Year |
Citation |
Score |
2024 |
Su L, Kuang S, Zhao Y, Li J, Zhao G, Wang ZL, Zi Y. Self-powered visualized tactile-acoustic sensor for accurate artificial perception with high brightness and record-low detection limit. Science Advances. 10: eadq8989. PMID 39475613 DOI: 10.1126/sciadv.adq8989 |
0.387 |
|
2024 |
Xia X, Zi Y. Heat-Excitation-Based Triboelectric Charge Promotion Strategy. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). e2404489. PMID 39277777 DOI: 10.1002/advs.202404489 |
0.448 |
|
2024 |
He S, Dai J, Wan D, Sun S, Yang X, Xia X, Zi Y. Biomimetic bimodal haptic perception using triboelectric effect. Science Advances. 10: eado6793. PMID 38968360 DOI: 10.1126/sciadv.ado6793 |
0.446 |
|
2024 |
Wan D, Xia X, Wang H, He S, Dong J, Dai J, Guan D, Zheng J, Yang X, Zi Y. A Compact-Sized Fully Self-Powered Wireless Flowmeter Based on Triboelectric Discharge. Small Methods. e2301670. PMID 38634248 DOI: 10.1002/smtd.202301670 |
0.785 |
|
2024 |
Dai J, Xia X, Zhang D, He S, Wan D, Chen F, Zi Y. High-performance self-desalination powered by triboelectric-electromagnetic hybrid nanogenerator. Water Research. 252: 121185. PMID 38295459 DOI: 10.1016/j.watres.2024.121185 |
0.552 |
|
2023 |
Chen C, Zhang H, Xu G, Hou T, Fu J, Wang H, Xia X, Yang C, Zi Y. Passive Internet of Events Enabled by Broadly Compatible Self-Powered Visualized Platform Toward Real-Time Surveillance. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). e2304352. PMID 37870202 DOI: 10.1002/advs.202304352 |
0.752 |
|
2023 |
He J, Guo X, Pan C, Cheng G, Zheng M, Zi Y, Cui H, Li X. High output soft-contact fiber-structure triboelectric nanogenerator and its sterilization application. Nanotechnology. PMID 37339612 DOI: 10.1088/1361-6528/acdfd5 |
0.471 |
|
2023 |
Wen H, Yang X, Huang R, Zheng D, Yuan J, Hong H, Duan J, Zi Y, Tang Q. Universal Energy Solution for Triboelectric Sensors Toward the 5G Era and Internet of Things. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). e2302009. PMID 37246274 DOI: 10.1002/advs.202302009 |
0.343 |
|
2023 |
Choi D, Lee Y, Lin ZH, Cho S, Kim M, Ao CK, Soh S, Sohn C, Jeong CK, Lee J, Lee M, Lee S, Ryu J, Parashar P, Cho Y, ... ... Zi Y, et al. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. Acs Nano. PMID 37219021 DOI: 10.1021/acsnano.2c12458 |
0.746 |
|
2023 |
Xia X, Zhou Z, Shang Y, Yang Y, Zi Y. Metallic glass-based triboelectric nanogenerators. Nature Communications. 14: 1023. PMID 36823296 DOI: 10.1038/s41467-023-36675-x |
0.474 |
|
2022 |
Xu G, Fu J, Li C, Li C, Wang H, Zi Y. Understanding the Time-Lag Behavior of the Breakdown-Discharge Voltage. Acs Applied Materials & Interfaces. PMID 36134895 DOI: 10.1021/acsami.2c11891 |
0.71 |
|
2022 |
Su L, Xiong Q, Wang H, Zi Y. Porous-Structure-Promoted Tribo-Induced High-Performance Self-Powered Tactile Sensor toward Remote Human-Machine Interaction. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). e2203510. PMID 36073821 DOI: 10.1002/advs.202203510 |
0.503 |
|
2022 |
