Clarissa Melo Czekster - Publications

Affiliations: 
2015-2018 Chemistry University of St. Andrews, Saint Andrews, Scotland, United Kingdom 
 2018- Biology University of St Andrews, Saint Andrews, Scotland, United Kingdom 
Area:
Biochemistry

29 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2025 Sutherland E, Harding CJ, du Monceau de Bergendal T, Florence GJ, Ackermann K, Bode BE, Synowsky S, Sundaramoorthy R, Czekster CM. Broad substrate scope C-C oxidation in cyclodipeptides catalysed by a flavin-dependent filament. Nature Communications. 16: 995. PMID 39856061 DOI: 10.1038/s41467-025-56127-y  0.73
2024 Antonio Hernández Martínez S, Tang P, Parra-Saldívar R, Melchor-Martínez EM, Czekster CM. Immobilized Nucleoside 2'-Deoxyribosyltransferases from Extremophiles for Nucleoside Biocatalysis. Acs Omega. 10: 1067-1076. PMID 39829460 DOI: 10.1021/acsomega.4c08364  0.446
2024 Alvarado-Ramírez L, Sutherland E, Melchor-Martínez EM, Parra-Saldívar R, Bonaccorso AD, Czekster CM. The Immobilization of a Cyclodipeptide Synthase Enables Biocatalysis for Cyclodipeptide Production. Acs Sustainable Chemistry & Engineering. 12: 13080-13089. PMID 39239621 DOI: 10.1021/acssuschemeng.4c01230  0.48
2024 Tang P, Harding CJ, Dickson AL, da Silva RG, Harrison DJ, Czekster CM. Snapshots of the Reaction Coordinate of a Thermophilic 2'-Deoxyribonucleoside/ribonucleoside Transferase. Acs Catalysis. 14: 3090-3102. PMID 38449528 DOI: 10.1021/acscatal.3c06260  0.76
2023 Simpson MC, Harding CJ, Czekster RM, Remmel L, Bode BE, Czekster CM. Unveiling the Catalytic Mechanism of a Processive Metalloaminopeptidase. Biochemistry. 62: 3188-3205. PMID 37924287 DOI: 10.1021/acs.biochem.3c00420  0.722
2023 Harding CJ, Bischoff M, Bergkessel M, Czekster CM. An anti-biofilm cyclic peptide targets a secreted aminopeptidase from P. aeruginosa. Nature Chemical Biology. PMID 37386135 DOI: 10.1038/s41589-023-01373-8  0.627
2023 Fisher G, Pečaver E, Read BJ, Leese SK, Laing E, Dickson AL, Czekster CM, da Silva RG. Catalytic Cycle of the Bifunctional Enzyme Phosphoribosyl-ATP Pyrophosphohydrolase/Phosphoribosyl-AMP Cyclohydrolase. Acs Catalysis. 13: 7669-7679. PMID 37288093 DOI: 10.1021/acscatal.3c01111  0.768
2022 Sutherland E, Harding CJ, Czekster CM. Active site remodelling of a cyclodipeptide synthase redefines substrate scope. Communications Chemistry. 5: 101. PMID 36518199 DOI: 10.1038/s42004-022-00715-2  0.723
2022 Sweeney P, Galliford A, Kumar A, Raju D, Krishna NB, Sutherland E, Leo CJ, Fisher G, Lalitha R, Muthuraj L, Sigamani G, Oehler V, Synowsky S, Shirran SL, Gloster TM, ... Czekster CM, et al. Structure, dynamics, and molecular inhibition of the Staphylococcus aureus mA22-tRNA methyltransferase TrmK. The Journal of Biological Chemistry. 102040. PMID 35595101 DOI: 10.1016/j.jbc.2022.102040  0.716
2021 Harding CJ, Sutherland E, Hanna JG, Houston DR, Czekster CM. Correction: Bypassing the requirement for aminoacyl-tRNA by a cyclodipeptide synthase enzyme. Rsc Chemical Biology. 2: 942-943. PMID 34458818 DOI: 10.1039/d1cb90009a  0.642
2021 Harding CJ, Sutherland E, Hanna JG, Houston DR, Czekster CM. Bypassing the requirement for aminoacyl-tRNA by a cyclodipeptide synthase enzyme. Rsc Chemical Biology. 2: 230-240. PMID 33937777 DOI: 10.1039/d0cb00142b  0.716
2020 Athukoralage JS, Graham S, Rouillon C, Grüschow S, Czekster CM, White MF. The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling. Elife. 9. PMID 32338598 DOI: 10.7554/Elife.55852  0.357
2020 Athukoralage JS, Graham S, Rouillon C, Grüschow S, Czekster CM, White MF. Author response: The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling Elife. DOI: 10.7554/Elife.55852.Sa2  0.352
2019 Ge Y, Czekster CM, Miller OK, Botting CH, Schwarz-Linek U, Naismith JH. Insights into the mechanism of the cyanobactin heterocyclase enzyme. Biochemistry. PMID 30912640 DOI: 10.1021/Acs.Biochem.9B00084  0.671
