Year |
Citation |
Score |
2024 |
Fu S, Wang H, Schaefer S, Shang B, Ren L, Zhang W, Wu M, Wang H. Simple Framework for Simultaneous Analysis of Both Electrodes in Stoichiometric Lithium-Sulfur Batteries. Journal of the American Chemical Society. 146: 21721-21728. PMID 39051979 DOI: 10.1021/jacs.4c05827 |
0.572 |
|
2024 |
Jelušić J, Menzel JP, Bertrand QC, Crabtree RH, Wang H, Brudvig GW, Batista VS. Modeling Electrochemical Vacancy Regeneration in Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry Letters. 15: 7788-7792. PMID 39048317 DOI: 10.1021/acs.jpclett.4c01293 |
0.484 |
|
2024 |
Cheon S, Li J, Wang H. Generated CO Enables High-Current CO Reduction to Methanol in a Molecular Catalyst Layer. Journal of the American Chemical Society. PMID 38806413 DOI: 10.1021/jacs.4c05961 |
0.319 |
|
2024 |
Choi C, Kwon S, Gao Y, Cheon S, Li J, Menges F, Goddard WA, Wang H. CO-Promoted Electrocatalytic Reduction of Chlorinated Hydrocarbons. Journal of the American Chemical Society. 146: 8486-8491. PMID 38483834 DOI: 10.1021/jacs.3c14564 |
0.309 |
|
2023 |
Rooney C, Lyons M, Wu Y, Hu G, Wang M, Choi C, Gao Y, Chang CW, Brudvig G, Feng Z, Wang H. Active Sites of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to Methanol. Angewandte Chemie (International Ed. in English). e202310623. PMID 37820079 DOI: 10.1002/anie.202310623 |
0.555 |
|
2023 |
Fu S, Wang H, Zhong Y, Schaefer S, Li M, Wu M, Wang H. High Mass Loading Li-S Batteries Catalytically Activated by Cerium Oxide: Performance and Failure Analysis under Lean Electrolyte Conditions. Advanced Materials (Deerfield Beach, Fla.). e2302771. PMID 37278254 DOI: 10.1002/adma.202302771 |
0.583 |
|
2023 |
Wang H, Fu S, Shang B, Jeon S, Zhong Y, Harmon NJ, Choi C, Stach EA, Wang H. Solar-Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure. Angewandte Chemie (International Ed. in English). e202305251. PMID 37235523 DOI: 10.1002/anie.202305251 |
0.59 |
|
2022 |
Shang B, Rooney CL, Gallagher DJ, Wang B, Krayev A, Shema H, Leitner O, Harmon NJ, Xiao L, Sheehan C, Bottum SR, Gross E, Cahoon JF, Mallouk TE, Wang H. Aqueous Photoelectrochemical CO2 Reduction to CO and Methanol over a Silicon Photocathode Functionalized with a Cobalt Phthalocyanine Molecular Catalyst. Angewandte Chemie (International Ed. in English). PMID 36445830 DOI: 10.1002/anie.202215213 |
0.665 |
|
2022 |
Weng Z, Wu Y, Wang M, Brudvig GW, Batista VS, Liang Y, Feng Z, Wang H. Reply To: Confined molecular catalysts provide an alternative interpretation to the electrochemically reversible demetallation of copper complexes. Nature Communications. 13: 4191. PMID 35869050 DOI: 10.1038/s41467-022-31662-0 |
0.631 |
|
2021 |
Rooney CL, Wu Y, Tao Z, Wang H. Electrochemical Reductive N-Methylation with CO Enabled by a Molecular Catalyst. Journal of the American Chemical Society. PMID 34784216 DOI: 10.1021/jacs.1c10863 |
0.54 |
|
2021 |
Kong J, Shin Y, Röhr JA, Wang H, Meng J, Wu Y, Katzenberg A, Kim G, Kim DY, Li TD, Chau E, Antonio F, Siboonruang T, Kwon S, Lee K, ... ... Wang H, et al. Author Correction: CO doping of organic interlayers for perovskite solar cells. Nature. PMID 34480150 DOI: 10.1038/s41586-021-03839-y |
0.461 |
|
2021 |
Wu Y, Liang Y, Wang H. Heterogeneous Molecular Catalysts of Metal Phthalocyanines for Electrochemical CO Reduction Reactions. Accounts of Chemical Research. PMID 34347429 DOI: 10.1021/acs.accounts.1c00200 |
0.591 |
|
2021 |
Kong J, Shin Y, Röhr JA, Wang H, Meng J, Wu Y, Katzenberg A, Kim G, Kim DY, Li TD, Chau E, Antonio F, Siboonruang T, Kwon S, Lee K, ... ... Wang H, et al. CO doping of organic interlayers for perovskite solar cells. Nature. 594: 51-56. PMID 34079136 DOI: 10.1038/s41586-021-03518-y |
0.518 |
|
2020 |
Hu G, Jiang JJ, Kelly HR, Matula AJ, Wu Y, Romano N, Mercado BQ, Wang H, Batista VS, Crabtree RH, Brudvig GW. Surprisingly big linker-dependence of activity and selectivity in CO reduction by an iridium(i) pincer complex. Chemical Communications (Cambridge, England). 56: 9126-9129. PMID 32779668 DOI: 10.1039/D0Cc03207G |