Chen C, Zhao S, Pan C, Zi Y, Wang F, Yang C, Wang ZL. A method for quantitatively separating the piezoelectric component from the as-received "Piezoelectric" signal. Nature Communications. 13: 1391. PMID 35296663 DOI: 10.1038/s41467-022-29087-w |
0.324 |
|
2022 |
Xu G, Guan D, Fu J, Li X, Li A, Ding W, Zi Y. Density of Surface States: Another Key Contributing Factor in Triboelectric Charge Generation. Acs Applied Materials & Interfaces. PMID 35073035 DOI: 10.1021/acsami.1c21359 |
0.773 |
|
2021 |
Wang L, Bian Y, Lim CK, Niu Z, Lee PKH, Chen C, Zhang L, Daoud WA, Zi Y. Tribo-charge enhanced hybrid air filter masks for efficient particulate matter capture with greatly extended service life. Nano Energy. 85: 106015. PMID 36571102 DOI: 10.1016/j.nanoen.2021.106015 |
0.422 |
|
2021 |
Wang H, Wang J, Yao K, Fu J, Xia X, Zhang R, Li J, Xu G, Wang L, Yang J, Lai J, Dai Y, Zhang Z, Li A, Zhu Y, ... ... Zi Y, et al. A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current. Science Advances. 7: eabi6751. PMID 34550743 DOI: 10.1126/sciadv.abi6751 |
0.788 |
|
2021 |
Wu H, Wang S, Wang Z, Zi Y. Achieving ultrahigh instantaneous power density of 10 MW/m by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nature Communications. 12: 5470. PMID 34526498 DOI: 10.1038/s41467-021-25753-7 |
0.361 |
|
2021 |
Wang J, Wang H, Yin K, Zi Y. Tribo-Induced Color Tuner toward Smart Lighting and Self-Powered Wireless Sensing. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 8: 2004970. PMID 34194937 DOI: 10.1002/advs.202004970 |
0.548 |
|
2021 |
Wang J, Wang H, Yin K, Zi Y. Tribo-Induced Color Tuner toward Smart Lighting and Self-Powered Wireless Sensing. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 8: 2004970. PMID 34194937 DOI: 10.1002/advs.202004970 |
0.548 |
|
2021 |
Wang J, Liu P, Meng C, Kwok HS, Zi Y. Tribo-Induced Smart Reflector for Ultrasensitive Self-Powered Wireless Sensing of Air Flow. Acs Applied Materials & Interfaces. PMID 33913332 DOI: 10.1021/acsami.1c04048 |
0.46 |
|
2021 |
Guan D, Xu G, Xia X, Wang J, Zi Y. Boosting the Output Performance of the Triboelectric Nanogenerator through the Nonlinear Oscillator. Acs Applied Materials & Interfaces. PMID 33502169 DOI: 10.1021/acsami.0c21246 |
0.804 |
|
2020 |
Wang L, Liu Y, Liu Q, Zhu Y, Wang H, Xie Z, Yu X, Zi Y. A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing. Microsystems & Nanoengineering. 6: 59. PMID 34567670 DOI: 10.1038/s41378-020-0154-2 |
0.603 |
|
2020 |
Fu J, Xu G, Li C, Xia X, Guan D, Li J, Huang Z, Zi Y. Achieving Ultrahigh Output Energy Density of Triboelectric Nanogenerators in High-Pressure Gas Environment. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 7: 2001757. PMID 33344120 DOI: 10.1002/advs.202001757 |
0.794 |
|
2020 |
Wu H, Chen Z, Xu G, Xu J, Wang Z, Zi Y. Fully Biodegradable Water Droplet Energy Harvester Based on Leaves of Living Plants. Acs Applied Materials & Interfaces. PMID 33264000 DOI: 10.1021/acsami.0c17601 |
0.493 |
|
2020 |
