Year |
Citation |
Score |
2024 |
Stephen DT, Ho WW, Wei TC, Raussendorf R, Verresen R. Universal Measurement-Based Quantum Computation in a One-Dimensional Architecture Enabled by Dual-Unitary Circuits. Physical Review Letters. 132: 250601. PMID 38996243 DOI: 10.1103/PhysRevLett.132.250601 |
0.42 |
|
2023 |
Zhao H, Zhang P, Wei TC. A universal variational quantum eigensolver for non-Hermitian systems. Scientific Reports. 13: 22313. PMID 38102235 DOI: 10.1038/s41598-023-49662-5 |
0.348 |
|
2021 |
Nghiem NA, Chen SY, Wei T. Unified framework for quantum classification Physical Review Research. 3. DOI: 10.1103/physrevresearch.3.033056 |
0.313 |
|
2021 |
Wu SL, Chan J, Guan W, Sun S, Wang A, Zhou C, Livny M, Carminati F, Di Meglio A, Li ACY, Lykken J, Spentzouris P, Chen SY, Yoo S, Wei T. Application of quantum machine learning using the quantum variational classifier method to high energy physics analysis at the LHC on IBM quantum computer simulator and hardware with 10 qubits Journal of Physics G: Nuclear and Particle Physics. 48: 125003. DOI: 10.1088/1361-6471/ac1391 |
0.307 |
|
2020 |
Pomata N, Wei TC. Demonstrating the Affleck-Kennedy-Lieb-Tasaki Spectral Gap on 2D Degree-3 Lattices. Physical Review Letters. 124: 177203. PMID 32412291 DOI: 10.1103/Physrevlett.124.177203 |
0.396 |
|
2020 |
Chen Y, Wei T. Quantum algorithm for spectral projection by measuring an ancilla iteratively Physical Review A. 101: 32339. DOI: 10.1103/Physreva.101.032339 |
0.431 |
|
2019 |
Zhang W, Liu J, Wei TC. Machine learning of phase transitions in the percolation and XY models. Physical Review. E. 99: 032142. PMID 30999394 DOI: 10.1103/Physreve.99.032142 |
0.35 |
|
2019 |
Pomata N, Wei T. AKLT models on decorated square lattices are gapped Physical Review B. 100. DOI: 10.1103/Physrevb.100.094429 |
0.371 |
|
2019 |
Chen Y, Farahzad M, Yoo S, Wei T. Detector tomography on IBM quantum computers and mitigation of an imperfect measurement Physical Review A. 100. DOI: 10.1103/PhysRevA.100.052315 |
0.3 |
|
2019 |
Deger A, Wei T. Geometric entanglement and quantum phase transition in generalized cluster-XY models Quantum Information Processing. 18: 326. DOI: 10.1007/S11128-019-2439-7 |
0.484 |
|
2018 |
Prakash A, Wang J, Wei T. Unwinding short-range entanglement Physical Review B. 98. DOI: 10.1103/Physrevb.98.125108 |
0.455 |
|
2018 |
Pomata N, Huang C, Wei T. Phase transitions of a two-dimensional deformed Affleck-Kennedy-Lieb-Tasaki model Physical Review B. 98: 14432. DOI: 10.1103/Physrevb.98.014432 |
0.381 |
|
2018 |
Chen Y, Prakash A, Wei T. Universal quantum computing using ( Z d ) 3 symmetry-protected topologically ordered states Physical Review A. 97: 22305. DOI: 10.1103/Physreva.97.022305 |
0.52 |
|
2018 |
Wei T. Quantum spin models for measurement-based quantum computation Advances in Physics: X. 3: 1461026. DOI: 10.1080/23746149.2018.1461026 |
0.384 |
|
2017 |
Stephen DT, Wang DS, Prakash A, Wei TC, Raussendorf R. Computational Power of Symmetry-Protected Topological Phases. Physical Review Letters. 119: 010504. PMID 28731749 DOI: 10.1103/Physrevlett.119.010504 |
0.492 |
|
2017 |
Prakash A, Ganeshan S, Fidkowski L, Wei T. Eigenstate phases with finite on-site non-Abelian symmetry Physical Review B. 96. DOI: 10.1103/Physrevb.96.165136 |
0.396 |
|
2017 |
Huang C, Wei T, Orús R. Holographic encoding of universality in corner spectra Physical Review B. 95. DOI: 10.1103/Physrevb.95.195170 |
0.476 |
|
2017 |
Wei T, Huang C. Universal measurement-based quantum computation in two-dimensional symmetry-protected topological phases Physical Review A. 96: 32317. DOI: 10.1103/Physreva.96.032317 |