0.633 |
|
2020 |
Lu X, Zhu C, Wu Z, Xuan J, Francisco JS, Wang H. In-Situ Observation of the pH Gradient near the Gas Diffusion Electrode of CO2 Reduction in Alkaline Electrolyte. Journal of the American Chemical Society. PMID 32692913 DOI: 10.1021/Jacs.0C06779 |
0.328 |
|
2020 |
Wu Y, Hu G, Rooney CL, Brudvig GW, Wang H. Heterogeneous Nature of Electrocatalytic CO/CO2 Reduction by Cobalt Phthalocyanines. Chemsuschem. PMID 32668072 DOI: 10.1002/Cssc.202001396 |
0.622 |
|
2020 |
Zhong Y, Xie Y, Hwang S, Wang Q, Cha JJ, Su D, Wang H. Highly Efficient All-Solid-State Lithium/Electrolyte Interface Induced by an Energetic Reaction. Angewandte Chemie (International Ed. in English). PMID 32374495 DOI: 10.1002/Anie.202004477 |
0.376 |
|
2020 |
Li P, Lu X, Wu Z, Wu Y, Malpass-Evans R, McKeown NB, Sun X, Wang H. Acid-Base Interaction Enhancing Oxygen Tolerance in Electrocatalytic Carbon Dioxide Reduction. Angewandte Chemie (International Ed. in English). PMID 32212372 DOI: 10.1002/Anie.202003093 |
0.587 |
|
2020 |
Zhang Y, Zhong Y, Wu Z, Wang B, Liang S, Wang H. Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance on Both Electrodes. Angewandte Chemie (International Ed. in English). PMID 32022448 DOI: 10.1002/Anie.202000023 |
0.402 |
|
2020 |
Han HJ, Hynek D, Wu Z, Wang L, Liu P, Pondick JV, Yazdani S, Woods JM, Yarali M, Xie Y, Wang H, Cha JJ. Synthesis and resistivity of topological metal MoP nanostructures Apl Materials. 8: 11103. DOI: 10.1063/1.5130159 |
0.328 |
|
2020 |
Zhang X, Wang Y, Gu M, Wang M, Zhang Z, Pan W, Jiang Z, Zheng H, Lucero M, Wang H, Sterbinsky GE, Ma Q, Wang Y, Feng Z, Li J, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction Nature Energy. 1-9. DOI: 10.1038/S41560-020-0667-9 |
0.572 |
|
2020 |
Tao Z, Wu Z, Wu Y, Wang H. Activating Copper for Electrocatalytic CO2 Reduction to Formate via Molecular Interactions Acs Catalysis. 10: 9271-9275. DOI: 10.1021/Acscatal.0C02237 |
0.549 |
|
2020 |
Liu T, Diao P, Lin Z, Wang H. Sulfur and selenium doped nickel chalcogenides as efficient and stable electrocatalysts for hydrogen evolution reaction: The importance of the dopant atoms in and beneath the surface Nano Energy. 74: 104787. DOI: 10.1016/J.Nanoen.2020.104787 |
0.393 |
|
2020 |
Hu Y, Zhong Y, Qi L, Wang H. Inorganic/polymer hybrid layer stabilizing anode/electrolyte interfaces in solid-state Li metal batteries Nano Research. 1-5. DOI: 10.1007/S12274-020-2993-4 |
0.356 |
|
2020 |
Zhang Y, Shi Q, Zhong Y, Wang H. Intrinsically high efficiency sodium metal anode Science China-Chemistry. 1-6. DOI: 10.1007/S11426-020-9808-6 |
0.358 |
|
2019 |
Lu X, Jiang Z, Yuan X, Wu Y, Malpass-Evans R, Zhong Y, Liang Y, McKeown NB, Wang H. A bio-inspired O-tolerant catalytic CO reduction electrode. Science Bulletin. 64: 1890-1895. PMID 36659584 DOI: 10.1016/j.scib.2019.04.008 |
0.539 |
|
2019 |
Wu Y, Jiang Z, Lu X, Liang Y, Wang H. Domino electroreduction of CO to methanol on a molecular catalyst. Nature. 575: 639-642. PMID 31776492 DOI: 10.1038/S41586-019-1760-8 |
0.63 |
|
2019 |
Zhang B, Zhu C, Wu Z, Stavitski E, Lui YH, Kim TH, Liu H, Huang L, Luan X, Zhou L, Jiang K, Huang W, Hu S, Wang H, Francisco JS. Integrating Rh Species with NiFe Layered-Double-Hydroxide for Overall Water Splitting. Nano Letters. PMID 31774999 DOI: 10.1021/Acs.Nanolett.9B03460 |
0.383 |
|
2019 |
Delley MF, Wu Z, Mundy ME, Ung D, Cossairt BM, Wang H, Mayer JM. Hydrogen on Cobalt Phosphide. Journal of the American Chemical Society. PMID 31479259 DOI: 10.1021/Jacs.9B07986 |
0.313 |
|
2019 |
Wu Y, Yuan X, Tao Z, Wang H. Bifunctional electrocatalysis for CO reduction via surface capping-dependent metal-oxide interactions. Chemical Communications (Cambridge, England). PMID 31231725 DOI: 10.1039/C9Cc02934F |
0.623 |
|
2019 |