Wang L, Wang Y, Wang H, Xu G, Döring A, Daoud WA, Xu J, Rogach AL, Xi Y, Zi Y. Carbon Dot Based Composite Films for Simultaneously Harvesting Raindrop Energy and Boosting Solar Energy Conversion Efficiency in Hybrid Cells. Acs Nano. PMID 32686934 DOI: 10.1021/Acsnano.0C03986 |
0.675 |
|
2020 |
Zhang H, Marty F, Xia X, Zi Y, Bourouina T, Galayko D, Basset P. Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters. Nature Communications. 11: 3221. PMID 32591516 DOI: 10.1038/S41467-020-17019-5 |
0.595 |
|
2020 |
Wang H, Wang J, Xia X, Guan D, Zi Y. A Multifunctional Self-Powered Switch toward Delay-Characteristic Sensors. Acs Applied Materials & Interfaces. PMID 32337971 DOI: 10.1021/Acsami.0C03053 |
0.805 |
|
2020 |
Wang J, Meng C, Gu Q, Tseng MC, Tang ST, Kwok HS, Cheng J, Zi Y. Normally Transparent Tribo-Induced Smart Window. Acs Nano. PMID 32078294 DOI: 10.1021/Acsnano.0C00107 |
0.558 |
|
2020 |
Xia X, Wang H, Basset P, Zhu Y, Zi Y. An Inductor-Free Output Multiplier for Power Promotion and Management of Triboelectric Nanogenerators toward Self-Powered Systems. Acs Applied Materials & Interfaces. PMID 31913007 DOI: 10.1021/Acsami.9B20060 |
0.676 |
|
2020 |
Wang L, Liu Y, Liu Q, Zhu Y, Wang H, Xie Z, Yu X, Zi Y. A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing Microsystems & Nanoengineering. 6: 1-9. DOI: 10.1038/S41378-020-0154-2 |
0.576 |
|
2020 |
Xia X, Wang H, Guo H, Xu C, Zi Y. On the material-dependent charge transfer mechanism of the contact electrification Nano Energy. 78: 105343. DOI: 10.1016/J.Nanoen.2020.105343 |
0.575 |
|
2019 |
Fu J, Xia X, Xu G, Li X, Zi Y. On the Maximal Output Energy Density of Nanogenerators. Acs Nano. PMID 31609574 DOI: 10.1021/Acsnano.9B06272 |
0.775 |
|
2019 |
Xia X, Fu J, Zi Y. A universal standardized method for output capability assessment of nanogenerators. Nature Communications. 10: 4428. PMID 31562336 DOI: 10.1038/S41467-019-12465-2 |
0.688 |
|
2019 |
Gong Y, Yang Z, Shan X, Sun Y, Xie T, Zi Y. Capturing Flow Energy from Ocean and Wind Energies. 12: 2184. DOI: 10.3390/En12112184 |
0.39 |
|
2019 |
Li X, Lau TH, Guan D, Zi Y. A universal method for quantitative analysis of triboelectric nanogenerators Journal of Materials Chemistry A. 7: 19485-19494. DOI: 10.1039/C9Ta06525C |
0.716 |
|
2019 |
Wang J, Wang H, Li X, Zi Y. Self-powered electrowetting optical switch driven by a triboelectric nanogenerator for wireless sensing Nano Energy. 66: 104140. DOI: 10.1016/J.Nanoen.2019.104140 |
0.676 |
|
2019 |
Chen J, Guo H, Wu Z, Xu G, Zi Y, Hu C, Wang ZL. Actuation and sensor integrated self-powered cantilever system based on TENG technology Nano Energy. 64: 103920. DOI: 10.1016/J.Nanoen.2019.103920 |
0.626 |
|
2019 |
Jiang J, Wang Q, Wang B, Dong J, Li Z, Li X, Zi Y, Li S, Wang X. Direct lift-off and the piezo-phototronic study of InGaN/GaN heterostructure membrane Nano Energy. 59: 545-552. DOI: 10.1016/J.Nanoen.2019.02.066 |
0.493 |
|
2019 |
Xu G, Li X, Xia X, Fu J, Ding W, Zi Y. On the force and energy conversion in triboelectric nanogenerators Nano Energy. 59: 154-161. DOI: 10.1016/J.Nanoen.2019.02.035 |
