Year |
Citation |
Score |
2019 |
Rivera-Rivera LA, Wagner AF, Perry JW. Normal mode analysis on the relaxation of an excited nitromethane molecule in argon bath. The Journal of Chemical Physics. 151: 034303. PMID 31325951 DOI: 10.1063/1.5099050 |
0.327 |
|
2019 |
Chitsazi R, Wagner AF. Pressure effects on the vibrational and rotational relaxation of vibrationally excited OH (ν, J) in an argon bath. The Journal of Chemical Physics. 150: 114303. PMID 30902000 DOI: 10.1063/1.5063923 |
0.389 |
|
2018 |
Keçeli M, Corsetti F, Campos C, Roman JE, Zhang H, Vázquez-Mayagoitia Á, Zapol P, Wagner AF. SIESTA-SIPs: Massively parallel spectrum-slicing eigensolver for an ab initio molecular dynamics package. Journal of Computational Chemistry. 39: 1806-1814. PMID 30141534 DOI: 10.1002/Jcc.25350 |
0.659 |
|
2018 |
Jasper AW, Gruey ZB, Harding LB, Georgievskii Y, Klippenstein SJ, Wagner AF. Anharmonic Rovibrational Partition Functions for Fluxional Species at High Temperatures via Monte Carlo Phase Space Integrals. The Journal of Physical Chemistry. A. PMID 29356534 DOI: 10.1021/Acs.Jpca.7B11722 |
0.649 |
|
2016 |
Fang Z, Both J, Li S, Yue S, Aprà E, Keçeli M, Wagner AF, Dixon DA. Benchmark Calculations of Energetic Properties of Groups 4 and 6 Transition Metal Oxide Nanoclusters Including Comparison to Density Functional Theory. Journal of Chemical Theory and Computation. PMID 27384926 DOI: 10.1021/Acs.Jctc.6B00464 |
0.677 |
|
2015 |
Keçeli M, Zhang H, Zapol P, Dixon DA, Wagner AF. Shift-and-invert parallel spectral transformation eigensolver: Massively parallel performance for density-functional based tight-binding. Journal of Computational Chemistry. PMID 26576689 DOI: 10.1002/Jcc.24254 |
0.655 |
|
2015 |
Rivera-Rivera LA, Wagner AF, Sewell TD, Thompson DL. Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath. The Journal of Chemical Physics. 142: 014303. PMID 25573557 DOI: 10.1063/1.4904314 |
0.372 |
|
2014 |
Wagner AF, Dawes R, Continetti RE, Guo H. Theoretical/experimental comparison of deep tunneling decay of quasi-bound H(D)OCO to H(D) + CO₂. The Journal of Chemical Physics. 141: 054304. PMID 25106584 DOI: 10.1063/1.4891675 |
0.42 |
|
2013 |
Wagner AF. Improved multidimensional semiclassical tunneling theory. The Journal of Physical Chemistry. A. 117: 13089-100. PMID 24224758 DOI: 10.1021/Jp409720S |
0.392 |
|
2013 |
Perry JW, Dawes R, Wagner AF, Thompson DL. A classical trajectory study of the intramolecular dynamics, isomerization, and unimolecular dissociation of HO2. The Journal of Chemical Physics. 139: 084319. PMID 24007009 DOI: 10.1063/1.4818879 |
0.448 |
|
2013 |
Wagner AF, Rivera-Rivera LA, Bachellerie D, Perry JW, Thompson DL. A classical trajectory study of the dissociation and isomerization of C2H5. The Journal of Physical Chemistry. A. 117: 11624-39. PMID 23448205 DOI: 10.1021/Jp3099889 |
0.439 |
|
2011 |
Sivaramakrishnan R, Michael JV, Wagner AF, Dawes R, Jasper AW, Harding LB, Georgievskii Y, Klippenstein SJ. Roaming radicals in the thermal decomposition of dimethyl ether: Experiment and theory Combustion and Flame. 158: 618-632. DOI: 10.1016/J.Combustflame.2010.12.017 |
0.686 |
|
2009 |
Dawes R, Wagner AF, Thompson DL. Ab initio wavenumber accurate spectroscopy: 1CH2 and HCN vibrational levels on automatically generated IMLS potential energy surfaces. The Journal of Physical Chemistry. A. 113: 4709-21. PMID 19371124 DOI: 10.1021/Jp900409R |
0.399 |
|
2009 |
