Jörg Behler - Publications

Affiliations: 
Georg-August-Universität Göttingen, Göttingen, Niedersachsen, Germany 

105 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Zare M, Sahsah D, Saleheen M, Behler J, Heyden A. Hybrid Quantum Mechanical, Molecular Mechanical, and Machine Learning Potential for Computing Aqueous-Phase Adsorption Free Energies on Metal Surfaces. Journal of Chemical Theory and Computation. PMID 39254514 DOI: 10.1021/acs.jctc.4c00869  0.321
2024 Gubler M, Finkler JA, Schäfer MR, Behler J, Goedecker S. Accelerating Fourth-Generation Machine Learning Potentials Using Quasi-Linear Scaling Particle Mesh Charge Equilibration. Journal of Chemical Theory and Computation. PMID 39151921 DOI: 10.1021/acs.jctc.4c00334  0.574
2024 Omranpour A, Montero De Hijes P, Behler J, Dellago C. Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials. The Journal of Chemical Physics. 160. PMID 38748006 DOI: 10.1063/5.0201241  0.587
2023 Tokita AM, Behler J. How to train a neural network potential. The Journal of Chemical Physics. 159. PMID 38127396 DOI: 10.1063/5.0160326  0.301
2023 Abedi M, Behler J, Goldsmith CF. High-Dimensional Neural Network Potentials for Accurate Prediction of Equation of State: A Case Study of Methane. Journal of Chemical Theory and Computation. 19: 7825-7832. PMID 37902963 DOI: 10.1021/acs.jctc.3c00469  0.319
2023 Ko TW, Finkler JA, Goedecker S, Behler J. Accurate Fourth-Generation Machine Learning Potentials by Electrostatic Embedding. Journal of Chemical Theory and Computation. 19: 3567-3579. PMID 37289440 DOI: 10.1021/acs.jctc.2c01146  0.602
2023 Herbold M, Behler J. Machine learning transferable atomic forces for large systems from underconverged molecular fragments. Physical Chemistry Chemical Physics : Pccp. 25: 12979-12989. PMID 37165873 DOI: 10.1039/d2cp05976b  0.31
2022 Daru J, Forbert H, Behler J, Marx D. Coupled Cluster Molecular Dynamics of Condensed Phase Systems Enabled by Machine Learning Potentials: Liquid Water Benchmark. Physical Review Letters. 129: 226001. PMID 36493459 DOI: 10.1103/PhysRevLett.129.226001  0.648
2022 Shanavas Rasheeda D, Martín Santa Daría A, Schröder B, Mátyus E, Behler J. High-dimensional neural network potentials for accurate vibrational frequencies: the formic acid dimer benchmark. Physical Chemistry Chemical Physics : Pccp. 24: 29381-29392. PMID 36459127 DOI: 10.1039/d2cp03893e  0.333
2022 Herbold M, Behler J. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials. The Journal of Chemical Physics. 156: 114106. PMID 35317596 DOI: 10.1063/5.0082952  0.304
2022 Kocer E, Ko TW, Behler J. Neural Network Potentials: A Concise Overview of Methods. Annual Review of Physical Chemistry. 73: 163-186. PMID 34982580 DOI: 10.1146/annurev-physchem-082720-034254  0.314
2022 Eckhoff M, Behler J. Insights into lithium manganese oxide-water interfaces using machine learning potentials. The Journal of Chemical Physics. 155: 244703. PMID 34972388 DOI: 10.1063/5.0073449  0.343
2021 Behler J. Four Generations of High-Dimensional Neural Network Potentials. Chemical Reviews. PMID 33779150 DOI: 10.1021/acs.chemrev.0c00868  0.371
2021 Ko TW, Finkler JA, Goedecker S, Behler J. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer. Accounts of Chemical Research. PMID 33513012 DOI: 10.1021/acs.accounts.0c00689  0.597
