Karl-Henning Rehren
Affiliations: | 1997- | Georg-August-Universität Göttingen, Göttingen, Niedersachsen, Germany |
Area:
Theoretical physicsWebsite:
http://www.theorie.physik.uni-goettingen.de/~rehren/Google:
"Karl-Henning Rehren"Bio:
https://de.wikipedia.org/wiki/Karl-Henning_Rehren
Mean distance: (not calculated yet)
Parents
Sign in to add mentorKlaus Pohlmeyer | grad student | 1984 | Universität Freiburg | |
(Zur invarianten Quantisierung des relativistischen freien Strings.) |
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Morinelli V, Rehren K. (2020) Spacelike deformations: higher-helicity fields from scalar fields Letters in Mathematical Physics. 110: 2019-2038 |
Mund J, Rehren K, Schroer B. (2020) Gauss’ Law and string-localized quantum field theory Journal of High Energy Physics. 2020: 1-27 |
Longo R, Morinelli V, Preta F, et al. (2019) Split Property for Free Massless Finite Helicity Fields Annales Henri Poincaré. 20: 2555-2584 |
Giorgetti L, Rehren K. (2018) Braided categories of endomorphisms as invariants for local quantum field theories Communications in Mathematical Physics. 357: 3-41 |
Mund J, Rehren K, Schroer B. (2017) Relations between positivity, localization and degrees of freedom: The Weinberg–Witten theorem and the van Dam–Veltman–Zakharov discontinuity Physics Letters B. 773: 625-631 |
Mund J, Rehren K, Schroer BB. (2017) Helicity decoupling in the massless limit of massive tensor fields Nuclear Physics. 924: 699-727 |
Giorgetti L, Rehren K. (2017) Bantay's trace in unitary modular tensor categories Advances in Mathematics. 319: 211-223 |
Rehren K. (2017) Pauli-Lubanski limit and stress-energy tensor for infinite-spin fields Journal of High Energy Physics. 2017: 130 |
Bischoff M, Kawahigashi Y, Longo R, et al. (2016) Phase Boundaries in Algebraic Conformal QFT Communications in Mathematical Physics. 342: 1-45 |
Longo R, Morinelli V, Rehren K. (2016) Where Infinite Spin Particles are Localizable Communications in Mathematical Physics. 345: 587-614 |