Dawes R, Passalacqua A, Wagner AF, Sewell TD, Minkoff M, Thompson DL. Interpolating moving least-squares methods for fitting potential energy surfaces: using classical trajectories to explore configuration space. The Journal of Chemical Physics. 130: 144107. PMID 19368429 DOI: 10.1063/1.3111261 |
0.408 |
|
2009 |
Shepard R, Bair RA, Eades RA, Wagner AF, Davis MJ, Harding LB, Dunning TH. Quantum chemical calculations using the floating point systems, Inc. Model 164 attached processor International Journal of Quantum Chemistry. 24: 613-622. DOI: 10.1002/Qua.560240865 |
0.655 |
|
2008 |
Dawes R, Thompson DL, Wagner AF, Minkoff M. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions. The Journal of Chemical Physics. 128: 084107. PMID 18315033 DOI: 10.1063/1.2831790 |
0.376 |
|
2007 |
Guo Y, Tokmakov I, Thompson DL, Wagner AF, Minkoff M. Interpolating moving least-squares methods for fitting potential energy surfaces: Improving efficiency via local approximants. The Journal of Chemical Physics. 127: 214106. PMID 18067348 DOI: 10.1063/1.2805084 |
0.366 |
|
2007 |
Dawes R, Thompson DL, Guo Y, Wagner AF, Minkoff M. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points. The Journal of Chemical Physics. 126: 184108. PMID 17508793 DOI: 10.1063/1.2730798 |
0.388 |
|
2007 |
Guo Y, Harding LB, Wagner AF, Minkoff M, Thompson DL. Interpolating moving least-squares methods for fitting potential energy surfaces: an application to the H2CN unimolecular reaction. The Journal of Chemical Physics. 126: 104105. PMID 17362059 DOI: 10.1063/1.2698393 |
0.655 |
|
2007 |
Tokmakov IV, Wagner AF, Minkoff M, Thompson DL. Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces Theoretical Chemistry Accounts. 118: 755-767. DOI: 10.1007/S00214-007-0358-7 |
0.394 |
|
2006 |
Kawano A, Tokmakov IV, Thompson DL, Wagner AF, Minkoff M. Interpolating moving least-squares methods for fitting potential-energy surfaces: further improvement of efficiency via cutoff strategies. The Journal of Chemical Physics. 124: 054105. PMID 16468849 DOI: 10.1063/1.2162171 |
0.336 |
|
2005 |
Michael JV, Su MC, Sutherland JW, Harding LB, Wagner AF. Rate constants for D + C2H4 → C2H3D + H at high temperature: Implications to the high pressure rate constant for H + C2H4 → C2H5 Proceedings of the Combustion Institute. 30: 965-973. DOI: 10.1016/j.proci.2004.08.213 |
0.515 |
|
2004 |
Maisuradze GG, Kawano A, Thompson DL, Wagner AF, Minkoff M. Interpolating moving least-squares methods for fitting potential energy surfaces: Analysis of an application to a six-dimensional system. The Journal of Chemical Physics. 121: 10329-38. PMID 15549910 DOI: 10.1063/1.1810477 |
0.369 |
|
2004 |
Tilson JL, Naleway C, Seth M, Shepard R, Wagner AF, Ermler WC. Ab initio study of AmCl(+): f-f spectroscopy and chemical binding. The Journal of Chemical Physics. 121: 5661-75. PMID 15366990 DOI: 10.1063/1.1665420 |
0.338 |
|
2004 |
Guo Y, Kawano A, Thompson DL, Wagner AF, Minkoff M. Interpolating moving least-squares methods for fitting potential energy surfaces: applications to classical dynamics calculations. The Journal of Chemical Physics. 121: 5091-7. PMID 15352800 DOI: 10.1063/1.1777572 |
0.427 |
|
2004 |
Kawano A, Guo Y, Thompson DL, Wagner AF, Minkoff M. Improving the accuracy of interpolated potential energy surfaces by using an analytical zeroth-order potential function. The Journal of Chemical Physics. 120: 6414-22. PMID 15267530 DOI: 10.1063/1.1667458 |
0.347 |
|
2004 |