2018 Fisher G, Thomson CM, Stroek R, Czekster CM, Hirschi JS, da Silva RG. Allosteric activation shifts the rate-limiting step in a short-form ATP phosphoribosyltransferase. Biochemistry. PMID 29940105 DOI: 10.1021/Acs.Biochem.8B00559  0.767
2018 Ludewig H, Czekster CM, Oueis E, Munday ES, Arshad M, Synowsky SA, Bent AF, Naismith JH. Characterization of the fast and promiscuous macrocyclase from plant PCY1 enables the use of simple substrates. Acs Chemical Biology. PMID 29377663 DOI: 10.1021/Acschembio.8B00050  0.635
2018 Alphey, Fisher G, Hirschi JS, Stroek R, Ge Y, Gould ER, Czekster CM, Liu H, Florence GJ, Vetticatt MJ, Naismith JH, Silva RGd. Catalytic and Anticatalytic Snapshots of a Short-Form ATP Phosphoribosyltransferase Acs Catalysis. 8: 5601-5610. DOI: 10.2210/Pdb6Fu7/Pdb  0.668
2017 Czekster CM, Ludewig H, McMahon SA, Naismith JH. Characterization of a dual function macrocyclase enables design and use of efficient macrocyclization substrates. Nature Communications. 8: 1045. PMID 29051530 DOI: 10.1038/S41467-017-00862-4  0.679
2017 Carroll CS, Grieve CL, Murugathasan I, Bennet AJ, Czekster CM, Lui H, Naismith J, Moore MM. The rhizoferrin biosynthetic gene in the fungal pathogen Rhizopus delemar is a novel member of the NIS gene family. The International Journal of Biochemistry & Cell Biology. PMID 28610916 DOI: 10.1016/J.Biocel.2017.06.005  0.59
2017 Czekster CM, Naismith JH. Kinetic landscape of a peptide-bond-forming prolyl oligopeptidase. Biochemistry. PMID 28332820 DOI: 10.1021/Acs.Biochem.7B00012  0.622
2016 Czekster CM, Ge Y, Naismith JH. Mechanisms of cyanobactin biosynthesis. Current Opinion in Chemical Biology. 35: 80-88. PMID 27639115 DOI: 10.1016/J.Cbpa.2016.08.029  0.648
2014 Wang Z, Singh P, Czekster CM, Kohen A, Schramm VL. Protein mass-modulated effects in the catalytic mechanism of dihydrofolate reductase: beyond promoting vibrations. Journal of the American Chemical Society. 136: 8333-41. PMID 24820793 DOI: 10.1021/Ja501936D  0.423
2012 Czekster CM, Blanchard JS. One substrate, five products: Reactions catalyzed by the dihydroneopterin aldolase from Mycobacterium tuberculosis Journal of the American Chemical Society. 134: 19758-19771. PMID 23150985 DOI: 10.1021/Ja308350F  0.705
2011 Czekster CM, Vandemeulebroucke A, Blanchard JS. Two parallel pathways in the kinetic sequence of the dihydrofolate reductase from mycobacterium tuberculosis Biochemistry. 50: 7045-7056. PMID 21744813 DOI: 10.1021/Bi200608N  0.638
2011 Magalhães ML, Czekster CM, Guan R, Malashkevich VN, Almo SC, Levy M. Evolved streptavidin mutants reveal key role of loop residue in high-affinity binding. Protein Science : a Publication of the Protein Society. 20: 1145-54. PMID 21520321 DOI: 10.1002/Pro.642  0.314
2011 Czekster CM, Vandemeulebroucke A, Blanchard JS. Kinetic and chemical mechanism of the dihydrofolate reductase from Mycobacterium tuberculosis Biochemistry. 50: 367-375. PMID 21138249 DOI: 10.1021/Bi1016843  0.602
2009 Czekster CM, Neto BA, Lapis AA, Dupont J, Santos DS, Basso LA. Steady-state kinetics of indole-3-glycerol phosphate synthase from Mycobacterium tuberculosis. Archives of Biochemistry and Biophysics. 486: 19-26. PMID 19364491 DOI: 10.1016/J.Abb.2009.04.001  0.635
2008 Czekster CM, Lapis AA, Souza GH, Eberlin MN, Basso LA, Santos DS, Dupont J, Neto BA. The catalytic mechanism of indole-3-glycerol phosphate synthase (IGPS) investigated by electrospray ionization (tandem) mass spectrometry Tetrahedron Letters. 49: 5914-5917. DOI: 10.1016/J.Tetlet.2008.07.149  0.634
2006 Dias MV, Canduri F, da Silveira NJ, Czekster CM, Basso LA, Palma MS, Santos DS, de Azevedo WF. Molecular models of tryptophan synthase from mycobacterium tuberculosis complexed with inhibitors. Cell Biochemistry and Biophysics. 44: 375-84. PMID 16679524 DOI: 10.1385/Cbb:44:3:375  0.585
Show low-probability matches.