2021 Ko TW, Finkler JA, Goedecker S, Behler J. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nature Communications. 12: 398. PMID 33452239 DOI: 10.1038/s41467-020-20427-2  0.618
2020 Wille S, Jiang H, Bünermann O, Wodtke AM, Behler J, Kandratsenka A. An experimentally validated neural-network potential energy surface for H-atom on free-standing graphene in full dimensionality. Physical Chemistry Chemical Physics : Pccp. PMID 32915176 DOI: 10.1039/D0Cp03462B  0.431
2020 Ghorbanfekr H, Behler J, Peeters FM. Insights into Water Permeation through hBN Nanocapillaries by Ab Initio Machine Learning Molecular Dynamics Simulations. The Journal of Physical Chemistry Letters. PMID 32787306 DOI: 10.1021/Acs.Jpclett.0C01739  0.371
2020 Paleico ML, Behler J. Global optimization of copper clusters at the ZnO(101¯0) surface using a DFT-based neural network potential and genetic algorithms. The Journal of Chemical Physics. 153: 054704. PMID 32770878 DOI: 10.1063/5.0014876  0.426
2020 Lu D, Behler J, Li J. Accurate Global Potential Energy Surfaces for the H + CHOH Reaction by Neural Network Fitting with Permutation Invariance. The Journal of Physical Chemistry. A. PMID 32530628 DOI: 10.1021/Acs.Jpca.0C04182  0.398
2020 Zuo Y, Chen C, Li XG, Deng Z, Chen Y, Behler J, Csányi G, Shapeev AV, Thompson AP, Wood MA, Ong SP. A Performance and Cost Assessment of Machine Learning Interatomic Potentials. The Journal of Physical Chemistry. A. PMID 31916773 DOI: 10.1021/Acs.Jpca.9B08723  0.408
2020 Shao Y, Hellström M, Yllö A, Mindemark J, Hermansson K, Behler J, Zhang C. Temperature effects on the ionic conductivity in concentrated alkaline electrolyte solutions. Physical Chemistry Chemical Physics : Pccp. PMID 31895378 DOI: 10.1039/C9Cp06479F  0.325
2020 Mangold C, Chen S, Barbalinardo G, Behler J, Pochet P, Termentzidis K, Han Y, Chaput L, Lacroix D, Donadio D. Transferability of neural network potentials for varying stoichiometry: Phonons and thermal conductivity of MnxGey compounds Journal of Applied Physics. 127: 244901. DOI: 10.1063/5.0009550  0.636
2020 Weinreich J, Römer A, Paleico ML, Behler J. Properties of α-Brass Nanoparticles. 1. Neural Network Potential Energy Surface The Journal of Physical Chemistry C. 124: 12682-12695. DOI: 10.1021/Acs.Jpcc.0C00559  0.39
2019 Schran C, Behler J, Marx D. Automated Fitting of Neural Network Potentials at Coupled Cluster Accuracy: Protonated Water Clusters as Testing Ground. Journal of Chemical Theory and Computation. PMID 31743025 DOI: 10.1021/Acs.Jctc.9B00805  0.801
2019 Litman Y, Behler J, Rossi M. Temperature dependence of the vibrational spectrum of porphycene: a qualitative failure of classical-nuclei molecular dynamics. Faraday Discussions. PMID 31544185 DOI: 10.1039/C9Fd00056A  0.353
2019 Stalke D, Keil H, Hellström M, Stückl C, Herbst-Irmer R, Behler J. New insights in the catalytic activity of cobalt orthophosphate Co3(PO4)2 from charge density analysis. Chemistry (Weinheim An Der Bergstrasse, Germany). PMID 31361370 DOI: 10.1002/Chem.201902303  0.332
2019 Eckhoff M, Behler J. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5. Journal of Chemical Theory and Computation. PMID 31091097 DOI: 10.1021/Acs.Jctc.8B01288  0.439
2019 Spiering P, Shakouri K, Behler J, Kroes GJ, Meyer J. Orbital-Dependent Electronic Friction Significantly Affects the Description of Reactive Scattering of N from Ru(0001). The Journal of Physical Chemistry Letters. PMID 31088059 DOI: 10.1021/Acs.Jpclett.9B00523  0.308
