Andreas Martin - Publications

Affiliations: 
Molecular and Cell Biology University of California, Berkeley, Berkeley, CA, United States 
Area:
Energy-dependent proteases and molecular machines

60 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Arkinson C, Dong KC, Gee CL, Martin A. Mechanisms and regulation of substrate degradation by the 26S proteasome. Nature Reviews. Molecular Cell Biology. PMID 39362999 DOI: 10.1038/s41580-024-00778-0  0.463
2024 Arkinson C, Dong KC, Gee CL, Costello SM, Marqusee S, Martin A. Nub1 traps unfolded FAT10 for ubiquitin-independent degradation by the 26S proteasome. Biorxiv : the Preprint Server For Biology. PMID 38915702 DOI: 10.1101/2024.06.12.598715  0.646
2023 Ali BA, Judy RM, Chowdhury S, Jacobsen NK, Castanzo DT, Carr KL, Richardson CD, Lander GC, Martin A, Gardner BM. The N1 domain of the peroxisomal AAA-ATPase Pex6 is required for Pex15 binding and proper assembly with Pex1. The Journal of Biological Chemistry. 105504. PMID 38036174 DOI: 10.1016/j.jbc.2023.105504  0.311
2023 Williams C, Dong KC, Arkinson C, Martin A. Preparation of site-specifically fluorophore-labeled polyubiquitin chains for FRET studies of Cdc48 substrate processing. Star Protocols. 4: 102659. PMID 37889757 DOI: 10.1016/j.xpro.2023.102659  0.367
2023 Ali BA, Judy RM, Chowdhury S, Jacobsen NK, Castanzo DT, Carr KL, Richardson CD, Lander GC, Martin A, Gardner BM. The Pex6 N1 domain is required for Pex15 binding and proper assembly with Pex1. Biorxiv : the Preprint Server For Biology. PMID 37745580 DOI: 10.1101/2023.09.15.557798  0.306
2023 Williams C, Dong KC, Arkinson C, Martin A. The Ufd1 cofactor determines the linkage specificity of polyubiquitin chain engagement by the AAA+ ATPase Cdc48. Molecular Cell. PMID 36736315 DOI: 10.1016/j.molcel.2023.01.016  0.452
2022 Jonsson E, Htet ZM, Bard JAM, Dong KC, Martin A. Ubiquitin modulates 26 proteasome conformational dynamics and promotes substrate degradation. Science Advances. 8: eadd9520. PMID 36563145 DOI: 10.1126/sciadv.add9520  0.469
2022 Xie G, Dong KC, Worden EJ, Martin A. High-Throughput Assay for Characterizing Rpn11 Deubiquitinase Activity. Methods in Molecular Biology (Clifton, N.J.). 2591: 79-100. PMID 36350544 DOI: 10.1007/978-1-0716-2803-4_6  0.375
2020 Chen X, Htet ZM, López-Alfonzo E, Martin A, Walters KJ. Proteasome interaction with ubiquitinated substrates: from mechanisms to therapies. The Febs Journal. PMID 33211406 DOI: 10.1111/febs.15638  0.462
2020 Castanzo DT, LaFrance B, Martin A. The AAA+ ATPase Msp1 is a processive protein translocase with robust unfoldase activity. Proceedings of the National Academy of Sciences of the United States of America. PMID 32541053 DOI: 10.1073/Pnas.1920109117  0.5
2020 Carroll EC, Greene ER, Martin A, Marqusee S. Site-specific ubiquitination affects protein energetics and proteasomal degradation. Nature Chemical Biology. PMID 32483380 DOI: 10.1038/S41589-020-0556-3  0.668
2020 Martin A, Matouschek A. Decision letter: Mitochondrial ClpX activates an essential biosynthetic enzyme through partial unfolding Elife. DOI: 10.7554/Elife.54387.Sa1  0.338
2020 Martin A, Jonsson E, Greene E, Lopez-Alfonzo E, Htet Z, Gates S. Watching a Fine‐tuned Molecular Machine at Work: Structural and Functional Studies of the 26S Proteasome The Faseb Journal. 34: 1-1. DOI: 10.1096/Fasebj.2020.34.S1.00187  0.316
