Year |
Citation |
Score |
2024 |
Pham VH, Wang C, Gao Y, Weidman J, Kim KJ, Matranga C. Synthesis of Microscopic 3D Graphene for High-Performance Supercapacitors with Ultra-High Areal Capacitance. Small Methods. e2301426. PMID 38678532 DOI: 10.1002/smtd.202301426 |
0.498 |
|
2024 |
Gao Y, Pham VH, Weidman J, Kim KJ, Spaulding RE, Wang C, Matranga CS. High-performance cementitious composites containing nanostructured carbon additives made from charred coal fines. Scientific Reports. 14: 8912. PMID 38632297 DOI: 10.1038/s41598-024-59046-y |
0.523 |
|
2019 |
Allen AJ, Wong-Ng W, Cockayne E, Culp JT, Matranga C. Structural Basis of CO₂ Adsorption in a Flexible Metal-Organic Framework Material. Nanomaterials (Basel, Switzerland). 9. PMID 30836601 DOI: 10.3390/Nano9030354 |
0.31 |
|
2019 |
Zhou Y, Natesakhawat S, Nguyen‐Phan T, Kauffman DR, Marin CM, Kisslinger K, Lin R, Xin HL, Stavitski E, Attenkofer K, Tang Y, Guo Y, Waluyo I, Roy A, Lekse JW, ... ... Matranga C, et al. Cover Feature: Highly Active and Stable Carbon Nanosheets Supported Iron Oxide for Fischer‐Tropsch to Olefins Synthesis (ChemCatChem 6/2019) Chemcatchem. 11: 1546-1546. DOI: 10.1002/Cctc.201900369 |
0.557 |
|
2019 |
Zhou Y, Natesakhawat S, Nguyen‐Phan T, Kauffman DR, Marin CM, Kisslinger K, Lin R, Xin HL, Stavitski E, Attenkofer K, Tang Y, Guo Y, Waluyo I, Roy A, Lekse JW, ... ... Matranga C, et al. Highly Active and Stable Carbon Nanosheets Supported Iron Oxide for Fischer‐Tropsch to Olefins Synthesis Chemcatchem. 11: 1625-1632. DOI: 10.1002/Cctc.201802022 |
0.557 |
|
2016 |
Alfonso DR, Kauffman D, Matranga C. Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO. The Journal of Chemical Physics. 144: 184705. PMID 27179498 DOI: 10.1063/1.4948792 |
0.359 |
|
2016 |
Pruski M, Sadow AD, Slowing II, Marshall CL, Stair P, Rodriguez J, Harris A, Somorjai GA, Biener J, Matranga C, Wang C, Schaidle JA, Beckham GT, Ruddy DA, Deutsch T, et al. Virtual Special Issue on Catalysis at the U.S. Department of Energy's National Laboratories Acs Catalysis. 6: 3227-3235. DOI: 10.1021/Acscatal.6B00823 |
0.532 |
|
2016 |
Kauffman DR, Alfonso D, Tafen DN, Lekse J, Wang C, Deng X, Lee J, Jang H, Lee JS, Kumar S, Matranga C. Electrocatalytic Oxygen Evolution with an Atomically Precise Nickel Catalyst Acs Catalysis. 6: 1225-1234. DOI: 10.1021/Acscatal.5B02633 |
0.586 |
|
2015 |
Kauffman DR, Thakkar J, Siva R, Matranga C, Ohodnicki PR, Zeng C, Jin R. Efficient Electrochemical CO2 Conversion Powered by Renewable Energy. Acs Applied Materials & Interfaces. 7: 15626-32. PMID 26121278 DOI: 10.1021/Acsami.5B04393 |
0.33 |
|
2015 |
Ranasingha OK, Wang C, Ohodnicki PR, Lekse JW, Lewis JP, Matranga C. Synthesis, characterization, and photocatalytic activity of Au-ZnO nanopyramids Journal of Materials Chemistry A. 3: 15141-15147. DOI: 10.1039/C5Ta01344E |
0.598 |
|
2015 |
Senty TR, Cushing SK, Wang C, Matranga C, Bristow AD. Inverting Transient Absorption Data to Determine Transfer Rates in Quantum Dot–TiO2 Heterostructures The Journal of Physical Chemistry C. 119: 6337-6343. DOI: 10.1021/Jp512500G |
0.563 |
|
2015 |
Allen AJ, Espinal L, Wong-Ng W, Queen WL, Brown CM, Kline SR, Kauffman KL, Culp JT, Matranga C. Flexible metal-organic framework compounds: In situ studies for selective CO2 capture Journal of Alloys and Compounds. 647: 24-34. DOI: 10.1016/J.Jallcom.2015.05.148 |