0.779 |
|
2019 |
Wang H, Zhu Q, Ding Z, Li Z, Zheng H, Fu J, Diao C, Zhang X, Tian J, Zi Y. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning Nano Energy. 57: 616-624. DOI: 10.1016/J.Nanoen.2018.12.078 |
0.681 |
|
2019 |
Chen F, Wu Y, Ding Z, Xia X, Li S, Zheng H, Diao C, Yue G, Zi Y. A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing Nano Energy. 56: 241-251. DOI: 10.1016/J.Nanoen.2018.11.041 |
0.615 |
|
2019 |
Li X, Xu G, Xia X, Fu J, Huang L, Zi Y. Standardization of triboelectric nanogenerators: Progress and perspectives Nano Energy. 56: 40-55. DOI: 10.1016/J.Nanoen.2018.11.029 |
0.768 |
|
2019 |
Liu Y, Wang L, Zhao L, Yao K, Xie Z, Zi Y, Yu X. Thin, Skin‐Integrated, Stretchable Triboelectric Nanogenerators for Tactile Sensing Advanced Electronic Materials. 6: 1901174. DOI: 10.1002/Aelm.201901174 |
0.503 |
|
2019 |
Liu Y, Zhao L, Wang L, Zheng H, Li D, Avila R, Lai KWC, Wang Z, Xie Z, Zi Y, Yu X. Skin‐Integrated Graphene‐Embedded Lead Zirconate Titanate Rubber for Energy Harvesting and Mechanical Sensing Advanced Materials Technologies. 4: 1900744. DOI: 10.1002/Admt.201900744 |
0.573 |
|
2019 |
Xu C, Zhang B, Wang AC, Cai W, Zi Y, Feng P, Wang ZL. Effects of Metal Work Function and Contact Potential Difference on Electron Thermionic Emission in Contact Electrification Advanced Functional Materials. 29: 1903142. DOI: 10.1002/Adfm.201903142 |
0.329 |
|
2019 |
Wu C, Tetik H, Cheng J, Ding W, Guo H, Tao X, Zhou N, Zi Y, Wu Z, Wu H, Lin D, Wang ZL. Electrohydrodynamic Jet Printing Driven by a Triboelectric Nanogenerator Advanced Functional Materials. 29: 1901102. DOI: 10.1002/Adfm.201901102 |
0.302 |
|
2018 |
Cheng J, Ding W, Zi Y, Lu Y, Ji L, Liu F, Wu C, Wang ZL. Triboelectric microplasma powered by mechanical stimuli. Nature Communications. 9: 3733. PMID 30213932 DOI: 10.1038/S41467-018-06198-X |
0.653 |
|
2018 |
Xu C, Wang AC, Zou H, Zhang B, Zhang C, Zi Y, Pan L, Wang P, Feng P, Lin Z, Wang ZL. Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching down Electron Thermionic Emission in Contact-Electrification. Advanced Materials (Deerfield Beach, Fla.). e1803968. PMID 30091484 DOI: 10.1002/Adma.201803968 |
0.341 |
|
2018 |
Bernier MC, Li A, Winalski L, Zi Y, Li Y, Caillet C, Newton P, Wang ZL, Fernández FM. Triboelectric Nanogenerator (TENG) Mass Spectrometry of Falsified Antimalarials. Rapid Communications in Mass Spectrometry : Rcm. PMID 29935091 DOI: 10.1002/Rcm.8207 |
0.356 |
|
2018 |
Zheng H, Zi Y, He X, Guo H, Lai YC, Wang J, Zhang SL, Wu C, Cheng G, Wang ZL. Concurrent Harvesting Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing. Acs Applied Materials & Interfaces. PMID 29659250 DOI: 10.1021/Acsami.8B01635 |
0.818 |
|
2018 |
Chen J, Oh SK, Zou H, Shervin S, Wang W, Pouladi S, Zi Y, Wang ZL, Ryou JH. High-output lead-free flexible piezoelectric generator using single-crystalline GaN thin film. Acs Applied Materials & Interfaces. PMID 29595054 DOI: 10.1021/Acsami.8B01281 |