2019 Singraber A, Morawietz T, Behler J, Dellago C. Parallel Multistream Training of High-Dimensional Neural Network Potentials. Journal of Chemical Theory and Computation. PMID 30995035 DOI: 10.1021/Acs.Jctc.8B01092  0.796
2019 Gerrits N, Shakouri K, Behler J, Kroes GJ. Accurate Probabilities for Highly Activated Reaction of Polyatomic Molecules on Surfaces Using a High-Dimensional Neural Network Potential: CHD + Cu(111). The Journal of Physical Chemistry Letters. PMID 30922058 DOI: 10.1021/Acs.Jpclett.9B00560  0.409
2019 Hellström M, Quaranta V, Behler J. One-dimensional two-dimensional proton transport processes at solid-liquid zinc-oxide-water interfaces. Chemical Science. 10: 1232-1243. PMID 30774924 DOI: 10.1039/C8Sc03033B  0.38
2019 Singraber A, Behler J, Dellago C. Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials. Journal of Chemical Theory and Computation. PMID 30677296 DOI: 10.1021/Acs.Jctc.8B00770  0.662
2019 Li J, Song K, Behler J. A critical comparison of neural network potentials for molecular reaction dynamics with exact permutation symmetry. Physical Chemistry Chemical Physics : Pccp. PMID 30672927 DOI: 10.1039/C8Cp06919K  0.425
2019 Cheng B, Engel EA, Behler J, Dellago C, Ceriotti M. Ab initio thermodynamics of liquid and solid water. Proceedings of the National Academy of Sciences of the United States of America. PMID 30610171 DOI: 10.1073/Pnas.1815117116  0.674
2019 Gabardi S, Sosso GG, Behler J, Bernasconi M. Priming effects in the crystallization of the phase change compound GeTe from atomistic simulations Faraday Discussions. 213: 287-301. PMID 30379974 DOI: 10.1039/C8Fd00101D  0.324
2019 Bosoni E, Campi D, Donadio D, Sosso GC, Behler J, Bernasconi M. Atomistic simulations of thermal conductivity in GeTe nanowires Journal of Physics D: Applied Physics. 53: 054001. DOI: 10.1088/1361-6463/Ab5478  0.539
2019 Quaranta V, Behler J, Hellström M. Structure and Dynamics of the Liquid–Water/Zinc-Oxide Interface from Machine Learning Potential Simulations Journal of Physical Chemistry C. 123: 1293-1304. DOI: 10.1021/Acs.Jpcc.8B10781  0.41
2018 Shakouri K, Behler J, Meyer J, Kroes GJ. Analysis of Energy Dissipation Channels in a Benchmark System of Activated Dissociation: N on Ru(0001). The Journal of Physical Chemistry. C, Nanomaterials and Interfaces. 122: 23470-23480. PMID 30364480 DOI: 10.1021/Acs.Jpcc.8B06729  0.361
2018 Hellström M, Ceriotti M, Behler J. Nuclear Quantum Effects in Sodium Hydroxide Solutions from Neural Network Molecular Dynamics Simulations. The Journal of Physical Chemistry. B. PMID 30335385 DOI: 10.1021/Acs.Jpcb.8B06433  0.577
2018 Imbalzano G, Anelli A, Giofré D, Klees S, Behler J, Ceriotti M. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials. The Journal of Chemical Physics. 148: 241730. PMID 29960368 DOI: 10.1063/1.5024611  0.609
2018 Quaranta V, Hellström M, Behler J, Kullgren J, Mitev PD, Hermansson K. Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(101¯0) interface from a high-dimensional neural network potential. The Journal of Chemical Physics. 148: 241720. PMID 29960340 DOI: 10.1063/1.5012980  0.421
2018 Nguyen TT, Székely E, Imbalzano G, Behler J, Csányi G, Ceriotti M, Götz AW, Paesani F. Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions. The Journal of Chemical Physics. 148: 241725. PMID 29960316 DOI: 10.1063/1.5024577  0.593