0.49 |
|
2017 |
Raussendorf R, Wang D, Prakash A, Wei T, Stephen DT. Symmetry-protected topological phases with uniform computational power in one dimension Physical Review A. 96: 12302. DOI: 10.1103/Physreva.96.012302 |
0.534 |
|
2016 |
Huang C, Wagner MA, Wei T. Emergence of XY-like phase in deformed spin- 3 2 AKLT systems Physical Review B. 94: 165130. DOI: 10.1103/Physrevb.94.165130 |
0.51 |
|
2016 |
Prakash A, West CG, Wei TC. Detection of gapped phases of a one-dimensional spin chain with on-site and spatial symmetries Physical Review B - Condensed Matter and Materials Physics. 94. DOI: 10.1103/Physrevb.94.045136 |
0.444 |
|
2016 |
Huang CY, Wei TC. Detecting and identifying two-dimensional symmetry-protected topological, symmetry-breaking, and intrinsic topological phases with modular matrices via tensor-network methods Physical Review B - Condensed Matter and Materials Physics. 93. DOI: 10.1103/Physrevb.93.155163 |
0.385 |
|
2016 |
Raussendorf R, Sarvepalli P, Wei T-, Haghnegahdar P. Symmetry constraints on temporal order in measurement-based quantum computation Information & Computation. 250: 115-138. DOI: 10.1016/J.Ic.2016.02.010 |
0.338 |
|
2015 |
Graham TM, Bernstein HJ, Wei TC, Junge M, Kwiat PG. Superdense teleportation using hyperentangled photons. Nature Communications. 6: 7185. PMID 26018201 DOI: 10.1038/Ncomms8185 |
0.391 |
|
2015 |
García-Saez A, Wei TC. Density of Yang-Lee zeros in the thermodynamic limit from tensor network methods Physical Review B - Condensed Matter and Materials Physics. 92. DOI: 10.1103/Physrevb.92.125132 |
0.321 |
|
2015 |
West CG, Garcia-Saez A, Wei TC. Efficient evaluation of high-order moments and cumulants in tensor network states Physical Review B - Condensed Matter and Materials Physics. 92. DOI: 10.1103/Physrevb.92.115103 |
0.435 |
|
2015 |
Huang CY, Wei TC. Transition of a Z3 topologically ordered phase to trivial and critical phases Physical Review B - Condensed Matter and Materials Physics. 92. DOI: 10.1103/Physrevb.92.085405 |
0.497 |
|
2015 |
Wei TC, Liang JC. Hamiltonian quantum computer in one dimension Physical Review a - Atomic, Molecular, and Optical Physics. 92. DOI: 10.1103/Physreva.92.062334 |
0.453 |
|
2015 |
Nautrup HP, Wei TC. Symmetry-protected topologically ordered states for universal quantum computation Physical Review a - Atomic, Molecular, and Optical Physics. 92. DOI: 10.1103/Physreva.92.052309 |
0.553 |
|
2015 |
Prakash A, Wei TC. Ground states of one-dimensional symmetry-protected topological phases and their utility as resource states for quantum computation Physical Review a - Atomic, Molecular, and Optical Physics. 92. DOI: 10.1103/Physreva.92.022310 |
0.547 |
|
2015 |
Wei T, Raussendorf R. Universal measurement-based quantum computation with spin-2 Affleck-Kennedy-Lieb-Tasaki states Physical Review A. 92: 12310. DOI: 10.1103/Physreva.92.012310 |
0.537 |
|
2014 |
Orús R, Wei TC, Buerschaper O, García-Saez A. Topological transitions from multipartite entanglement with tensor networks: a procedure for sharper and faster characterization. Physical Review Letters. 113: 257202. PMID 25554905 DOI: 10.1103/Physrevlett.113.257202 |
0.512 |
|
2014 |
Wei T, Haghnegahdar P, Raussendorf R. Hybrid valence-bond states for universal quantum computation Physical Review A. 90: 42333. DOI: 10.1103/Physreva.90.042333 |
0.518 |
|
2014 |
Wei T, Li Y, Kwek LC. Transitions in the quantum computational power Physical Review A. 89: 52315. DOI: 10.1103/Physreva.89.052315 |