Duchovic RJ, Volobuev YL, Lynch GC, Truhlar DG, Allison TC, Wagner AF, Garrett BC, Corchado JC. A correction to the POTLIB Library described in “POTLIB 2001: A potential energy surface library for chemical systems” Computer Physics Communications. 156: 319-322. DOI: 10.1016/S0010-4655(03)00434-X |
0.33 |
|
2003 |
Maisuradze GG, Thompson DL, Wagner AF, Minkoff M. Interpolating moving least-squares methods for fitting potential energy surfaces: Detailed analysis of one-dimensional applications Journal of Chemical Physics. 119: 10002-10014. DOI: 10.1063/1.1617271 |
0.361 |
|
2003 |
Michael JV, Su MC, Sutherland JW, Harding LB, Wagner AF. Rate constants for D + C2H2 → C2HD + H at high temperature: Implications to the high pressure rate constant for H + C2H2 → C2H3 Journal of Physical Chemistry A. 107: 10533-10543. DOI: 10.1021/Jp035170N |
0.586 |
|
2002 |
Robertson SH, Wardlaw DM, Wagner AF. Flexible transition state theory for a variable reaction coordinate: Derivation of canonical and microcanonical forms with angular momentum conservation Journal of Chemical Physics. 117: 593-605. DOI: 10.1063/1.1480271 |
0.365 |
|
2002 |
Tilson JL, Naleway C, Seth M, Shepard R, Wagner AF, Ermler WC. An ab initio study of the f-f spectroscopy of americium +3 Journal of Chemical Physics. 116: 5494-5502. DOI: 10.1063/1.1455620 |
0.349 |
|
2002 |
Naleway C, Seth M, Shepard R, Wagner AF, Tilson JL, Ermler WC, Brozell SR. An ab initio study of the ionization potentials and f-f spectroscopy of europium atoms and ions Journal of Chemical Physics. 116: 5481-5493. DOI: 10.1063/1.1455619 |
0.355 |
|
2002 |
Michael JV, Su MC, Sutherland JW, Carroll JJ, Wagner AF. Rate constants for H + O2 + M → HO2 + M in seven bath gases Journal of Physical Chemistry A. 106: 5297-5313. DOI: 10.1021/Jp020229W |
0.336 |
|
2002 |
Su MC, Kumaran SS, Lim KP, Michael JV, Wagner AF, Harding LB, Fang DC. Rate constants, 1100 ≤ T ≤ 2000 K, for H + NO2 → OH + NO using two shock tube techniques: Comparison of theory to experiment Journal of Physical Chemistry A. 106: 8261-8270. DOI: 10.1021/Jp0141023 |
0.608 |
|
2002 |
Ruscic B, Wagner AF, Harding LB, Asher RL, Feller D, Dixon DA, Peterson KA, Song Y, Qian X, Ng CY, Liu J, Chen W, Schwenke DW. On the enthalpy of formation of hydroxyl radical and gas-phase bond dissociation energies of water and hydroxyl Journal of Physical Chemistry A. 106: 2727-2747. DOI: 10.1021/Jp013909S |
0.587 |
|
2002 |
Robertson S, Wagner AF, Wardlaw DM. Flexible transition state theory for a variable reaction coordinate: Analytical expressions and an application Journal of Physical Chemistry A. 106: 2598-2613. DOI: 10.1021/Jp0116858 |
0.382 |
|
2001 |
Lester MI, Pond BV, Marshall MD, Anderson DT, Harding LB, Wagner AF. Mapping the OH + CO-->HOCO reaction pathway through IR spectroscopy of the OH-CO reactant complex. Faraday Discussions. 373-85; discussion 4. PMID 11605276 |
0.571 |
|
2001 |
Lester MI, Pond BV, Marshall MD, Anderson DT, Harding LB, Wagner AF. Mapping the OH + CO → HOCO reaction pathway through IR spectroscopy of the OH–CO reactant complex Faraday Discussions. 118: 373-385. DOI: 10.1039/B009421H |
0.611 |
|
2001 |
Ruscic B, Feller D, Dixon DA, Peterson KA, Harding LB, Asher RL, Wagner AF. Evidence for a Lower Enthalpy of Formation of Hydroxyl Radical and a Lower Gas-Phase Bond Dissociation Energy of Water The Journal of Physical Chemistry A. 105: 1-4. DOI: 10.1021/Jp003711S |
0.619 |
|
2001 |
Kiefer JH, Tranter RS, Wang H, Wagner AF. Thermodynamic functions for the cyclopentadienyl radical: The effect of Jahn-Teller distortion International Journal of Chemical Kinetics. 33: 834-845. DOI: 10.1002/Kin.10006 |