0.336 |
|
2014 |
Lekse JW, Haycock BJ, Lewis JP, Kauffman DR, Matranga C. The effect of electronic structure changes in NaInO2 and NaIn0.9Fe0.1O2 on the photoreduction of methylene blue Journal of Materials Chemistry A. 2: 9331-9337. DOI: 10.1039/C4Ta00906A |
0.329 |
|
2014 |
Kauffman DR, Alfonso D, Matranga C, Ohodnicki P, Deng X, Siva RC, Zeng C, Jin R. Probing active site chemistry with differently charged Au25 q nanoclusters (q = -1, 0, +1) Chemical Science. 5: 3151-3157. DOI: 10.1039/C4Sc00997E |
0.332 |
|
2013 |
Kauffman DR, Alfonso D, Matranga C, Li G, Jin R. Photomediated Oxidation of Atomically Precise Au25(SC2H4Ph)18(-) Nanoclusters. The Journal of Physical Chemistry Letters. 4: 195-202. PMID 26291231 DOI: 10.1021/Jz302056Q |
0.329 |
|
2013 |
Ohodnicki PR, Buric MP, Brown TD, Matranga C, Wang C, Baltrus J, Andio M. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures. Nanoscale. 5: 9030-9. PMID 23948985 DOI: 10.1039/C3Nr02891G |
0.546 |
|
2013 |
Wang C, Ranasingha O, Natesakhawat S, Ohodnicki PR, Andio M, Lewis JP, Matranga C. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale. 5: 6968-74. PMID 23794025 DOI: 10.1039/C3Nr02001K |
0.587 |
|
2013 |
Deng X, Yao K, Sun K, Li WX, Lee J, Matranga C. Growth of single- and bilayer ZnO on Au(111) and interaction with copper Journal of Physical Chemistry C. 117: 11211-11218. DOI: 10.1021/Jp402008W |
0.327 |
|
2013 |
Natesakhawat S, Ohodnicki PR, Howard BH, Lekse JW, Baltrus JP, Matranga C. Adsorption and deactivation characteristics of Cu/ZnO-based catalysts for methanol synthesis from carbon dioxide Topics in Catalysis. 56: 1752-1763. DOI: 10.1007/S11244-013-0111-5 |
0.367 |
|
2012 |
Kauffman DR, Alfonso D, Matranga C, Qian H, Jin R. Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. Journal of the American Chemical Society. 134: 10237-43. PMID 22616945 DOI: 10.1021/Ja303259Q |
0.324 |
|
2012 |
Lekse JW, Underwood MK, Lewis JP, Matranga C. Synthesis, characterization, electronic structure, and photocatalytic behavior of CuGaO 2 and CuGa 1-xFe xO 2 (x = 0.05, 0.10, 0.15, 0.20) delafossites Journal of Physical Chemistry C. 116: 1865-1872. DOI: 10.1021/Jp2087225 |
0.342 |
|
2012 |
Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki PR, Howard BH, Deng X, Matranga C. Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol Acs Catalysis. 2: 1667-1676. DOI: 10.1021/Cs300008G |
0.365 |
|
2011 |
Deng X, Lee J, Wang C, Matranga C, Aksoy F, Liu Z. In situ observation of water dissociation with lattice incorporation at FeO particle edges using scanning tunneling microscopy and X-ray photoelectron spectroscopy. Langmuir : the Acs Journal of Surfaces and Colloids. 27: 2146-9. PMID 21275405 DOI: 10.1021/La1049716 |
0.565 |
|
2011 |
Wang C, Thompson RL, Ohodnicki P, Baltrus J, Matranga C. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts Journal of Materials Chemistry. 21: 13452-13457. DOI: 10.1039/C1Jm12367J |
0.599 |
|
2011 |
Kauffman DR, Ohodnicki PR, Kail BW, Matranga C. Selective electrocatalytic activity of ligand stabilized copper oxide nanoparticles Journal of Physical Chemistry Letters. 2: 2038-2043. DOI: 10.1021/Jz200850Y |