2018 Singraber A, Morawietz T, Behler J, Dellago C. Density anomaly of water at negative pressures from first principles. Journal of Physics. Condensed Matter : An Institute of Physics Journal. PMID 29762140 DOI: 10.1088/1361-648X/Aac4F4  0.774
2018 Schran C, Uhl F, Behler J, Marx D. High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium. The Journal of Chemical Physics. 148: 102310. PMID 29544280 DOI: 10.1063/1.4996819  0.805
2017 Gastegger M, Behler J, Marquetand P. Machine learning molecular dynamics for the simulation of infrared spectra. Chemical Science. 8: 6924-6935. PMID 29147518 DOI: 10.1039/C7Sc02267K  0.366
2017 Hellström M, Behler J. Surface phase diagram prediction from a minimal number of DFT calculations: redox-active adsorbates on zinc oxide. Physical Chemistry Chemical Physics : Pccp. 19: 28731-28748. PMID 29044257 DOI: 10.1039/C7Cp05182D  0.37
2017 Behler J. First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems. Angewandte Chemie (International Ed. in English). 56: 12828-12840. PMID 28520235 DOI: 10.1002/Anie.201703114  0.441
2017 Shakouri K, Behler J, Meyer J, Kroes GJ. Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N2+Ru(0001). The Journal of Physical Chemistry Letters. PMID 28441867 DOI: 10.1021/Acs.Jpclett.7B00784  0.461
2017 Hellström M, Behler J. Proton-Transfer-Driven Water Exchange Mechanism in the Na Solvation Shell. The Journal of Physical Chemistry. B. 121: 4184-4190. PMID 28375608 DOI: 10.1021/Acs.Jpcb.7B01490  0.328
2017 Quaranta V, Hellström M, Behler J. Proton-Transfer Mechanisms at the Water-ZnO Interface: The Role of Presolvation. The Journal of Physical Chemistry Letters. 8: 1476-1483. PMID 28296415 DOI: 10.1021/Acs.Jpclett.7B00358  0.369
2017 Gabardi S, Baldi E, Bosoni E, Campi D, Caravati S, Sosso GC, Behler J, Bernasconi M. Atomistic Simulations of the Crystallization and Aging of GeTe Nanowires Journal of Physical Chemistry C. 121: 23827-23838. DOI: 10.1021/Acs.Jpcc.7B09862  0.355
2017 Kondati Natarajan S, Behler J. Self-Diffusion of Surface Defects at Copper–Water Interfaces The Journal of Physical Chemistry C. 121: 4368-4383. DOI: 10.1021/Acs.Jpcc.6B12657  0.359
2016 Kapil V, Behler J, Ceriotti M. High order path integrals made easy. The Journal of Chemical Physics. 145: 234103. PMID 28010075 DOI: 10.1063/1.4971438  0.601
2016 Behler J. Perspective: Machine learning potentials for atomistic simulations. The Journal of Chemical Physics. 145: 170901. PMID 27825224 DOI: 10.1063/1.4966192  0.384
2016 Hellström M, Behler J. Structure of aqueous NaOH solutions: insights from neural-network-based molecular dynamics simulations. Physical Chemistry Chemical Physics : Pccp. 19: 82-96. PMID 27805193 DOI: 10.1039/C6Cp06547C  0.369
2016 Natarajan SK, Behler J. Neural network molecular dynamics simulations of solid-liquid interfaces: water at low-index copper surfaces. Physical Chemistry Chemical Physics : Pccp. 18: 28704-28725. PMID 27722603 DOI: 10.1039/C6Cp05711J  0.403
2016 Hellström M, Behler J. Concentration-Dependent Proton Transfer Mechanisms in Aqueous NaOH Solutions: From Acceptor-Driven to Donor-Driven and Back. The Journal of Physical Chemistry Letters. 7: 3302-6. PMID 27504986 DOI: 10.1021/Acs.Jpclett.6B01448  0.318