Zhou Y, Pondick JV, Silva JL, Woods JM, Hynek DJ, Matthews G, Shen X, Feng Q, Liu W, Lu Z, Liang Z, Brena B, Cai Z, Wu M, Jiao L, ... ... Wang H, et al. Unveiling the Interfacial Effects for Enhanced Hydrogen Evolution Reaction on MoS /WTe Hybrid Structures. Small (Weinheim An Der Bergstrasse, Germany). e1900078. PMID 30957970 DOI: 10.1002/Smll.201900078 |
0.583 |
|
2019 |
Lu X, Wu Y, Yuan X, Wang H. An Integrated CO2 Electrolyzer and Formate Fuel Cell Enabled by a Reversibly-Restructuring Pb-Pd Bimetallic Catalyst. Angewandte Chemie (International Ed. in English). PMID 30664835 DOI: 10.1002/Anie.201814257 |
0.605 |
|
2019 |
Tao Z, Wu Z, Yuan X, Wu Y, Wang H. Copper–Gold Interactions Enhancing Formate Production from Electrochemical CO2 Reduction Acs Catalysis. 9: 10894-10898. DOI: 10.1021/Acscatal.9B03158 |
0.612 |
|
2019 |
Wu Z, Huang L, Liu H, Wang H. Element-Specific Restructuring of Anion- and Cation-Substituted Cobalt Phosphide Nanoparticles under Electrochemical Water-Splitting Conditions Acs Catalysis. 9: 2956-2961. DOI: 10.1021/Acscatal.8B03835 |
0.413 |
|
2019 |
Lu X, Jiang Z, Yuan X, Wu Y, Malpass-Evans R, Zhong Y, Liang Y, McKeown NB, Wang H. A bio-inspired O2-tolerant catalytic CO2 reduction electrode Science Bulletin. 64: 1890-1895. DOI: 10.1016/J.Scib.2019.04.008 |
0.593 |
|
2019 |
Xu W, Lu Z, Zhang T, Zhong Y, Wu Y, Zhang G, Liu J, Wang H, Sun X. An advanced zinc air battery with nanostructured superwetting electrodes Energy Storage Materials. 17: 358-365. DOI: 10.1016/J.Ensm.2018.06.029 |
0.63 |
|
2019 |
Wang H, Dai H. The Nano Research Young Innovators (NR45) Awards in nanoenergy Nano Research. 12: 1975-1977. DOI: 10.1007/S12274-019-2475-8 |
0.391 |
|
2018 |
Yang Y, Zhong Y, Shi Q, Wang Z, Sun K, Wang H. Electrocatalysis in Lithium Sulfur Batteries under Lean Electrolyte Conditions. Angewandte Chemie (International Ed. in English). PMID 30255539 DOI: 10.1002/Anie.201808311 |
0.402 |
|
2018 |
Cai Z, Zhou D, Wang M, Bak S, Wu Y, Wu Z, Tian Y, Xiong X, Li Y, Liu W, Siahrostami S, Kuang Y, Yang XQ, Duan H, Feng Z, ... Wang H, et al. Introducing Fe2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie (International Ed. in English). PMID 29889350 DOI: 10.1002/Anie.201804881 |
0.584 |
|
2018 |
Shi Q, Zhong Y, Wu M, Wang H, Wang H. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America. PMID 29760091 DOI: 10.1073/Pnas.1803634115 |
0.398 |
|
2018 |
Shi Q, Zhong Y, Wu M, Wang H, Wang H. High performance sodium metal anodes enabled by a bi-functional potassium salt. Angewandte Chemie (International Ed. in English). PMID 29644778 DOI: 10.1002/Anie.201803049 |
0.357 |
|
2018 |
Zhou Y, Silva JL, Woods JM, Pondick JV, Feng Q, Liang Z, Liu W, Lin L, Deng B, Brena B, Xia F, Peng H, Liu Z, Wang H, Araujo CM, et al. Revealing the Contribution of Individual Factors to Hydrogen Evolution Reaction Catalytic Activity. Advanced Materials (Deerfield Beach, Fla.). e1706076. PMID 29573299 DOI: 10.1002/Adma.201706076 |
0.387 |
|
2018 |
Weng Z, Wu Y, Wang M, Jiang J, Yang K, Huo S, Wang XF, Ma Q, Brudvig GW, Batista VS, Liang Y, Feng Z, Wang H. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nature Communications. 9: 415. PMID 29379087 DOI: 10.1038/S41467-018-02819-7 |
0.697 |
|
2018 |
Zhong Y, Yin L, He P, Liu W, Wu Z, Wang H. Surface Chemistry in Cobalt Phosphide-Stabilized Lithium-Sulfur Batteries. Journal of the American Chemical Society. PMID 29309139 DOI: 10.1021/Jacs.7B11434 |
0.415 |
|
2018 |
Cai Z, Wu Y, Wu Z, Yin L, Weng Z, Zhong Y, Xu W, Sun X, Wang H. Unlocking Bifunctional Electrocatalytic Activity for CO2 Reduction Reaction by Win-Win Metal–Oxide Cooperation Acs Energy Letters. 3: 2816-2822. DOI: 10.1021/Acsenergylett.8B01767 |
0.624 |
|
2018 |
Lu X, Wu Y, Yuan X, Huang L, Wu Z, Xuan J, Wang Y, Wang H. High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts Acs Energy Letters. 3: 2527-2532. DOI: 10.1021/Acsenergylett.8B01681 |
0.62 |
|
2018 |