0.528 |
|
2018 |
Xu C, Zi Y, Wang AC, Zou H, Dai Y, He X, Wang P, Wang YC, Feng P, Li D, Wang ZL. On the Electron-Transfer Mechanism in the Contact-Electrification Effect. Advanced Materials (Deerfield Beach, Fla.). PMID 29508454 DOI: 10.1002/Adma.201706790 |
0.395 |
|
2018 |
Wen Z, Fu J, Han L, Liu Y, Peng M, Zheng L, Zhu Y, Sun X, Zi Y. Toward self-powered photodetection enabled by triboelectric nanogenerators Journal of Materials Chemistry C. 6: 11893-11902. DOI: 10.1039/C8Tc02964D |
0.617 |
|
2018 |
Ding W, Wu C, Zi Y, Zou H, Wang J, Cheng J, Wang AC, Wang ZL. Self-powered wireless optical transmission of mechanical agitation signals Nano Energy. 47: 566-572. DOI: 10.1016/J.Nanoen.2018.03.044 |
0.481 |
|
2018 |
Wu C, Ding W, Liu R, Wang J, Wang AC, Wang J, Li S, Zi Y, Wang ZL. Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array Materials Today. 21: 216-222. DOI: 10.1016/J.Mattod.2018.01.006 |
0.411 |
|
2018 |
He X, Zou H, Geng Z, Wang X, Ding W, Hu F, Zi Y, Xu C, Zhang SL, Yu H, Xu M, Zhang W, Lu C, Wang ZL. A Hierarchically Nanostructured Cellulose Fiber-Based Triboelectric Nanogenerator for Self-Powered Healthcare Products Advanced Functional Materials. 28: 1805540. DOI: 10.1002/Adfm.201805540 |
0.425 |
|
2018 |
Qin H, Cheng G, Zi Y, Gu G, Zhang B, Shang W, Yang F, Yang J, Du Z, Wang ZL. High Energy Storage Efficiency Triboelectric Nanogenerators with Unidirectional Switches and Passive Power Management Circuits Advanced Functional Materials. 28: 1805216. DOI: 10.1002/Adfm.201805216 |
0.484 |
|
2018 |
Zi Y, Wu C, Ding W, Wang X, Dai Y, Cheng J, Wang J, Wang Z, Wang ZL. Field Emission of Electrons Powered by a Triboelectric Nanogenerator Advanced Functional Materials. 28: 1800610. DOI: 10.1002/Adfm.201800610 |
0.389 |
|
2017 |
Dong K, Deng J, Zi Y, Wang YC, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B, Wang ZL. 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors. Advanced Materials (Deerfield Beach, Fla.). PMID 28786510 DOI: 10.1002/Adma.201702648 |
0.541 |
|
2017 |
Zou H, Li X, Peng W, Wu W, Yu R, Wu C, Ding W, Hu F, Liu R, Zi Y, Wang ZL. Piezo-Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis-NIR Broadband Photodiode. Advanced Materials (Deerfield Beach, Fla.). PMID 28585269 DOI: 10.1002/Adma.201701412 |
0.726 |
|
2017 |
Wang X, Peng W, Yu R, Zou H, Dai Y, Zi Y, Wu C, Li S, Wang ZL. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based UV LED by the Piezo-Phototronic Effect. Nano Letters. PMID 28489398 DOI: 10.1021/Acs.Nanolett.7B01004 |
0.656 |
|
2017 |
Guo H, Yeh MH, Zi Y, Wen Z, Chen J, Liu G, Hu C, Wang ZL. Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems. Acs Nano. PMID 28401759 DOI: 10.1021/Acsnano.7B00866 |
0.534 |
|
2017 |
Li A, Zi Y, Guo H, Wang ZL, Fernández FM. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nature Nanotechnology. PMID 28250471 DOI: 10.1038/Nnano.2017.17 |
0.377 |
|
2017 |
Zi Y, Suslov S, Yang C. Understanding Self-Catalyzed Epitaxial Growth of III-V Nanowires Towards Controlled Synthesis. Nano Letters. PMID 28103043 DOI: 10.1021/Acs.Nanolett.6B04817 |