2016 Morawietz T, Singraber A, Dellago C, Behler J. How van der Waals interactions determine the unique properties of water. Proceedings of the National Academy of Sciences of the United States of America. PMID 27402761 DOI: 10.1073/Pnas.1602375113  0.793
2016 Gastegger M, Kauffmann C, Behler J, Marquetand P. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes. The Journal of Chemical Physics. 144: 194110. PMID 27208939 DOI: 10.1063/1.4950815  0.457
2016 Cheng B, Behler J, Ceriotti M. Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments. The Journal of Physical Chemistry Letters. PMID 27203358 DOI: 10.1021/Acs.Jpclett.6B00729  0.535
2016 Sosso GC, Behler J, Bernasconi M. Atomic mobility in the overheated amorphous GeTe compound for phase change memories Physica Status Solidi (a). 213: 329-334. DOI: 10.1002/Pssa.201532378  0.318
2015 Seema P, Behler J, Marx D. Peeling by Nanomechanical Forces: A Route to Selective Creation of Surface Structures. Physical Review Letters. 115: 036102. PMID 26230805 DOI: 10.1103/Physrevlett.115.036102  0.655
2015 Kondati Natarajan S, Morawietz T, Behler J. Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials. Physical Chemistry Chemical Physics : Pccp. 17: 8356-71. PMID 25436835 DOI: 10.1039/C4Cp04751F  0.781
2015 Campi D, Donadio D, Sosso GC, Behler J, Bernasconi M. Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe Journal of Applied Physics. 117: 15304. DOI: 10.1063/1.4904910  0.59
2015 Sosso GC, Salvalaglio M, Behler J, Bernasconi M, Parrinello M. Heterogeneous crystallization of the phase change material GeTe via atomistic simulations Journal of Physical Chemistry C. 119: 6428-6434. DOI: 10.1021/Acs.Jpcc.5B00296  0.719
2015 Behler J. Constructing high‐dimensional neural network potentials: A tutorial review International Journal of Quantum Chemistry. 115: 1032-1050. DOI: 10.1002/Qua.24890  0.457
2014 Sosso GC, Colombo J, Behler J, Del Gado E, Bernasconi M. Dynamical heterogeneity in the supercooled liquid state of the phase change material GeTe. The Journal of Physical Chemistry. B. 118: 13621-8. PMID 25356792 DOI: 10.1021/Jp507361F  0.392
2014 Behler J. Representing potential energy surfaces by high-dimensional neural network potentials. Journal of Physics: Condensed Matter. 26: 183001-183001. PMID 24758952 DOI: 10.1088/0953-8984/26/18/183001  0.494
2014 Handley CM, Behler J. Next generation interatomic potentials for condensed systems European Physical Journal B. 87. DOI: 10.1140/Epjb/E2014-50070-0  0.414
2013 Seema P, Behler J, Marx D. Force-induced mechanical response of molecule-metal interfaces: molecular nanomechanics of propanethiolate self-assembled monolayers on Au(111). Physical Chemistry Chemical Physics : Pccp. 15: 16001-11. PMID 23959524 DOI: 10.1039/C3Cp52181H  0.638
2013 Morawietz T, Behler J. A density-functional theory-based neural network potential for water clusters including van der Waals corrections. The Journal of Physical Chemistry. A. 117: 7356-66. PMID 23557541 DOI: 10.1021/Jp401225B  0.775
2013 Morawietz T, Behler J. A Full-Dimensional Neural Network Potential-Energy Surface for Water Clusters up to the Hexamer Zeitschrift FüR Physikalische Chemie. 227: 1559-1581. DOI: 10.1524/Zpch.2013.0384  0.767
2013 Seema P, Behler J, Marx D. Adsorption of Methanethiolate and Atomic Sulfur at the Cu(111) Surface: A Computational Study Journal of Physical Chemistry C. 117: 337-348. DOI: 10.1021/Jp309728W  0.654