Jiang J, Matula AJ, Swierk JR, Romano N, Wu Y, Batista VS, Crabtree RH, Lindsey JS, Wang H, Brudvig GW. Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO2 Conversion to CO Acs Catalysis. 8: 10131-10136. DOI: 10.1021/Acscatal.8B02991 |
0.634 |
|
2018 |
Zhang Y, Zhong Y, Shi Q, Liang S, Wang H. Cycling and Failing of Lithium Metal Anodes in Carbonate Electrolyte The Journal of Physical Chemistry C. 122: 21462-21467. DOI: 10.1021/Acs.Jpcc.8B06650 |
0.375 |
|
2018 |
Wu Z, Gan Q, Li X, Zhong Y, Wang H. Elucidating Surface Restructuring-Induced Catalytic Reactivity of Cobalt Phosphide Nanoparticles under Electrochemical Conditions The Journal of Physical Chemistry C. 122: 2848-2853. DOI: 10.1021/Acs.Jpcc.7B11843 |
0.605 |
|
2018 |
He G, Han X, Moss B, Weng Z, Gadipelli S, Lai F, Kafizas AG, Brett DJ, Guo ZX, Wang H, Parkin IP. Solid solution nitride/carbon nanotube hybrids enhance electrocatalysis of oxygen in zinc-air batteries Energy Storage Materials. 15: 380-387. DOI: 10.1016/J.Ensm.2018.08.020 |
0.451 |
|
2018 |
Cai Z, Zhang Y, Zhao Y, Wu Y, Xu W, Wen X, Zhong Y, Zhang Y, Liu W, Wang H, Kuang Y, Sun X. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes Nano Research. 12: 345-349. DOI: 10.1007/S12274-018-2221-7 |
0.576 |
|
2018 |
Gan Q, Wu Z, Li X, Liu W, Wang H. Structure and Electrocatalytic Reactivity of Cobalt Phosphosulfide Nanomaterials Topics in Catalysis. 61: 958-964. DOI: 10.1007/S11244-018-0954-X |
0.586 |
|
2018 |
Cai Z, Bi Y, Hu E, Liu W, Dwarica N, Tian Y, Li X, Kuang Y, Li Y, Yang X, Wang H, Sun X. Single-Crystalline Ultrathin Co3O4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis Advanced Energy Materials. 8: 1701694. DOI: 10.1002/Aenm.201701694 |
0.38 |
|
2017 |
Wu Y, Jiang J, Weng Z, Wang M, Broere DLJ, Zhong Y, Brudvig GW, Feng Z, Wang H. Electroreduction of CO2 Catalyzed by a Heterogenized Zn-Porphyrin Complex with a Redox-Innocent Metal Center. Acs Central Science. 3: 847-852. PMID 28852698 DOI: 10.1021/Acscentsci.7B00160 |
0.611 |
|
2017 |
Weng Z, Zhang X, Wu Y, Huo S, Jiang J, Liu W, He G, Liang Y, Wang H. Self-Cleaning Catalyst Electrodes for Stabilized CO2 Reduction to Hydrocarbons. Angewandte Chemie (International Ed. in English). PMID 28805993 DOI: 10.1002/Anie.201707478 |
0.599 |
|
2017 |
Huo SJ, Weng Z, Wu Z, Zhong Y, Wu Y, Fang J, Wang H. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction. Acs Applied Materials & Interfaces. PMID 28786653 DOI: 10.1021/Acsami.7B07707 |
0.624 |
|
2017 |
Liu W, Mi Y, Weng Z, Zhong Y, Wu Z, Wang H. Functional metal-organic framework boosting lithium metal anode performance via chemical interactions. Chemical Science. 8: 4285-4291. PMID 28626566 DOI: 10.1039/C7Sc00668C |
0.384 |
|
2017 |
Liu W, Jiang J, Yang KR, Mi Y, Kumaravadivel P, Zhong Y, Fan Q, Weng Z, Wu Z, Cha JJ, Zhou H, Batista VS, Brudvig GW, Wang H. Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America. PMID 28320950 DOI: 10.1073/Pnas.1620809114 |
0.561 |
|
2017 |
Zhang X, Wu Z, Zhang X, Li L, Li Y, Xu H, Li X, Yu X, Zhang Z, Liang Y, Wang H. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nature Communications. 8: 14675. PMID 28272403 DOI: 10.1038/Ncomms14675 |
0.425 |
|
2017 |
Li X, Liu W, Zhang M, Zhong Y, Weng Z, Mi Y, Zhou Y, Li M, Cha JJ, Tang Z, Jiang H, Li X, Wang H. Strong Metal-Phosphide Interactions in Core-Shell Geometry for Enhanced Electrocatalysis. Nano Letters. PMID 28186769 DOI: 10.1021/Acs.Nanolett.7B00126 |
0.422 |
|
2017 |
Mi Y, Liu W, Wang Q, Jiang J, Brudvig GW, Zhou H, Wang H. A pomegranate-structured sulfur cathode material with triple confinement of lithium polysulfides for high-performance lithium–sulfur batteries Journal of Materials Chemistry A. 5: 11788-11793. DOI: 10.1039/C7Ta00035A |
0.432 |
|
2017 |
Wu Z, Li X, Liu W, Zhong Y, Gan Q, Li X, Wang H. Materials Chemistry of Iron Phosphosulfide Nanoparticles: Synthesis, Solid State Chemistry, Surface Structure, and Electrocatalysis for the Hydrogen Evolution Reaction Acs Catalysis. 7: 4026-4032. DOI: 10.1021/Acscatal.7B00466 |