0.396 |
|
2017 |
Zi Y, Wang ZL. Nanogenerators: An emerging technology towards nanoenergy Apl Materials. 5: 074103. DOI: 10.1063/1.4977208 |
0.52 |
|
2017 |
He X, Zi Y, Yu H, Zhang SL, Wang J, Ding W, Zou H, Zhang W, Lu C, Wang ZL. An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction Nano Energy. 39: 328-336. DOI: 10.1016/J.Nanoen.2017.06.046 |
0.512 |
|
2017 |
Xi Y, Wang J, Zi Y, Li X, Han C, Cao X, Hu C, Wang Z. High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator Nano Energy. 38: 101-108. DOI: 10.1016/J.Nanoen.2017.04.053 |
0.473 |
|
2017 |
Wu C, Liu R, Wang J, Zi Y, Lin L, Wang ZL. A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy Nano Energy. 32: 287-293. DOI: 10.1016/J.Nanoen.2016.12.061 |
0.488 |
|
2017 |
Zi Y, Guo H, Wang J, Wen Z, Li S, Hu C, Wang ZL. An inductor-free auto-power-management design built-in triboelectric nanogenerators Nano Energy. 31: 302-310. DOI: 10.1016/J.Nanoen.2016.11.025 |
0.513 |
|
2017 |
Ahmed A, Zhang SL, Hassan I, Saadatnia Z, Zi Y, Zu J, Wang ZL. A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays Extreme Mechanics Letters. 13: 25-35. DOI: 10.1016/J.Eml.2017.01.006 |
0.543 |
|
2017 |
Li S, Wang J, Peng W, Lin L, Zi Y, Wang S, Zhang G, Wang ZL. Sustainable Energy Source for Wearable Electronics Based on Multilayer Elastomeric Triboelectric Nanogenerators Advanced Energy Materials. 7: 1602832. DOI: 10.1002/Aenm.201602832 |
0.528 |
|
2017 |
Xi Y, Guo H, Zi Y, Li X, Wang J, Deng J, Li S, Hu C, Cao X, Wang ZL. Multifunctional TENG for Blue Energy Scavenging and Self-Powered Wind-Speed Sensor Advanced Energy Materials. 7: 1602397. DOI: 10.1002/Aenm.201602397 |
0.479 |
|
2017 |
Zi Y, Wu C, Ding W, Wang ZL. Maximized Effective Energy Output of Contact-Separation-Triggered Triboelectric Nanogenerators as Limited by Air Breakdown Advanced Functional Materials. 27: 1700049. DOI: 10.1002/Adfm.201700049 |
0.495 |
|
2017 |
Zhang SL, Lai Y, He X, Liu R, Zi Y, Wang ZL. Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement Advanced Functional Materials. 27: 1606695. DOI: 10.1002/Adfm.201606695 |
0.72 |
|
2016 |
Guo H, Yeh MH, Lai YC, Zi Y, Wu C, Wen Z, Hu C, Wang ZL. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. Acs Nano. 10: 10580-10588. PMID 27934070 DOI: 10.1021/Acsnano.6B06621 |
0.816 |
|
2016 |
Wen Z, Yeh MH, Guo H, Wang J, Zi Y, Xu W, Deng J, Zhu L, Wang X, Hu C, Zhu L, Sun X, Wang ZL. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances. 2: e1600097. PMID 27819039 DOI: 10.1126/Sciadv.1600097 |
0.5 |
|
2016 |
Wang J, Li S, Yi F, Zi Y, Lin J, Wang X, Xu Y, Wang ZL. Sustainably powering wearable electronics solely by biomechanical energy. Nature Communications. 7: 12744. PMID 27677971 DOI: 10.1038/Ncomms12744 |
0.51 |
|
2016 |
Li S, Peng W, Wang J, Lin L, Zi Y, Zhang G, Wang ZL. All-Elastomer-Based Triboelectric Nanogenerator as a Keyboard Cover to Harvest Typing Energy. Acs Nano. PMID 27490707 DOI: 10.1021/Acsnano.6B03926 |