2013 Artrith N, Hiller B, Behler J. Front Cover: Neural network potentials for metals and oxides - First applications to copper clusters at zinc oxide (Phys. Status Solidi B 6/2013) Physica Status Solidi (B). 250. DOI: 10.1002/Pssb.201370539  0.72
2012 Jose KVJ, Artrith N, Behler J. Construction of high-dimensional neural network potentials using environment-dependent atom pairs Journal of Chemical Physics. 136. PMID 22612084 DOI: 10.1063/1.4712397  0.774
2012 Eshet H, Khaliullin RZ, Kühne TD, Behler J, Parrinello M. Microscopic origins of the anomalous melting behavior of sodium under high pressure. Physical Review Letters. 108: 115701. PMID 22540486 DOI: 10.1103/Physrevlett.108.115701  0.682
2012 Morawietz T, Sharma V, Behler J. A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges. The Journal of Chemical Physics. 136: 064103. PMID 22360165 DOI: 10.1063/1.3682557  0.786
2012 Eshet H, Khaliullin RZ, Kühne TD, Behler J, Parrinello M. Microscopic origins of the anomalous melting behavior of sodium under high pressure Physical Review Letters. 108. DOI: 10.1103/PhysRevLett.108.115701  0.604
2012 Sosso GC, Donadio D, Caravati S, Behler J, Bernasconi M. Thermal transport in phase-change materials from atomistic simulations Physical Review B. 86: 104301. DOI: 10.1103/Physrevb.86.104301  0.6
2012 Artrith N, Morawietz T, Behler J. Erratum: High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide [Phys. Rev. B83, 153101 (2011)] Physical Review B. 86. DOI: 10.1103/Physrevb.86.079914  0.777
2012 Sosso GC, Miceli G, Caravati S, Behler J, Bernasconi M. Neural network interatomic potential for the phase change material GeTe Physical Review B. 85: 174103. DOI: 10.1103/Physrevb.85.174103  0.448
2012 Artrith N, Behler J. High-dimensional neural network potentials for metal surfaces: A prototype study for copper Physical Review B - Condensed Matter and Materials Physics. 85. DOI: 10.1103/Physrevb.85.045439  0.768
2012 Sosso GC, Behler J, Bernasconi M. Breakdown of Stokes–Einstein relation in the supercooled liquid state of phase change materials† Physica Status Solidi B-Basic Solid State Physics. 249: 1880-1885. DOI: 10.1002/Pssb.201200355  0.315
2011 Behler J. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Physical Chemistry Chemical Physics : Pccp. 13: 17930-55. PMID 21915403 DOI: 10.1039/C1Cp21668F  0.485
2011 Khaliullin RZ, Eshet H, Kühne TD, Behler J, Parrinello M. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nature Materials. 10: 693-7. PMID 21785417 DOI: 10.1038/Nmat3078  0.688
2011 Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. The Journal of Chemical Physics. 134: 074106. PMID 21341827 DOI: 10.1063/1.3553717  0.509
2011 Artrith N, Morawietz T, Behler J. High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide Physical Review B - Condensed Matter and Materials Physics. 83. DOI: 10.1103/Physrevb.83.153101  0.812
2011 Khaliullin RZ, Eshet H, Kühne TD, Behler J, Parrinello M. Nucleation mechanism for the direct graphite-to-diamond phase transition Nature Materials. 10: 693-697. DOI: 10.1038/nmat3078  0.611
2010 Eshet H, Khaliullin RZ, Kühne TD, Behler J, Parrinello M. Ab initio quality neural-network potential for sodium Physical Review B - Condensed Matter and Materials Physics. 81. DOI: 10.1103/Physrevb.81.184107  0.723