0.601 |
|
2017 |
Zhong Y, Yang KR, Liu W, He P, Batista V, Wang H. Mechanistic Insights into Surface Chemical Interactions between Lithium Polysulfides and Transition Metal Oxides The Journal of Physical Chemistry C. 121: 14222-14227. DOI: 10.1021/Acs.Jpcc.7B04170 |
0.543 |
|
2017 |
Chang Z, Huo S, Zhang W, Fang J, Wang H. The Tunable and Highly Selective Reduction Products on Ag@Cu Bimetallic Catalysts Toward CO2 Electrochemical Reduction Reaction The Journal of Physical Chemistry C. 121: 11368-11379. DOI: 10.1021/Acs.Jpcc.7B01586 |
0.35 |
|
2017 |
Tang J, Wang H, Gomez A. Controlled nanoparticle synthesis via opposite-polarity electrospray pyrolysis Journal of Aerosol Science. 113: 201-211. DOI: 10.1016/J.Jaerosci.2017.07.001 |
0.366 |
|
2017 |
Wang H. Discovering and Utilizing Structure Sensitivity: From Chemical Catalysis in the Gas Phase to Electrocatalysis in the Liquid Phase Studies in Surface Science and Catalysis. 177: 613-641. DOI: 10.1016/B978-0-12-805090-3.00016-4 |
0.381 |
|
2017 |
Mi Y, Liu W, Li X, Zhuang J, Zhou H, Wang H. High-performance Li–S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox Nano Research. 10: 3698-3705. DOI: 10.1007/S12274-017-1581-8 |
0.439 |
|
2017 |
Luo M, Cai Z, Wang C, Bi Y, Qian L, Hao Y, Li L, Kuang Y, Li Y, Lei X, Huo Z, Liu W, Wang H, Sun X, Duan X. Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution Nano Research. 10: 1732-1739. DOI: 10.1007/S12274-017-1437-2 |
0.408 |
|
2017 |
Zhang X, Zhang X, Xu H, Wu Z, Wang H, Liang Y. Iron-Doped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting Advanced Functional Materials. 27: 1606635. DOI: 10.1002/Adfm.201606635 |
0.432 |
|
2016 |
Mi Y, Liu W, Yang KR, Jiang J, Fan Q, Weng Z, Zhong Y, Wu Z, Brudvig GW, Batista VS, Zhou H, Wang H. Ferrocene-Promoted Long-Cycle Lithium-Sulfur Batteries. Angewandte Chemie (International Ed. in English). PMID 27779359 DOI: 10.1002/Anie.201609147 |
0.556 |
|
2016 |
Tang J, Liu W, Wang H, Gomez A. High Performance Metal Oxide-Graphene Hybrid Nanomaterials Synthesized via Opposite-Polarity Electrosprays. Advanced Materials (Deerfield Beach, Fla.). PMID 27709691 DOI: 10.1002/Adma.201603339 |
0.423 |
|
2016 |
Weng Z, Jiang J, Wu Y, Wu Z, Guo X, Materna KL, Liu W, Batista VS, Brudvig GW, Wang H. Electrochemical CO2 Reduction to Hydrocarbons on a Heterogene-ous Molecular Cu Catalyst in Aqueous Solution. Journal of the American Chemical Society. PMID 27310487 DOI: 10.1021/Jacs.6B04746 |
0.702 |
|
2016 |
Liu W, Hu E, Jiang H, Xiang Y, Weng Z, Li M, Fan Q, Yu X, Altman EI, Wang H. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications. 7: 10771. PMID 26892437 DOI: 10.1038/Ncomms10771 |
0.419 |
|
2016 |
Woods JM, Jung Y, Xie Y, Liu W, Liu Y, Wang H, Cha JJ. One-Step Synthesis of MoS2/WS2 Layered Heterostructures and Catalytic Activity of Defective Transition Metal Dichalcogenide Films. Acs Nano. PMID 26836122 DOI: 10.1021/Acsnano.5B06126 |
0.362 |
|
2016 |
Li Y, Zhang H, Jiang M, Kuang Y, Wang H, Sun X. Amorphous Co–Mo–S ultrathin films with low-temperature sulfurization as high-performance electrocatalysts for the hydrogen evolution reaction Journal of Materials Chemistry. 4: 13731-13735. DOI: 10.1039/C6Ta05742J |
0.36 |
|
2016 |
Liu W, Wang H. Influence of surface capping on oxygen reduction catalysis: A case study of 1.7 nm Pt nanoparticles Surface Science. 648: 120-125. DOI: 10.1016/J.Susc.2015.10.023 |
0.373 |
|
2016 |
He G, Han X, Zou R, Zhao T, Weng Z, Ho-Kimura S, Lu Y, Wang H, Guo ZX, Parkin IP. A Targeted Functional Design for Highly Efficient and Stable Cathodes for Rechargeable Li-Ion Batteries Advanced Functional Materials. 27: 1604903. DOI: 10.1002/Adfm.201604903 |
0.381 |
|
2015 |
Weng Z, Liu W, Yin LC, Fang R, Li M, Altman EI, Fan Q, Li F, Cheng HM, Wang H. Metal/Oxide Interface Nanostructures Generated by Surface Segregation for Electrocatalysis. Nano Letters. PMID 26509583 DOI: 10.1021/Acs.Nanolett.5B03709 |