0.418 |
|
2001 |
Ruscic B, Feller D, Dixon DA, Peterson KA, Harding LB, Asher RL, Wagner AF. ChemInform Abstract: Evidence for a Lower Enthalpy of Formation of Hydroxyl Radical and a Lower Gas-Phase Bond Dissociation Energy of Water. Cheminform. 32: no-no. DOI: 10.1002/chin.200115014 |
0.518 |
|
2000 |
Tilson JL, Shepard R, Naleway C, Wagner AF, Ermler WC. Ab initio determination of americium ionization potentials Journal of Chemical Physics. 112: 2292-2300. DOI: 10.1063/1.480793 |
0.37 |
|
2000 |
Lester MI, Pond BV, Anderson DT, Harding LB, Wagner AF. Exploring the OH+CO reaction coordinate via infrared spectroscopy of the OH-CO reactant complex Journal of Chemical Physics. 113: 9889-9892. DOI: 10.1063/1.1330235 |
0.577 |
|
2000 |
Robertson S, Wagner AF, Wardlaw DM. Flexible transition state theory for a variable reaction coordinate: Derivation of canonical and microcanonical forms The Journal of Chemical Physics. 113: 2648-2661. DOI: 10.1063/1.1305865 |
0.379 |
|
2000 |
Michael J, Sutherland J, Harding L, Wagner A. Initiation in H2/O2: Rate constants for H2+O2→H+HO2 at high temperature Proceedings of the Combustion Institute. 28: 1471-1478. DOI: 10.1016/S0082-0784(00)80543-3 |
0.526 |
|
1997 |
Bethardy GA, Wagner AF, Schatz GC, Horst MAt. A quasiclassical trajectory study of product state distributions from the CN+H2→HCN+H reaction Journal of Chemical Physics. 106: 6001-6015. DOI: 10.1063/1.473264 |
0.44 |
|
1997 |
Wagner AF, Harding LB, Robertson SH, Wardlaw DM. The influence of hindered rotations on recombination/dissociation kinetics Berichte Der Bunsengesellschaft FüR Physikalische Chemie. 101: 391-399. DOI: 10.1002/bbpc.19971010311 |
0.494 |
|
1996 |
Kiefer JH, Mudipalli PS, Wagner AF, Harding L. Importance of hindered rotations in the thermal dissociation of small unsaturated molecules: Classical formulation and application to HCN and HCCH Journal of Chemical Physics. 105: 8075-8096. DOI: 10.1063/1.472662 |
0.623 |
|
1996 |
Su M, Kumaran SS, Lim KP, Michael JV, Wagner AF, Dixon DA, Kiefer JH, DiFelice J. Thermal Decomposition of CF2HCl The Journal of Physical Chemistry. 100: 15827-15833. DOI: 10.1021/Jp9613293 |
0.334 |
|
1996 |
Kumaran SS, Su MC, Lim KP, Michael JV, Wagner AF. Thermal decomposition of CFCl3 Journal of Physical Chemistry. 100: 7533-7540. DOI: 10.1021/Jp960023T |
0.339 |
|
1995 |
Robertson SH, Wagner AF, Wardlaw DM. Canonical flexible transition state theory revisited The Journal of Chemical Physics. 103: 2917-2928. DOI: 10.1063/1.470479 |
0.434 |
|
1995 |
Robertson SH, Wagner AF, Wardlaw DM. Canonical flexible transition-state theory for generalized reaction paths Faraday Discussions. 102: 65-83. DOI: 10.1039/Fd9950200065 |
0.391 |
|
1995 |
Kumaran SS, Lim KP, Michael JV, Wagner AF. Thermal decomposition of CF2Cl2 Journal of Physical Chemistry. 99: 8673-8680. DOI: 10.1021/J100021A036 |
0.3 |
|
1995 |
Burleigh DC, Wagner AF. An adaptation of the log-derivative method to massively parallel computers Chemical Physics Letters. 245: 679-687. DOI: 10.1016/0009-2614(95)01032-5 |
0.311 |
|
1994 |
Alexander MH, Kearney WR, Wagner AF. Theoretical studies of He(1S)+CH(X 2Π). II. Fully ab initio cross sections for the inelastic scattering and comparison with experiment Journal of Chemical Physics. 100: 1338-1349. DOI: 10.1063/1.466611 |
0.369 |
|
1994 |
Wagner AF, Dunning TH, Kok RA. Theoretical studies of He(1S)+CH(X 2Π). I. Ab initio potential energy surfaces The Journal of Chemical Physics. 100: 1326-1337. DOI: 10.1063/1.466610 |