2020 Greene ER, Goodall E, de la Peña AH, Matyskiela M, Lander G, Martin A. Proteasome Conformational Regulation of Substrate Engagement and Degradation Biophysical Journal. 118: 501a. DOI: 10.1016/J.Bpj.2019.11.2763  0.492
2020 Carroll E, Greene ER, Martin A, Marqusee S. Ubiquitination Modulates a Protein Energy Landscape Site-Specifically with Consequences for Proteasomal Degradation Biophysical Journal. 118: 337a. DOI: 10.1016/J.Bpj.2019.11.1877  0.604
2019 Greene ER, Dong KC, Martin A. Understanding the 26S proteasome molecular machine from a structural and conformational dynamics perspective. Current Opinion in Structural Biology. 61: 33-41. PMID 31783300 DOI: 10.1016/J.Sbi.2019.10.004  0.55
2019 Greene ER, Goodall EA, de la Peña AH, Matyskiela ME, Lander GC, Martin A. Specific lid-base contacts in the 26S proteasome control the conformational switching required for substrate degradation. Elife. 8. PMID 31778111 DOI: 10.7554/Elife.49806  0.537
2019 Blythe EE, Gates SN, Deshaies RJ, Martin A. Multisystem Proteinopathy Mutations in VCP/p97 Increase NPLOC4·UFD1L Binding and Substrate Processing. Structure (London, England : 1993). PMID 31623962 DOI: 10.1016/J.Str.2019.09.011  0.427
2019 Gates SN, Martin A. Stairway to Translocation: AAA+ motor structures reveal the mechanisms of ATP-dependent substrate translocation. Protein Science : a Publication of the Protein Society. PMID 31599052 DOI: 10.1002/Pro.3743  0.563
2019 Bard JAM, Bashore C, Dong KC, Martin A. The 26S Proteasome Utilizes a Kinetic Gateway to Prioritize Substrate Degradation. Cell. PMID 30929903 DOI: 10.1016/J.Cell.2019.02.031  0.562
2019 Olszewski MM, Williams C, Dong KC, Martin A. The Cdc48 unfoldase prepares well-folded protein substrates for degradation by the 26S proteasome. Communications Biology. 2: 29. PMID 30675527 DOI: 10.1038/s42003-019-0283-z  0.429
2019 Jonsson E, Bard J, López-Alfonzo EM, Goodall E, Dong K, Martin A. Direct Observation of Protein Translocation by the 26S Proteasome Biophysical Journal. 116: 158a-159a. DOI: 10.1016/J.Bpj.2018.11.878  0.414
2018 de la Peña AH, Goodall EA, Gates SN, Lander GC, Martin A. Substrate-engaged 26 proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation. Science (New York, N.Y.). PMID 30309908 DOI: 10.2210/Pdb6Ef2/Pdb  0.517
2018 Bard JAM, Martin A. Recombinant Expression, Unnatural Amino Acid Incorporation, and Site-Specific Labeling of 26S Proteasomal Subcomplexes. Methods in Molecular Biology (Clifton, N.J.). 1844: 219-236. PMID 30242713 DOI: 10.1007/978-1-4939-8706-1_15  0.483
2018 Lawson MR, Ma W, Bellecourt MJ, Artsimovitch I, Martin A, Landick R, Schulten K, Berger JM. Mechanism for the Regulated Control of Bacterial Transcription Termination by a Universal Adaptor Protein. Molecular Cell. PMID 30122535 DOI: 10.1016/J.Molcel.2018.07.014  0.36
2018 Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Structure and Function of the 26S Proteasome. Annual Review of Biochemistry. PMID 29652515 DOI: 10.1146/Annurev-Biochem-062917-011931  0.523
2018 Gardner BM, Castanzo DT, Chowdhury S, Stjepanovic G, Stefely MS, Hurley JH, Lander GC, Martin A. The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threading. Nature Communications. 9: 135. PMID 29321502 DOI: 10.1038/S41467-017-02474-4  0.479
2017 San Martín Á, Rodriguez-Aliaga P, Molina JA, Martin A, Bustamante C, Baez M. Knots can impair protein degradation by ATP-dependent proteases. Proceedings of the National Academy of Sciences of the United States of America. PMID 28847957 DOI: 10.1073/Pnas.1705916114  0.569