0.399 |
|
2015 |
Fan Q, Liu W, Weng Z, Sun Y, Wang H. A Ternary Hybrid Material for High Performance Lithium-Sulfur Battery. Journal of the American Chemical Society. PMID 26378475 DOI: 10.1021/Jacs.5B07071 |
0.401 |
|
2015 |
Feng Y, OuYang Y, Peng L, Qiu H, Wang H, Wang Y. Quasi-graphene-envelope Fe-doped Ni2P sandwiched nanocomposites for enhanced water splitting and lithium storage performance Journal of Materials Chemistry A. 3: 9587-9594. DOI: 10.1039/C5Ta01103E |
0.412 |
|
2014 |
Sapi A, Liu F, Cai X, Thompson CM, Wang H, An K, Krier JM, Somorjai GA. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled Pt nanoparticles: striking differences in kinetics and mechanism. Nano Letters. 14: 6727-30. PMID 25337984 DOI: 10.1021/Nl5035545 |
0.301 |
|
2014 |
Wang H. Hybrid material design for energy applications: impact of graphene and carbon nanotubes Pure and Applied Chemistry. 86: 39-52. DOI: 10.1515/Pac-2014-5013 |
0.389 |
|
2014 |
Gong M, Li Y, Zhang H, Zhang B, Zhou W, Feng J, Wang H, Liang Y, Fan Z, Liu J, Dai H. Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide Energy & Environmental Science. 7: 2025. DOI: 10.1039/C4Ee00317A |
0.666 |
|
2014 |
Wang H, An K, Sapi A, Liu F, Somorjai GA. Effects of nanoparticle size and metal/support interactions in pt-catalyzed methanol oxidation reactions in gas and liquid phases Catalysis Letters. 144: 1930-1938. DOI: 10.1007/S10562-014-1347-9 |
0.368 |
|
2014 |
Sapi A, Thompson C, Wang H, Michalak WD, Ralston WT, Alayoglu S, Somorjai GA. Recovery of Pt surfaces for ethylene hydrogenation-based active site determination Catalysis Letters. 144: 1151-1158. DOI: 10.1007/S10562-014-1272-Y |
0.35 |
|
2013 |
Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society. 135: 8452-5. PMID 23701670 DOI: 10.1021/Ja4027715 |
0.679 |
|
2013 |
Wang H, Wang Y, Zhu Z, Sapi A, An K, Kennedy G, Michalak WD, Somorjai GA. Influence of size-induced oxidation state of platinum nanoparticles on selectivity and activity in catalytic methanol oxidation in the gas phase. Nano Letters. 13: 2976-9. PMID 23701488 DOI: 10.1021/Nl401568X |
0.359 |
|
2013 |
Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nature Communications. 4: 1805. PMID 23651993 DOI: 10.1038/Ncomms2812 |
0.69 |
|
2013 |
Wang H, Dai H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chemical Society Reviews. 42: 3088-113. PMID 23361617 DOI: 10.1039/C2Cs35307E |
0.594 |
|
2013 |
Zhou J, Wang J, Hu Y, Regier T, Wang H, Yang Y, Cui Y, Dai H. Imaging state of charge and its correlation to interaction variation in an LiMn(0.75)Fe(0.25)PO(4) nanorods-graphene hybrid. Chemical Communications (Cambridge, England). 49: 1765-7. PMID 23340608 DOI: 10.1039/C3Cc39015B |
0.519 |
|
2013 |
Liang Y, Li Y, Wang H, Dai H. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. Journal of the American Chemical Society. 135: 2013-36. PMID 23339685 DOI: 10.1021/Ja3089923 |
0.715 |
|
2013 |
Wang H, Krier JM, Zhu Z, Melaet G, Wang Y, Kennedy G, Alayoglu S, An K, Somorjai GA. Promotion of hydrogenation of organic molecules by incorporating iron into platinum nanoparticle catalysts: Displacement of inactive reaction intermediates Acs Catalysis. 3: 2371-2375. DOI: 10.1021/Cs400579J |
0.377 |
|
2012 |
Liang Y, Wang H, Diao P, Chang W, Hong G, Li Y, Gong M, Xie L, Zhou J, Wang J, Regier TZ, Wei F, Dai H. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. Journal of the American Chemical Society. 134: 15849-57. PMID 22957510 DOI: 10.1021/Ja305623M |
0.72 |
|
2012 |
Wang H, Liang Y, Gong M, Li Y, Chang W, Mefford T, Zhou J, Wang J, Regier T, Wei F, Dai H. An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nature Communications. 3: 917. PMID 22735445 DOI: 10.1038/Ncomms1921 |
0.668 |
|
2012 |
Zhou J, Wang J, Zuin L, Regier T, Hu Y, Wang H, Liang Y, Maley J, Sammynaiken R, Dai H. Spectroscopic understanding of ultra-high rate performance for LiMn(0.75)Fe(0.25)PO4 nanorods-graphene hybrid in lithium ion battery. Physical Chemistry Chemical Physics : Pccp. 14: 9578-81. PMID 22678419 DOI: 10.1039/C2Cp41012E |