0.616 |
|
1993 |
Irdam EA, Kiefer JH, Harding LB, Wagner AF. The formaldehyde decomposition chain mechanism International Journal of Chemical Kinetics. 25: 285-303. DOI: 10.1002/Kin.550250408 |
0.626 |
|
1992 |
Cho S, Wagner AF, Gazdy B, Bowman JM. Isolated resonance decomposition of a multichannel S matrix: A test from the scattering of H+CO=HCO The Journal of Chemical Physics. 96: 2812-2818. DOI: 10.1063/1.461977 |
0.36 |
|
1992 |
Cho S, Wagner AF, Gazdy B, Bowman JM. Theoretical studies of the reactivity and spectroscopy of H+CO=HCO. I. Stabilization and scattering studies of resonances for J=0 on the Harding ab initio surface The Journal of Chemical Physics. 96: 2799-2811. DOI: 10.1063/1.461976 |
0.334 |
|
1991 |
Kudla K, Schatz GC, Wagner AF. A quasiclassical trajectory study of the OH+CO reaction Journal of Chemical Physics. 95: 1635-1647. DOI: 10.1063/1.461076 |
0.428 |
|
1991 |
Gazdy B, Bowman JM, Cho S, Wagner AF. Theoretical stabilization and scattering studies of resonances in the addition reaction H+CO = HCO The Journal of Chemical Physics. 94: 4192-4194. DOI: 10.1063/1.460652 |
0.374 |
|
1991 |
Duchovic RJ, Wagner AF, Turner RE, Garner DM, Fleming DG. The analysis of muonium hyperfine interaction measurements of thermal rate constants for addition reactions Journal of Chemical Physics. 94: 2794-2806. DOI: 10.1063/1.459856 |
0.324 |
|
1991 |
Cho SW, Wagner AF, Gazdy B, Bowman JM. The addition and dissociation reaction hydrogen atom + carbon monoxide .dblharw. formyl. 3. Implementation of isolated resonance RRKM theory with exact quantum studies for J = 0 The Journal of Physical Chemistry. 95: 9897-9900. DOI: 10.1021/J100177A052 |
0.317 |
|
1990 |
Liu K, Glen Macdonald R, Wagner AF. Crossed-beam investigations of state-resolved collision dynamics of simple radicals International Reviews in Physical Chemistry. 9: 187-225. DOI: 10.1080/01442359009353246 |
0.32 |
|
1990 |
Aoyagi M, Shepard R, Wagner AF, Dunning TH, Brown FB. Ab initio theoretical studies of the CH2 + H .dblharw. CH3* .dblharw. CH + H2 reactions The Journal of Physical Chemistry. 94: 3236-3241. DOI: 10.1021/J100371A002 |
0.393 |
|
1990 |
Wagner AF, Slagle IR, Sarzynski D, Gutman D. Experimental and theoretical studies of the ethyl + oxygen reaction kinetics The Journal of Physical Chemistry. 94: 1853-1868. DOI: 10.1021/J100368A026 |
0.306 |
|
1990 |
Graff MM, Wagner AF. Theoretical studies of fine-structure effects and long-range forces: approximating the reactive surface of O(3P)+OH(2Π) Chemical Physics Letters. 174: 287-293. DOI: 10.1016/0009-2614(90)85347-F |
0.399 |
|
1989 |
Harding LB, Wagner AF. Theoretical study of the reaction rates of OH+OH ⇔ H2O+O Symposium (International) On Combustion. 22: 983-989. DOI: 10.1016/S0082-0784(89)80107-9 |
0.529 |
|
1988 |
Dunning TH, Harding LB, Wagner AF, Schatz GC, Bowman JM. Theoretical studies of the energetics and dynamics of chemical reactions. Science (New York, N.Y.). 240: 453-9. PMID 17784067 DOI: 10.1126/Science.240.4851.453 |
0.713 |
|
1988 |
Wagner AF. Potential sensitivity of tunneling in isolated resonance unimolecular reaction theory The Journal of Physical Chemistry. 92: 7259-7260. DOI: 10.1021/J100337A021 |
0.359 |
|
1988 |
Wagner AF, Wardlaw DM. Study of the recombination reaction methyl + methyl .fwdarw. ethane. 2. Theory The Journal of Physical Chemistry. 92: 2462-2471. DOI: 10.1021/J100320A016 |
0.316 |
|
1988 |
