2018 |
Ludewig H, Czekster CM, Oueis E, Munday ES, Arshad M, Synowsky SA, Bent AF, Naismith JH. Characterization of the fast and promiscuous macrocyclase from plant PCY1 enables the use of simple substrates. Acs Chemical Biology. PMID 29377663 DOI: 10.1021/Acschembio.8B00050 |
0.635 |
|
2018 |
Alphey, Fisher G, Hirschi JS, Stroek R, Ge Y, Gould ER, Czekster CM, Liu H, Florence GJ, Vetticatt MJ, Naismith JH, Silva RGd. Catalytic and Anticatalytic Snapshots of a Short-Form ATP Phosphoribosyltransferase Acs Catalysis. 8: 5601-5610. DOI: 10.2210/Pdb6Fu7/Pdb |
0.668 |
|
2017 |
Czekster CM, Ludewig H, McMahon SA, Naismith JH. Characterization of a dual function macrocyclase enables design and use of efficient macrocyclization substrates. Nature Communications. 8: 1045. PMID 29051530 DOI: 10.1038/S41467-017-00862-4 |
0.679 |
|
2017 |
Carroll CS, Grieve CL, Murugathasan I, Bennet AJ, Czekster CM, Lui H, Naismith J, Moore MM. The rhizoferrin biosynthetic gene in the fungal pathogen Rhizopus delemar is a novel member of the NIS gene family. The International Journal of Biochemistry & Cell Biology. PMID 28610916 DOI: 10.1016/J.Biocel.2017.06.005 |
0.59 |
|
2017 |
Czekster CM, Naismith JH. Kinetic landscape of a peptide-bond-forming prolyl oligopeptidase. Biochemistry. PMID 28332820 DOI: 10.1021/Acs.Biochem.7B00012 |
0.622 |
|
2016 |
Czekster CM, Ge Y, Naismith JH. Mechanisms of cyanobactin biosynthesis. Current Opinion in Chemical Biology. 35: 80-88. PMID 27639115 DOI: 10.1016/J.Cbpa.2016.08.029 |
0.648 |
|
2014 |
Wang Z, Singh P, Czekster CM, Kohen A, Schramm VL. Protein mass-modulated effects in the catalytic mechanism of dihydrofolate reductase: beyond promoting vibrations. Journal of the American Chemical Society. 136: 8333-41. PMID 24820793 DOI: 10.1021/Ja501936D |
0.423 |
|
2012 |
Czekster CM, Blanchard JS. One substrate, five products: Reactions catalyzed by the dihydroneopterin aldolase from Mycobacterium tuberculosis Journal of the American Chemical Society. 134: 19758-19771. PMID 23150985 DOI: 10.1021/Ja308350F |
0.705 |
|
2011 |
Czekster CM, Vandemeulebroucke A, Blanchard JS. Two parallel pathways in the kinetic sequence of the dihydrofolate reductase from mycobacterium tuberculosis Biochemistry. 50: 7045-7056. PMID 21744813 DOI: 10.1021/Bi200608N |
0.638 |
|
2011 |
Magalhães ML, Czekster CM, Guan R, Malashkevich VN, Almo SC, Levy M. Evolved streptavidin mutants reveal key role of loop residue in high-affinity binding. Protein Science : a Publication of the Protein Society. 20: 1145-54. PMID 21520321 DOI: 10.1002/Pro.642 |
0.314 |
|
2011 |
Czekster CM, Vandemeulebroucke A, Blanchard JS. Kinetic and chemical mechanism of the dihydrofolate reductase from Mycobacterium tuberculosis Biochemistry. 50: 367-375. PMID 21138249 DOI: 10.1021/Bi1016843 |
0.602 |
|
2009 |
Czekster CM, Neto BA, Lapis AA, Dupont J, Santos DS, Basso LA. Steady-state kinetics of indole-3-glycerol phosphate synthase from Mycobacterium tuberculosis. Archives of Biochemistry and Biophysics. 486: 19-26. PMID 19364491 DOI: 10.1016/J.Abb.2009.04.001 |
0.635 |
|
2008 |
Czekster CM, Lapis AA, Souza GH, Eberlin MN, Basso LA, Santos DS, Dupont J, Neto BA. The catalytic mechanism of indole-3-glycerol phosphate synthase (IGPS) investigated by electrospray ionization (tandem) mass spectrometry Tetrahedron Letters. 49: 5914-5917. DOI: 10.1016/J.Tetlet.2008.07.149 |
0.634 |
|
2006 |
Dias MV, Canduri F, da Silveira NJ, Czekster CM, Basso LA, Palma MS, Santos DS, de Azevedo WF. Molecular models of tryptophan synthase from mycobacterium tuberculosis complexed with inhibitors. Cell Biochemistry and Biophysics. 44: 375-84. PMID 16679524 DOI: 10.1385/Cbb:44:3:375 |
0.585 |
|
Show low-probability matches. |