Zachary Sherman
Affiliations: | 2013-2019 | Massachusetts Institute of Technology, Cambridge, MA, United States |
Google:
"Zachary Sherman"Mean distance: (not calculated yet)
Parents
Sign in to add mentorJames W. Swan | grad student | 2013-2019 | MIT |
Thomas Michael Truskett | post-doc | 2019- | UT Austin (Chemistry Tree) |
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Krucker-Velasquez E, Swan JW, Sherman Z. (2024) Immersed boundary method for dynamic simulation of polarizable colloids of arbitrary shape in explicit ion electrolytes. The Journal of Chemical Physics. 161 |
Sherman ZM, Milliron DJ, Truskett TM. (2024) Distribution of Single-Particle Resonances Determines the Plasmonic Response of Disordered Nanoparticle Ensembles. Acs Nano. 18: 21347-21363 |
Sherman ZM, Kang J, Milliron DJ, et al. (2024) Illuminating Disorder: Optical Properties of Complex Plasmonic Assemblies. The Journal of Physical Chemistry Letters. 15: 6424-6434 |
Kang J, Sherman ZM, Conrad DL, et al. (2023) Structural Control of Plasmon Resonance in Molecularly Linked Metal Oxide Nanocrystal Gel Assemblies. Acs Nano |
Kim K, Sherman ZM, Cleri A, et al. (2023) Hierarchically Doped Plasmonic Nanocrystal Metamaterials. Nano Letters |
Gauri HM, Sherman ZM, Al Harraq A, et al. (2023) Correction: Magnetic field enabled control over the structure and dynamics of colloids interacting SALR potentials. Soft Matter. 19: 6183 |
Gauri HM, Sherman ZM, Al Harraq A, et al. (2023) Magnetic field enabled control over the structure and dynamics of colloids interacting SALR potentials. Soft Matter |
Sherman ZM, Kim K, Kang J, et al. (2023) Plasmonic Response of Complex Nanoparticle Assemblies. Nano Letters |
Kang J, Sherman ZM, Crory HSN, et al. (2023) Modular mixing in plasmonic metal oxide nanocrystal gels with thermoreversible links. The Journal of Chemical Physics. 158: 024903 |
Kadulkar S, Sherman ZM, Ganesan V, et al. (2022) Machine Learning-Assisted Design of Material Properties. Annual Review of Chemical and Biomolecular Engineering |