Harding LB, Wagner AF. The reaction of atomic hydrogen with the formyl radical Symposium (International) On Combustion. 21: 721-728. DOI: 10.1016/S0082-0784(88)80304-7 |
0.515 |
|
1987 |
Wagner AF, Bowman JM. The addition and dissociation reaction atomic hydrogen + carbon monoxide .dblharw. oxomethyl. 1. Theoretical RRKM studies The Journal of Physical Chemistry. 91: 5314-5324. DOI: 10.1021/J100304A036 |
0.449 |
|
1986 |
Wagner AF, Bowman JM. Reaction dynamics for O(3P)+H2, D2, and HD. VI. Comparison of TST and reduced dimensionality quantum and quasiclassical isotope effects with experiment The Journal of Chemical Physics. 86: 1976-1981. DOI: 10.1063/1.452148 |
0.436 |
|
1986 |
Bowman JM, Wagner AF. Reaction dynamics for O(3P)+HD. V. Reduced dimensionality quantum and quasiclassical reaction probabilities and rate constants with an adiabatic incorporation of the bending motion The Journal of Chemical Physics. 86: 1967-1975. DOI: 10.1063/1.452147 |
0.42 |
|
1986 |
Garrett BC, Truhlar DG, Bowman JM, Wagner AF. Evaluation of dynamical approximations for calculating the effect of vibrational excitation on reaction rates. O + H2(n = 0,1) .tautm. OH(n = 0,1) + H The Journal of Physical Chemistry. 90: 4305-4311. DOI: 10.1021/J100409A017 |
0.453 |
|
1986 |
Wagner AF, Bair RA. AnAb initio determination of the rate constant for H2 + CN ? H + HCN International Journal of Chemical Kinetics. 18: 473-486. DOI: 10.1002/Kin.550180406 |
0.432 |
|
1986 |
Garrett BC, Truhlar DG, Bowman JM, Wagner AF, Robie D, Arepalli S, Presser N, Gordon RJ. Ab initio predictions and experimental confirmation of large tunneling contributions to rate constants and kinetic isotope effects for hydrogen atom transfer reactions Journal of the American Chemical Society. 108: 3515-3516. DOI: 10.1002/Chin.198639023 |
0.364 |
|
1986 |
WAGNER AF, BAIR RA. ChemInform Abstract: An ab initio Determination of the Rate Constant for H2+ CN -→ H + HCN Chemischer Informationsdienst. 17. DOI: 10.1002/Chin.198633121 |
0.347 |
|
1985 |
Wagner AF, Bowman JM, Harding LB. Inclusion and assessment of Renner–Teller coupling in transition state theory for Π states: Application to O(3P)+H2 The Journal of Chemical Physics. 82: 1866-1872. DOI: 10.1063/1.448370 |
0.595 |
|
1984 |
Bowman JM, Wagner AF, Walch SP, Dunning TH. Reaction dynamics for O(3P)+H2 and D2. IV. Reduced dimensionality quantum and quasiclassical rate constants with an adiabatic incorporation of the bending motion The Journal of Chemical Physics. 81: 1739-1752. DOI: 10.1063/1.447819 |
0.634 |
|
1984 |
Schatz GC, Wagner AF, Dunning TH. A theoretical study of deuterium isotope effects in the reactions H2 + CH3 and H + CH4 The Journal of Physical Chemistry. 88: 221-232. DOI: 10.1021/J150646A013 |
0.602 |
|
1983 |
Garrett BC, Truhlar DG, Wagner AF, Dunning TH. Variational transition state theory and tunneling for a heavy–light–heavy reaction using an ab initio potential energy surface. 37Cl+H(D) 35Cl→H(D) 37Cl+35Cl The Journal of Chemical Physics. 78: 4400-4413. DOI: 10.1063/1.445323 |
0.464 |
|
1982 |
Lee KT, Bowman JM, Wagner AF, Schatz GC. A comparative study of the reaction dynamics of the O(3P)+H2 → OH+H reaction on several potential energy surfaces. III. Collinear exact quantum transmission coefficient correction to transition state theory The Journal of Chemical Physics. 76: 3583-3596. DOI: 10.1063/1.443395 |
0.425 |
|
1982 |
Lee KT, Bowman JM, Wagner AF, Schatz GC. A comparative study of the reaction dynamics of several potential energy surfaces for O(3P)+H2 → OH+H. II. Collinear exact quantum and quasiclassical reaction probabilities The Journal of Chemical Physics. 76: 3563-3582. DOI: 10.1063/1.443394 |
