Karl-Henning Rehren

Affiliations: 
1997- Georg-August-Universität Göttingen, Göttingen, Niedersachsen, Germany 
Area:
Theoretical physics
Website:
http://www.theorie.physik.uni-goettingen.de/~rehren/
Google:
"Karl-Henning Rehren"
Bio:

https://de.wikipedia.org/wiki/Karl-Henning_Rehren

Mean distance: (not calculated yet)
 

Parents

Sign in to add mentor
Klaus Pohlmeyer grad student 1984 Universität Freiburg
 (Zur invarianten Quantisierung des relativistischen freien Strings.)
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Morinelli V, Rehren K. (2020) Spacelike deformations: higher-helicity fields from scalar fields Letters in Mathematical Physics. 110: 2019-2038
Mund J, Rehren K, Schroer B. (2020) Gauss’ Law and string-localized quantum field theory Journal of High Energy Physics. 2020: 1-27
Longo R, Morinelli V, Preta F, et al. (2019) Split Property for Free Massless Finite Helicity Fields Annales Henri Poincaré. 20: 2555-2584
Giorgetti L, Rehren K. (2018) Braided categories of endomorphisms as invariants for local quantum field theories Communications in Mathematical Physics. 357: 3-41
Mund J, Rehren K, Schroer B. (2017) Relations between positivity, localization and degrees of freedom: The Weinberg–Witten theorem and the van Dam–Veltman–Zakharov discontinuity Physics Letters B. 773: 625-631
Mund J, Rehren K, Schroer BB. (2017) Helicity decoupling in the massless limit of massive tensor fields Nuclear Physics. 924: 699-727
Giorgetti L, Rehren K. (2017) Bantay's trace in unitary modular tensor categories Advances in Mathematics. 319: 211-223
Rehren K. (2017) Pauli-Lubanski limit and stress-energy tensor for infinite-spin fields Journal of High Energy Physics. 2017: 130
Bischoff M, Kawahigashi Y, Longo R, et al. (2016) Phase Boundaries in Algebraic Conformal QFT Communications in Mathematical Physics. 342: 1-45
Longo R, Morinelli V, Rehren K. (2016) Where Infinite Spin Particles are Localizable Communications in Mathematical Physics. 345: 587-614
See more...