0.494 |
|
2016 |
Yi F, Wang X, Niu S, Li S, Yin Y, Dai K, Zhang G, Lin L, Wen Z, Guo H, Wang J, Yeh MH, Zi Y, Liao Q, You Z, et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Science Advances. 2: e1501624. PMID 27386560 DOI: 10.1126/Sciadv.1501624 |
0.624 |
|
2016 |
Wen Z, Guo H, Zi Y, Yeh MH, Wang X, Deng J, Wang J, Li S, Hu C, Zhu L, Wang ZL. Harvesting Broad Frequency-Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator. Acs Nano. PMID 27267558 DOI: 10.1021/Acsnano.6B03293 |
0.567 |
|
2016 |
Zi Y, Guo H, Wen Z, Yeh MH, Hu C, Wang ZL. Harvesting Low-Frequency (< 5 Hertz) Irregular Mechanical Energy: A Possible Killer-Application of Triboelectric Nanogenerator. Acs Nano. PMID 27077467 DOI: 10.1021/Acsnano.6B01569 |
0.48 |
|
2016 |
Zi Y, Wang J, Wang S, Li S, Wen Z, Guo H, Wang ZL. Effective energy storage from a triboelectric nanogenerator. Nature Communications. 7: 10987. PMID 26964693 DOI: 10.1038/Ncomms10987 |
0.51 |
|
2016 |
Li S, Zhou Y, Zi Y, Zhang G, Wang ZL. Excluding Contact Electrification in Surface Potential Measurement Using Scanning Kelvin Probe Microscopy. Acs Nano. PMID 26824304 DOI: 10.1021/Acsnano.5B07418 |
0.362 |
|
2016 |
Wang S, Zi Y, Zhou YS, Li S, Fan F, Lin L, Wang ZL. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators Journal of Materials Chemistry A. 4: 3728-3734. DOI: 10.1039/C5Ta10239A |
0.751 |
|
2016 |
Ahmed A, Saadatnia Z, Hassan I, Zi Y, Xi Y, He X, Zu J, Wang ZL. Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy Advanced Energy Materials. 7: 1601705. DOI: 10.1002/Aenm.201601705 |
0.486 |
|
2016 |
Jiang T, Tang W, Chen X, Bao Han C, Lin L, Zi Y, Wang ZL. Figures-of-Merit for Rolling-Friction-Based Triboelectric Nanogenerators Advanced Materials Technologies. 1: 1600017. DOI: 10.1002/Admt.201600017 |
0.48 |
|
2016 |
He X, Zi Y, Guo H, Zheng H, Xi Y, Wu C, Wang J, Zhang W, Lu C, Wang ZL. A Highly Stretchable Fiber-Based Triboelectric Nanogenerator for Self-Powered Wearable Electronics Advanced Functional Materials. 27: 1604378. DOI: 10.1002/Adfm.201604378 |
0.451 |
|
2016 |
Wang J, Wen Z, Zi Y, Lin L, Wu C, Guo H, Xi Y, Xu Y, Wang ZL. Self-Powered Electrochemical Synthesis of Polypyrrole from the Pulsed Output of a Triboelectric Nanogenerator as a Sustainable Energy System Advanced Functional Materials. DOI: 10.1002/Adfm.201600021 |
0.551 |
|
2016 |
Wang J, Wen Z, Zi Y, Zhou P, Lin J, Guo H, Xu Y, Wang ZL. All-Plastic-Materials Based Self-Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors Advanced Functional Materials. 26: 1070-1076. DOI: 10.1002/Adfm.201504675 |
0.45 |
|
2015 |
Zi Y, Niu S, Wang J, Wen Z, Tang W, Wang ZL. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nature Communications. 6: 8376. PMID 26406279 DOI: 10.1038/Ncomms9376 |
0.478 |
|
2015 |
Lin T, Ramadurgam S, Liao CS, Zi Y, Yang C. Fabrication of Sub-25 nm Diameter GaSb Nanopillar Arrays by Nanoscale Self-Mask Effect. Nano Letters. 15: 4993-5000. PMID 26218265 DOI: 10.1021/Acs.Nanolett.5B00967 |
0.431 |
|
2015 |