0.381 |
|
1982 |
Harding LB, Wagner AF, Bowman JM, Schatz GC, Christoffel K. Ab initio calculation of the transition-state properties and addition rate constants for atomic hydrogen + acetylene and selected isotopic analogs The Journal of Physical Chemistry. 86: 4312-4327. DOI: 10.1021/J100219A009 |
0.591 |
|
1981 |
Bowman JM, Ju G, Lee KT, Wagner AF, Schatz GC. Tests of collinear quasiclassical trajectory transmission coefficient correction to transition state theory The Journal of Chemical Physics. 75: 141-147. DOI: 10.1063/1.441815 |
0.414 |
|
1981 |
Schatz GC, Wagner AF, Walch SP, Bowman JM. A comparative study of the reaction dynamics of several potential energy surfaces of O(3P)+H2→OH+H. I The Journal of Chemical Physics. 74: 4984-4996. DOI: 10.1063/1.441750 |
0.373 |
|
1981 |
Harding LB, Wagner AF. Theoretical studies on the reaction of atomic oxygen (O(3P)) with acetylene. II The Journal of Physical Chemistry. 90: 2974-2987. DOI: 10.1021/J100404A037 |
0.646 |
|
1980 |
Schatz GC, Walch SP, Wagner AF. Ab initio calculation of transition state normal mode properties and rate constants for the H(T)+CH4(CD4) abstraction and exchange reactions Journal of Chemical Physics. 73: 4536-4547. DOI: 10.1063/1.440692 |
0.431 |
|
1980 |
Walch SP, Wagner AF, Dunning TH, Schatz GC. Theoretical studies of the O+H2 reaction Journal of Chemical Physics. 72: 2894-2896. DOI: 10.1063/1.439399 |
0.422 |
|
1978 |
Wagner AF, Wahl AC, Karo AM, Krejci R. Classical inelastic scattering in Li+H2: A comparison of different potential energy surfaces Journal of Chemical Physics. 69: 3756-3774. DOI: 10.1063/1.437040 |
0.675 |
|
1978 |
Das G, Wagner AF, Wahl AC. Calculated long‐range interactions and low energy scattering in He+H, Ne+H, Ar+H, Kr+H, and Xe+H Journal of Chemical Physics. 68: 4917-4929. DOI: 10.1063/1.435648 |
0.675 |
|
1976 |
Wagner AF, Parks EK. A classical statistical theory for chemical reactions Journal of Chemical Physics. 65: 4343-4361. DOI: 10.1063/1.432984 |
0.308 |
|
1975 |
Ford LW, Diestler DJ, Wagner AF. A model study of collision induced dissociation of a diatomic molecule by an atom Journal of Chemical Physics. 63: 2019-2034. DOI: 10.1063/1.431539 |
0.382 |
|
1974 |
Wagner AF, Das G, Wahl AC. Calculated long‐range interactions and low energy scattering of Ar–H Journal of Chemical Physics. 60: 1885-1891. DOI: 10.1063/1.1681289 |
0.647 |
|
1974 |
Riehl JP, Diestler DJ, Wagner AF. Comparison of perturbation and direct-numerical-integration techniques for the calculation of phase shifts for elastic scattering Journal of Computational Physics. 15: 212-225. DOI: 10.1016/0021-9991(74)90085-0 |
0.302 |
|
1973 |
Wagner AF, McKoy V. Quantum mechanical calculations of rotational-vibrational scattering in homonuclear diatom-atom collisions Journal of Chemical Physics. 58: 2604-2620. DOI: 10.1063/1.1679543 |
0.353 |
|
1973 |
Wagner AF, McKoy V. Effect of the potential well on vibrational scattering and the validity of SSH theory Journal of Chemical Physics. 58: 5561-5569. DOI: 10.1063/1.1679180 |
0.406 |
|
1972 |
Wagner AF, Truhlar DG. Comment on Enhancement of the Reaction Cross Section of He+H2+→ HeH++H by Vibrational Excitation of H2+ and the Treatment of Nuclear Spin by the Statistical Phase‐Space Theory The Journal of Chemical Physics. 57: 4063-4064. DOI: 10.1063/1.1678889 |
0.334 |
|
Show low-probability matches. |