2017 Worden EJ, Dong KC, Martin A. An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome. Molecular Cell. PMID 28844860 DOI: 10.1016/J.Molcel.2017.07.023  0.518
2016 Rodriguez-Aliaga P, Ramirez L, Kim F, Bustamante C, Martin A. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP. Nature Structural & Molecular Biology. PMID 27669037 DOI: 10.1038/Nsmb.3298  0.494
2016 Martin A, Berger JM, Sellers JR, Ostankovitch M. Mechanisms and Functional Diversity of Macromolecular Remodeling by ATP-Dependent Motors. Journal of Molecular Biology. PMID 27113061 DOI: 10.1016/J.Jmb.2016.04.008  0.346
2016 Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. Elife. 5. PMID 26744777 DOI: 10.7554/Elife.13027  0.541
2016 Rodriguez-Aliaga P, Ramirez L, Kim F, Bustamante C, Martin A. Key Roles of Translocating Loops in the Mechanochemical Coupling and Power Production of a AAA+ Protease Machine Biophysical Journal. 110. DOI: 10.1016/J.Bpj.2015.11.2109  0.456
2015 Bashore C, Dambacher CM, Goodall EA, Matyskiela ME, Lander GC, Martin A. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nature Structural & Molecular Biology. 22: 712-9. PMID 26301997 DOI: 10.1038/Nsmb.3075  0.561
2015 Yang B, Stjepanovic G, Shen Q, Martin A, Hurley JH. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nature Structural & Molecular Biology. 22: 492-8. PMID 25938660 DOI: 10.1038/Nsmb.3015  0.493
2015 Gardner BM, Chowdhury S, Lander GC, Martin A. The Pex1/Pex6 complex is a heterohexameric AAA+ motor with alternating and highly coordinated subunits. Journal of Molecular Biology. 427: 1375-88. PMID 25659908 DOI: 10.1016/J.Jmb.2015.01.019  0.433
2015 Rodriguez-Aliaga P, Ramirez LE, Kim F, Martin A, Bustamante C. Role of Pore Loops in the Mechanism of Polypeptide Translocation by a AAA+ Protease Machine Biophysical Journal. 108. DOI: 10.1016/J.Bpj.2014.11.2750  0.488
2014 Worden EJ, Padovani C, Martin A. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nature Structural & Molecular Biology. 21: 220-7. PMID 24463465 DOI: 10.1038/Nsmb.2771  0.549
2014 Nyquist K, Martin A. Marching to the beat of the ring: polypeptide translocation by AAA+ proteases. Trends in Biochemical Sciences. 39: 53-60. PMID 24316303 DOI: 10.1016/J.Tibs.2013.11.003  0.529
2014 Beckwith R, Worden E, Estrin E, Martin A. Reconstitution of the 26S Proteasome Reveals Functional Asymmetries in its Heterohexameric AAA+ Unfoldase Biophysical Journal. 106: 468a. DOI: 10.1016/J.Bpj.2013.11.2649  0.763
2014 Martin A, Matyskiela M, Nyquist K, Lander G, Beckwith R, Estrin E, Worden E. Mechanisms of Substrate Degradation by Energy-Dependent Proteases Biophysical Journal. 106: 26a. DOI: 10.1016/J.Bpj.2013.11.199  0.752
2014 Sen M, Maillard RA, Nyquist K, Rodriguez-Aliaga P, Pressé S, Martin A, Bustamante C. The ClpXP Protease Employs a Novel Mechanism of Translocation Using a Constant Frequency of Pulling but Different Gears Biophysical Journal. 106. DOI: 10.1016/J.Bpj.2013.11.1444  0.53
2013 Sen M, Maillard RA, Nyquist K, Rodriguez-Aliaga P, Pressé S, Martin A, Bustamante C. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears. Cell. 155: 636-46. PMID 24243020 DOI: 10.1016/J.Cell.2013.09.022  0.574