0.306 |
|
2011 |
Kauffman KL, Culp JT, Goodman A, Matranga C. FT-IR study of CO 2 adsorption in a dynamic copper(II) benzoate-pyrazine host with CO 2-CO 2 interactions in the adsorbed state Journal of Physical Chemistry C. 115: 1857-1866. DOI: 10.1021/Jp102273W |
0.325 |
|
2010 |
Wang C, Thompson R, Baltrus J, Matranga C. Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts Acs National Meeting Book of Abstracts. DOI: 10.1021/Jz9000032 |
0.551 |
|
2010 |
Culp JT, Goodman AL, Chirdon D, Sankar SG, Matranga C. Mechanism for the dynamic adsorption of CO2 and ch4 in a flexible linear chain coordination polymer as determined from in situ infrared spectroscopy Journal of Physical Chemistry C. 114: 2184-2191. DOI: 10.1021/Jp908202S |
0.312 |
|
2010 |
Deng X, Lee J, Wang C, Matranga C, Aksoy F, Liu Z. Reactivity differences of nanocrystals and continuous films of α-Fe2O3 on Au(111) studied with in situ X-ray photoelectron spectroscopy Journal of Physical Chemistry C. 114: 22619-22623. DOI: 10.1021/Jp1085697 |
0.569 |
|
2008 |
Khan NA, Matranga C. Nucleation and growth of Fe and FeO nanoparticles and films on Au(1 1 1) Surface Science. 602: 932-942. DOI: 10.1016/J.Susc.2007.12.027 |
0.302 |
|
2007 |
Natesakhawat S, Culp JT, Matranga C, Bockrath B. Adsorption Properties of Hydrogen and Carbon Dioxide in Prussian Blue Analogues M3[Co(CN)6]2, M = Co, Zn The Journal of Physical Chemistry C. 111: 1055-1060. DOI: 10.1021/Jp065845X |
0.316 |
|
2004 |
Matranga C, Bockrath B. Permanent Trapping of CO2 in Single-Walled Carbon Nanotubes Synthesized by the HiPco Process Journal of Physical Chemistry B. 108: 6170-6174. PMID 18950097 DOI: 10.1021/Jp0498872 |
0.326 |
|
2003 |
Matranga C, Chen L, Smith M, Bittner E, Johnson JK, Bockrath B. Trapped CO2 in Carbon Nanotube Bundles Journal of Physical Chemistry B. 107: 12930-12941. DOI: 10.1021/Jp0364654 |
0.321 |
|
2002 |
Bockrath B, Johnson JK, Sholl DS, Howard B, Matranga C, Shi W, Sorescu D. Igniting nanotubes with a flash. Science (New York, N.Y.). 297: 192-3; author reply . PMID 12117006 DOI: 10.1126/Science.297.5579.192 |
0.33 |
|
2002 |
Matranga C, Wehrenberg BL, Guyot-Sionnest P. Vibrational relaxation of cyanide on copper surfaces: Can metal d-bands influence vibrational energy transfer? Journal of Physical Chemistry B. 106: 8172-8175. DOI: 10.1021/Jp020618Q |
0.681 |
|
2001 |
Matranga C, Guyot-Sionnest P. Absolute intensity measurements of the optical second-harmonic response of metals from 0.9 to 2.5 eV Journal of Chemical Physics. 115: 9503-9512. DOI: 10.1063/1.1413741 |
0.538 |
|
2001 |
Matranga C, Guyot-Sionnest P. Intermolecular vibrational energy transfer between cyanide species at the platinum/electrolyte interface Chemical Physics Letters. 340: 39-44. DOI: 10.1016/S0009-2614(01)00405-5 |
0.543 |
|
2000 |
Matranga C, Guyot-Sionnest P. Vibrational relaxation of cyanide at the metal/electrolyte interface Journal of Chemical Physics. 112: 7615-7621. DOI: 10.1063/1.481355 |
0.565 |
|
1999 |
Guyot-Sionnest P, Shim M, Matranga C, Hines M. Intraband relaxation in CdSe quantum dots Physical Review B - Condensed Matter and Materials Physics. 60: R2181-R2184. DOI: 10.1103/Physrevb.60.R2181 |
0.62 |
|
Show low-probability matches. |