0.542 |
|
2012 |
Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo JC, Pennycook SJ, Dai H. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nature Nanotechnology. 7: 394-400. PMID 22635099 DOI: 10.1038/Nnano.2012.72 |
0.713 |
|
2012 |
Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H, Dai H, Andrews JC, Cui Y, Toney MF. In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. Journal of the American Chemical Society. 134: 6337-43. PMID 22432568 DOI: 10.1021/Ja2121926 |
0.492 |
|
2012 |
Hong G, Wu JZ, Robinson JT, Wang H, Zhang B, Dai H. Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates. Nature Communications. 3: 700. PMID 22426221 DOI: 10.1038/Ncomms1698 |
0.462 |
|
2012 |
Liang Y, Wang H, Zhou J, Li Y, Wang J, Regier T, Dai H. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. Journal of the American Chemical Society. 134: 3517-23. PMID 22280461 DOI: 10.1021/Ja210924T |
0.694 |
|
2012 |
Chen Z, Hong G, Wang H, Welsher K, Tabakman SM, Sherlock SP, Robinson JT, Liang Y, Dai H. Graphite-coated magnetic nanoparticle microarray for few-cells enrichment and detection. Acs Nano. 6: 1094-101. PMID 22229344 DOI: 10.1021/Nn2034692 |
0.696 |
|
2012 |
Wang H, Yang Y, Liang Y, Zheng G, Li Y, Cui Y, Dai H. Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst Energy & Environmental Science. 5: 7931. DOI: 10.1039/C2Ee21746E |
0.707 |
|
2012 |
Zhang B, Price J, Hong G, Tabakman SM, Wang H, Jarrell JA, Feng J, Utz PJ, Dai H. Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence Nano Research. 6: 113-120. DOI: 10.1007/S12274-012-0286-2 |
0.423 |
|
2012 |
Feng J, Liang Y, Wang H, Li Y, Zhang B, Zhou J, Wang J, Regier T, Dai H. Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis Nano Research. 5: 718-725. DOI: 10.1007/S12274-012-0256-8 |
0.707 |
|
2011 |
Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J, Dai H. Controlled chlorine plasma reaction for noninvasive graphene doping. Journal of the American Chemical Society. 133: 19668-71. PMID 22082226 DOI: 10.1021/Ja2091068 |
0.652 |
|
2011 |
Wang H, Liang Y, Li Y, Dai H. Co(1-x)S-graphene hybrid: a high-performance metal chalcogenide electrocatalyst for oxygen reduction. Angewandte Chemie (International Ed. in English). 50: 10969-72. PMID 21954126 DOI: 10.1002/Anie.201104004 |
0.666 |
|
2011 |
Tabakman SM, Lau L, Robinson JT, Price J, Sherlock SP, Wang H, Zhang B, Chen Z, Tangsombatvisit S, Jarrell JA, Utz PJ, Dai H. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nature Communications. 2: 466. PMID 21915108 DOI: 10.1038/Ncomms1477 |
0.427 |
|
2011 |
Wang X, Ouyang Y, Jiao L, Wang H, Xie L, Wu J, Guo J, Dai H. Graphene nanoribbons with smooth edges behave as quantum wires. Nature Nanotechnology. 6: 563-7. PMID 21873992 DOI: 10.1038/Nnano.2011.138 |
0.604 |
|
2011 |
Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials. 10: 780-6. PMID 21822263 DOI: 10.1038/Nmat3087 |
0.712 |
|
2011 |
Wang H, Yang Y, Liang Y, Cui LF, Casalongue HS, Li Y, Hong G, Cui Y, Dai H. LiMn(1-x)Fe(x)PO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angewandte Chemie (International Ed. in English). 50: 7364-8. PMID 21710671 DOI: 10.1002/ange.201103163 |
0.709 |
|
2011 |
Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Letters. 11: 2644-7. PMID 21699259 DOI: 10.1021/Nl200658A |
0.675 |
|
2011 |
Xie L, Wang H, Jin C, Wang X, Jiao L, Suenaga K, Dai H. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties. Journal of the American Chemical Society. 133: 10394-7. PMID 21678963 DOI: 10.1021/Ja203860A |
0.625 |
|
2011 |
Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society. 133: 7296-9. PMID 21510646 DOI: 10.1021/Ja201269B |
0.708 |
|
2011 |