Wang J, Li X, Zi Y, Wang S, Li Z, Zheng L, Yi F, Li S, Wang ZL. A Flexible Fiber-Based Supercapacitor-Triboelectric-Nanogenerator Power System for Wearable Electronics. Advanced Materials (Deerfield Beach, Fla.). PMID 26175123 DOI: 10.1002/Adma.201501934 |
0.466 |
|
2015 |
Li S, Wang S, Zi Y, Wen Z, Lin L, Zhang G, Wang ZL. Largely Improving the Robustness and Lifetime of Triboelectric Nanogenerators through Automatic Transition between Contact and Noncontact Working States. Acs Nano. PMID 26098784 DOI: 10.1021/Acsnano.5B02575 |
0.421 |
|
2015 |
Yang PK, Lin L, Yi F, Li X, Pradel KC, Zi Y, Wu CI, He JH, Zhang Y, Wang ZL. A Flexible, Stretchable and Shape-Adaptive Approach for Versatile Energy Conversion and Self-Powered Biomedical Monitoring. Advanced Materials (Deerfield Beach, Fla.). 27: 3817-24. PMID 25981405 DOI: 10.1002/Adma.201500652 |
0.517 |
|
2015 |
Zi Y, Lin L, Wang J, Wang S, Chen J, Fan X, Yang PK, Yi F, Wang ZL. Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Advanced Materials (Deerfield Beach, Fla.). 27: 2340-7. PMID 25727070 DOI: 10.1002/Adma.201500121 |
0.607 |
|
2015 |
Chen J, Yang J, Li Z, Fan X, Zi Y, Jing Q, Guo H, Wen Z, Pradel KC, Niu S, Wang ZL. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. Acs Nano. 9: 3324-31. PMID 25719956 DOI: 10.1021/Acsnano.5B00534 |
0.545 |
|
2015 |
Guo H, Wen Z, Zi Y, Yeh MH, Wang J, Zhu L, Hu C, Wang ZL. A Water-Proof Triboelectric-Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments Advanced Energy Materials. DOI: 10.1002/Aenm.201501593 |
0.534 |
|
2015 |
Yi F, Lin L, Niu S, Yang PK, Wang Z, Chen J, Zhou Y, Zi Y, Wang J, Liao Q, Zhang Y, Wang ZL. Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors Advanced Functional Materials. 25: 3688-3696. DOI: 10.1002/Adfm.201500428 |
0.585 |
|
2014 |
Delker CJ, Zi Y, Yang C, Janes DB. Current and noise properties of InAs nanowire transistors with asymmetric contacts induced by gate overlap Ieee Transactions On Electron Devices. 61: 884-889. DOI: 10.1109/Ted.2013.2296298 |
0.381 |
|
2013 |
Zi Y, Jung K, Zakharov D, Yang C. Understanding self-aligned planar growth of InAs nanowires. Nano Letters. 13: 2786-91. PMID 23634940 DOI: 10.1021/Nl4010332 |
0.416 |
|
2013 |
Delker CJ, Zi Y, Yang C, Janes DB. Low-frequency noise contributions from channel and contacts in InAs nanowire transistors Ieee Transactions On Electron Devices. 60: 2900-2905. DOI: 10.1109/Ted.2013.2274009 |
0.352 |
|
2012 |
Zhao Y, Candebat D, Delker C, Zi Y, Janes D, Appenzeller J, Yang C. Understanding the impact of Schottky barriers on the performance of narrow bandgap nanowire field effect transistors. Nano Letters. 12: 5331-6. PMID 22950905 DOI: 10.1021/Nl302684S |
0.609 |
|
2012 |
Zi Y, Zhao Y, Candebat D, Appenzeller J, Yang C. Synthesis of antimony-based nanowires using the simple vapor deposition method. Chemphyschem : a European Journal of Chemical Physics and Physical Chemistry. 13: 2585-8. PMID 22438329 DOI: 10.1002/Cphc.201101042 |
0.574 |
|
Show low-probability matches. |