Year |
Citation |
Score |
2009 |
Badaoui Najjar MZ, Chikindas ML, Montville TJ. The Acid Tolerance Response Alters Membrane Fluidity and Induces Nisin Resistance in Listeria monocytogenes. Probiotics and Antimicrobial Proteins. 1: 130-5. PMID 26783167 DOI: 10.1007/S12602-009-9025-8 |
0.626 |
|
2007 |
Badaoui Najjar M, Chikindas M, Montville TJ. Changes in Listeria monocytogenes membrane fluidity in response to temperature stress. Applied and Environmental Microbiology. 73: 6429-35. PMID 17704268 DOI: 10.1128/Aem.00980-07 |
0.611 |
|
2006 |
Bonnet M, Rafi MM, Chikindas ML, Montville TJ. Bioenergetic mechanism for nisin resistance, induced by the acid tolerance response of Listeria monocytogenes. Applied and Environmental Microbiology. 72: 2556-63. PMID 16597957 DOI: 10.1128/Aem.72.4.2556-2563.2006 |
0.335 |
|
2006 |
Zhao L, Montville TJ, Schaffner DW. Evidence for quorum sensing in Clostridium botulinum 56A. Letters in Applied Microbiology. 42: 54-8. PMID 16411920 DOI: 10.1111/j.1472-765X.2005.01807.x |
0.437 |
|
2005 |
Bonnet M, Montville TJ. Acid-tolerant Listeria monocytogenes persist in a model food system fermented with nisin-producing bacteria Letters in Applied Microbiology. 40: 237-242. PMID 15752211 DOI: 10.1111/j.1472-765X.2005.01661.x |
0.382 |
|
2004 |
McEntire JC, Carman GM, Montville TJ. Increased ATPase activity is responsible for acid sensitivity of nisin-resistant Listeria monocytogenes ATCC 700302. Applied and Environmental Microbiology. 70: 2717-21. PMID 15128523 DOI: 10.1128/Aem.70.5.2717-2721.2004 |
0.737 |
|
2003 |
McEntire JC, Montville TJ, Chikindas ML. Synergy between nisin and select lactates against Listeria monocytogenes is due to the metal cations. Journal of Food Protection. 66: 1631-6. PMID 14503717 DOI: 10.4315/0362-028X-66.9.1631 |
0.733 |
|
2003 |
Zhao L, Montville TJ, Schaffner DW. Computer simulation of Clostridium botulinum strain 56A behavior at low spore concentrations. Applied and Environmental Microbiology. 69: 845-51. PMID 12571003 DOI: 10.1128/AEM.69.2.845-851.2003 |
0.353 |
|
2002 |
Li J, Chikindas ML, Ludescher RD, Montville TJ. Temperature- and surfactant-induced membrane modifications that alter Listeria monocytogenes nisin sensitivity by different mechanisms. Applied and Environmental Microbiology. 68: 5904-10. PMID 12450809 DOI: 10.1128/Aem.68.12.5904-5910.2002 |
0.413 |
|
2002 |
Zhao L, Montville TJ, Schaffner DW. Time-to-detection, percent-growth-positive and maximum growth rate models for Clostridium botulinum 56A at multiple temperatures. International Journal of Food Microbiology. 77: 187-97. PMID 12160078 DOI: 10.1016/S0168-1605(02)00111-3 |
0.425 |
|
2000 |
Zhao L, Montville TJ, Schaffner DW. Inoculum size of Clostridium botulinum 56A spores influences time-to-detection and percent growth-positive samples Journal of Food Science. 65: 1369-1375. |
0.408 |
|
1999 |
Mazzotta AS, Montville TJ. Characterization of fatty acid composition, spore germination, and thermal resistance in a nisin-resistant mutant of Clostridium botulinum 169B and in the wild-type strain Applied and Environmental Microbiology. 65: 659-664. PMID 9925597 |
0.323 |
|
1998 |
Montville TJ, Chen Y. Mechanistic action of pediocin and nisin: Recent progress and unresolved questions Applied Microbiology and Biotechnology. 50: 511-519. PMID 9917136 DOI: 10.1007/s002530051328 |
0.348 |
|
1998 |
Crandall AD, Montville TJ. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype Applied and Environmental Microbiology. 64: 231-237. PMID 9435079 |
0.474 |
|
1997 |
Mazzotta AS, Montville TJ. Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10°C and 30°C Journal of Applied Microbiology. 82: 32-38. PMID 9113875 |
0.376 |
|
1996 |
Kaiser AL, Montville TJ. Purification of the bacteriocin bavaricin MN and characterization of its mode of action against Listeria monocytogenes scott A cells and lipid vesicles Applied and Environmental Microbiology. 62: 4529-4535. PMID 8953724 |
0.323 |
|
1995 |
Montville TJ, Winkowski K, Ludescher RD. Models and mechanisms for bacteriocin action and application International Dairy Journal. 5: 797-814. DOI: 10.1016/0958-6946(95)00034-8 |
0.352 |
|
1993 |
Crandall AD, Montville TJ. Inhibition of Clostridium botulinum Growth and Toxigenesis in a Model Gravy System by Coinoculation With Bacteriocin-Producing Lactic Acid Bacteria. Journal of Food Protection. 56: 485-488. PMID 31084174 DOI: 10.4315/0362-028X-56.6.485 |
0.306 |
|
1991 |
Lewus CB, Kaiser A, Montville TJ. Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat Applied and Environmental Microbiology. 57: 1683-1688. PMID 1908209 |
0.328 |
|
1991 |
Okereke A, Montville TJ. Bacteriocin inhibition of clostridium botulinum spores by lactic acid bacteria Journal of Food Protection. 54. |
0.304 |
|
1978 |
Montville TJ, Cooney CL, Sinskey AJ. Streptococcus mutans dextransucrase: a review Advances in Applied Microbiology. 24: 55-84. PMID 367101 DOI: 10.1016/S0065-2164(08)70636-1 |
0.537 |
|
1977 |
Montville TJ, Cooney CL, Sinskey AJ. Distribution of dextransucrase in Streptococcus mutans and observations on the effect of soluble dextran on dextransucrase activities Infection and Immunity. 18: 629-635. PMID 591060 DOI: 10.1128/Iai.18.3.629-635.1977 |
0.576 |
|
1977 |
Montville TJ, Cooney CL, Sinskey AJ. Measurement and Synthesis of Insoluble and Soluble Dextran by Streptococcus mutans Journal of Dental Research. 56: 983-989. PMID 336659 DOI: 10.1177/00220345770560082701 |
0.545 |
|
Show low-probability matches. |