2013 Beckwith R, Estrin E, Worden EJ, Martin A. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nature Structural & Molecular Biology. 20: 1164-72. PMID 24013205 DOI: 10.1038/Nsmb.2659  0.746
2013 Estrin E, Lopez-Blanco JR, Chacón P, Martin A. Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure (London, England : 1993). 21: 1624-35. PMID 23911091 DOI: 10.1016/J.Str.2013.06.023  0.672
2013 Matyskiela ME, Lander GC, Martin A. Conformational switching of the 26S proteasome enables substrate degradation. Nature Structural & Molecular Biology. 20: 781-8. PMID 23770819 DOI: 10.1038/Nsmb.2616  0.575
2013 Lander GC, Martin A, Nogales E. The proteasome under the microscope: the regulatory particle in focus. Current Opinion in Structural Biology. 23: 243-51. PMID 23498601 DOI: 10.1016/J.Sbi.2013.02.004  0.5
2013 Matyskiela ME, Martin A. Design principles of a universal protein degradation machine. Journal of Molecular Biology. 425: 199-213. PMID 23147216 DOI: 10.1016/J.Jmb.2012.11.001  0.552
2012 Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature. 482: 186-91. PMID 22237024 DOI: 10.1038/Nature10774  0.73
2012 Lander GC, Estrin E, Matyskiela M, Nogales E, Martin A. Subunit Organization of the 26S Proteasome and Structural Basis for Processing of Ubiquitin-Tagged Substrates Biophysical Journal. 102: 393a-394a. DOI: 10.1016/J.Bpj.2011.11.2150  0.723
2011 Maillard RA, Chistol G, Sen M, Righini M, Tan J, Kaiser CM, Hodges C, Martin A, Bustamante C. ClpX(P) generates mechanical force to unfold and translocate its protein substrates Cell. 145: 459-469. PMID 21529717 DOI: 10.1016/J.Cell.2011.04.010  0.421
2010 Shin Y, Davis JH, Brau RR, Martin A, Baker T, Sauer RT, Lang MJ. Clpxp Degradation of Proteins Probed By Single-Molecule Fluorescence Biophysical Journal. 98: 34a. DOI: 10.1016/J.Bpj.2009.12.200  0.756
2009 Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell. 139: 744-56. PMID 19914167 DOI: 10.1016/J.Cell.2009.09.034  0.638
2009 Shin Y, Davis JH, Brau RR, Martin A, Kenniston JA, Baker TA, Sauer RT, Lang MJ. Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease. Proceedings of the National Academy of Sciences of the United States of America. 106: 19340-5. PMID 19892734 DOI: 10.1073/Pnas.0910484106  0.768
2008 Martin A, Baker TA, Sauer RT. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nature Structural & Molecular Biology. 15: 1147-51. PMID 18931677 DOI: 10.1038/Nsmb.1503  0.678
2008 Martin A, Baker TA, Sauer RT. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Molecular Cell. 29: 441-50. PMID 18313382 DOI: 10.1016/J.Molcel.2008.02.002  0.617
2008 Martin A, Baker TA, Sauer RT. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes. Nature Structural & Molecular Biology. 15: 139-45. PMID 18223658 DOI: 10.1038/Nsmb.1380  0.696
2007 Martin A, Baker TA, Sauer RT. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease. Molecular Cell. 27: 41-52. PMID 17612489 DOI: 10.1016/J.Molcel.2007.05.024  0.627
2006 Lieb B, Dimitrova K, Kang HS, Braun S, Gebauer W, Martin A, Hanelt B, Saenz SA, Adema CM, Markl J. Red blood with blue-blood ancestry: intriguing structure of a snail hemoglobin. Proceedings of the National Academy of Sciences of the United States of America. 103: 12011-6. PMID 16877545 DOI: 10.1073/Pnas.0601861103  0.388
2005 Martin A, Baker TA, Sauer RT. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Nature. 437: 1115-20. PMID 16237435 DOI: 10.1038/Nature04031  0.673
Show low-probability matches.