2010 Khaliullin RZ, Eshet H, Kühne TD, Behler J, Parrinello M. Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface Physical Review B - Condensed Matter and Materials Physics. 81. DOI: 10.1103/Physrevb.81.100103  0.74
2010 Carbogno C, Behler J, Reuter K, Groß A. Signatures of nonadiabaticO2dissociation at Al(111): First-principles fewest-switches study Physical Review B. 81. DOI: 10.1103/Physrevb.81.035410  0.635
2008 Carbogno C, Behler J, Grob A, Reuter K. Fingerprints for spin-selection rules in the interaction dynamics of O2 at Al(111). Physical Review Letters. 101: 096104. PMID 18851627 DOI: 10.1103/Physrevlett.101.096104  0.648
2008 Behler J, Martonák R, Donadio D, Parrinello M. Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential. Physical Review Letters. 100: 185501. PMID 18518388 DOI: 10.1103/Physrevlett.100.185501  0.736
2008 Behler J, Reuter K, Scheffler M. Nonadiabatic effects in the dissociation of oxygen molecules at the Al(111) surface Physical Review B. 77. DOI: 10.1103/Physrevb.77.115421  0.727
2008 Behler J, Martoňák R, Donadio D, Parrinello M. Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations Physica Status Solidi (B) Basic Research. 245: 2618-2629. DOI: 10.1002/Pssb.200844219  0.748
2007 Behler J, Lorenz S, Reuter K. Representing molecule-surface interactions with symmetry-adapted neural networks. The Journal of Chemical Physics. 127: 014705. PMID 17627362 DOI: 10.1063/1.2746232  0.699
2007 Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical Review Letters. 98: 146401. PMID 17501293 DOI: 10.1103/Physrevlett.98.146401  0.679
2007 Cano-Cortés L, Dolfen A, Merino J, Behler J, Delley B, Reuter K, Koch E. Spectral broadening due to long-range Coulomb interactions in the molecular metal TTF-TCNQ The European Physical Journal B. 56: 173-176. DOI: 10.1140/Epjb/E2007-00110-Y  0.651
2007 Behler J, Delley B, Reuter K, Scheffler M. Nonadiabatic potential-energy surfaces by constrained density-functional theory Physical Review B. 75. DOI: 10.1103/Physrevb.75.115409  0.76
2006 Behler J, Reuter K, Scheffler M. Behler, Reuter, and Scheffler Reply: Physical Review Letters. 96. DOI: 10.1103/Physrevlett.96.079802  0.656
2005 Behler J, Delley B, Lorenz S, Reuter K, Scheffler M. Dissociation of O2 at Al(111): the role of spin selection rules. Physical Review Letters. 94: 036104. PMID 15698287 DOI: 10.1103/Physrevlett.94.036104  0.704
2005 Ratsch C, Fielicke A, Kirilyuk A, Behler J, Von Helden G, Meijer G, Scheffler M. Structure determination of small vanadium clusters by density-functional theory in comparison with experimental far-infrared spectra Journal of Chemical Physics. 122. DOI: 10.1063/1.1862621  0.592
2004 Fielicke A, Kirilyuk A, Ratsch C, Behler J, Scheffler M, von Helden G, Meijer G. Structure determination of isolated metal clusters via far-infrared spectroscopy. Physical Review Letters. 93: 023401. PMID 15323913 DOI: 10.1103/Physrevlett.93.023401  0.564
2002 Ludwig R, Behler J, Klink B, Weinhold F. Molecular composition of liquid sulfur. Angewandte Chemie (International Ed. in English). 41: 3199-202. PMID 12207388 DOI: 10.1002/1521-3773(20020902)41:17<3199::Aid-Anie3199>3.0.Co;2-9  0.383
2001 Behler J, Price DW, Drew MGB. Water structuring properties of carbohydrates, molecular dynamics studies on 1,5-anhydro-D-fructose Physical Chemistry Chemical Physics. 3: 588-601. DOI: 10.1039/B007899I  0.336
Show low-probability matches.