Hong G, Tabakman SM, Welsher K, Chen Z, Robinson JT, Wang H, Zhang B, Dai H. Near-infrared-fluorescence-enhanced molecular imaging of live cells on gold substrates. Angewandte Chemie (International Ed. in English). 50: 4644-8. PMID 21506225 DOI: 10.1002/Anie.201100934 |
0.684 |
|
2011 |
Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Vinh D, Dai H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society. 133: 6825-31. PMID 21476500 DOI: 10.1021/Ja2010175 |
0.547 |
|
2011 |
Kato T, Jiao L, Wang X, Wang H, Li X, Zhang L, Hatakeyama R, Dai H. Room-temperature edge functionalization and doping of graphene by mild plasma. Small (Weinheim An Der Bergstrasse, Germany). 7: 574-7. PMID 21370457 DOI: 10.1002/Smll.201002146 |
0.609 |
|
2011 |
Tabakman SM, Chen Z, Casalongue HS, Wang H, Dai H. A new approach to solution-phase gold seeding for SERS substrates. Small (Weinheim An Der Bergstrasse, Germany). 7: 499-505. PMID 21360809 DOI: 10.1002/Smll.201001836 |
0.465 |
|
2011 |
Jiao L, Wang X, Diankov G, Wang H, Dai H. Erratum: Facile synthesis of high-quality graphene nanoribbons Nature Nanotechnology. 6: 132-132. DOI: 10.1038/Nnano.2011.2 |
0.601 |
|
2011 |
Wang H, Liang Y, Mirfakhrai T, Chen Z, Casalongue HS, Dai H. Advanced asymmetrical supercapacitors based on graphene hybrid materials Nano Research. 4: 729-736. DOI: 10.1007/S12274-011-0129-6 |
0.578 |
|
2010 |
Robinson JT, Welsher K, Tabakman SM, Sherlock SP, Wang H, Luong R, Dai H. High Performance In Vivo Near-IR (>1 μm) Imaging and Photothermal Cancer Therapy with Carbon Nanotubes. Nano Research. 3: 779-793. PMID 21804931 DOI: 10.1007/S12274-010-0045-1 |
0.698 |
|
2010 |
Hong G, Tabakman SM, Welsher K, Wang H, Wang X, Dai H. Metal-enhanced fluorescence of carbon nanotubes. Journal of the American Chemical Society. 132: 15920-3. PMID 20979398 DOI: 10.1021/Ja1087997 |
0.719 |
|
2010 |
Wang H, Cui LF, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. Journal of the American Chemical Society. 132: 13978-80. PMID 20853844 DOI: 10.1021/Ja105296A |
0.559 |
|
2010 |
Wang H, Casalongue HS, Liang Y, Dai H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Journal of the American Chemical Society. 132: 7472-7. PMID 20443559 DOI: 10.1021/Ja102267J |
0.574 |
|
2010 |
Jiao L, Wang X, Diankov G, Wang H, Dai H. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotechnology. 5: 321-5. PMID 20364133 DOI: 10.1038/Nnano.2010.54 |
0.655 |
|
2010 |
Wang H, Robinson JT, Diankov G, Dai H. Nanocrystal growth on graphene with various degrees of oxidation. Journal of the American Chemical Society. 132: 3270-1. PMID 20166667 DOI: 10.1021/Ja100329D |
0.547 |
|
2010 |
Liang Y, Wang H, Sanchez Casalongue H, Chen Z, Dai H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials Nano Research. 3: 701-705. DOI: 10.1007/S12274-010-0033-5 |
0.536 |
|
2009 |
Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H. Simultaneous nitrogen doping and reduction of graphene oxide. Journal of the American Chemical Society. 131: 15939-44. PMID 19817436 DOI: 10.1021/Ja907098F |
0.505 |
|
2009 |
Kundhikanjana W, Lai K, Wang H, Dai H, Kelly MA, Shen ZX. Hierarchy of electronic properties of chemically derived and pristine graphene probed by microwave imaging. Nano Letters. 9: 3762-5. PMID 19678669 DOI: 10.1021/Nl901949Z |
0.525 |
|
2009 |
Wang H, Robinson JT, Li X, Dai H. Solvothermal reduction of chemically exfoliated graphene sheets. Journal of the American Chemical Society. 131: 9910-1. PMID 19580268 DOI: 10.1021/Ja904251P |
0.541 |
|
2009 |
Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H. N-doping of graphene through electrothermal reactions with ammonia. Science (New York, N.Y.). 324: 768-71. PMID 19423822 DOI: 10.1126/Science.1170335 |
0.542 |
|
2009 |
Wang H, Wang X, Li X, Dai H. Chemical self-assembly of graphene sheets Nano Research. 2: 336-342. DOI: 10.1007/S12274-009-9031-X |
0.51 |
|
2008 |
Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters. 100: 206803. PMID 18518566 DOI: 10.1103/Physrevlett.100.206803 |
0.488 |
|
Show low-probability matches. |