0.51 |
|
2014 |
Buerschaper O, García-Saez A, Orús R, Wei T. Topological minimally entangled states via geometric measure Journal of Statistical Mechanics: Theory and Experiment. 2014: 11009. DOI: 10.1088/1742-5468/2014/11/P11009 |
0.495 |
|
2014 |
Orús R, Wei T, Buerschaper O, Nest MVd. Geometric entanglement in topologically ordered states New Journal of Physics. 16: 13015. DOI: 10.1088/1367-2630/16/1/013015 |
0.522 |
|
2013 |
Garcia-Saez A, Murg V, Wei T. Spectral gaps of Affleck-Kennedy-Lieb-Tasaki Hamiltonians using tensor network methods Physical Review B. 88: 245118. DOI: 10.1103/Physrevb.88.245118 |
0.404 |
|
2013 |
Wei TC. Quantum computational universality of Affleck-Kennedy-Lieb-Tasaki states beyond the honeycomb lattice Physical Review a - Atomic, Molecular, and Optical Physics. 88. DOI: 10.1103/Physreva.88.062307 |
0.523 |
|
2012 |
Raussendorf R, Sarvepalli P, Wei T, Haghnegahdar P. Symmetry constraints on temporal order in measurement-based quantum computation Electronic Proceedings in Theoretical Computer Science. 95: 219-250. DOI: 10.4204/EPTCS.95.16 |
0.343 |
|
2012 |
Raussendorf R, Wei T. Quantum Computation by Local Measurement Annual Review of Condensed Matter Physics. 3: 239-261. DOI: 10.1146/Annurev-Conmatphys-020911-125041 |
0.481 |
|
2012 |
Wei TC. Monogamy of entanglement, N-representability problems and ground states International Journal of Modern Physics B. 26. DOI: 10.1142/S021797921243014X |
0.525 |
|
2012 |
Wei T, Affleck I, Raussendorf R. Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal resource for quantum computation Physical Review A. 86: 32328. DOI: 10.1103/Physreva.86.032328 |
0.569 |
|
2011 |
Li Y, Browne DE, Kwek LC, Raussendorf R, Wei TC. Thermal states as universal resources for quantum computation with always-on interactions. Physical Review Letters. 107: 060501. PMID 21902305 DOI: 10.1103/Physrevlett.107.060501 |
0.396 |
|
2011 |
Zhang J, Wei TC, Laflamme R. Experimental quantum simulation of entanglement in many-body systems. Physical Review Letters. 107: 010501. PMID 21797528 DOI: 10.1103/Physrevlett.107.010501 |
0.486 |
|
2011 |
Wei TC, Affleck I, Raussendorf R. Affleck-Kennedy-Lieb-Tasaki state on a honeycomb lattice is a universal quantum computational resource. Physical Review Letters. 106: 070501. PMID 21405505 DOI: 10.1103/Physrevlett.106.070501 |
0.527 |
|
2011 |
Wei T, Vishveshwara S, Goldbart PM. Global geometric entanglement in transverse-field XY spin chains: finite and infinite systems Quantum Information and Computation. 11: 326-354. DOI: 10.26421/QIC11.3-4-10 |
0.459 |
|
2011 |
Wei T, Raussendorf R, Kwek LC. Quantum computational universality of the Cai-Miyake-Dür-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains Physical Review A. 84: 42333. DOI: 10.1103/Physreva.84.042333 |
0.536 |
|
2011 |
Wei T, Lavoie J, Kaltenbaek R. Creating multi-photon polarization bound-entangled states Physical Review A. 83. DOI: 10.1103/Physreva.83.033839 |
0.453 |
|
2011 |
Chen L, Zhu H, Wei T. Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation Physical Review A. 83: 12305. DOI: 10.1103/Physreva.83.012305 |
0.507 |
|
2010 |
Barreiro JT, Wei TC, Kwiat PG. Remote preparation of single-photon "hybrid" entangled and vector-polarization States. Physical Review Letters. 105: 030407. PMID 20867752 DOI: 10.1103/Physrevlett.105.030407 |
0.392 |
|
2010 |
Wei TC, Mosca M, Nayak A. Interacting boson problems can be QMA hard. Physical Review Letters. 104: 040501. PMID 20366692 DOI: 10.1103/Physrevlett.104.040501 |
0.359 |
|
2010 |
Orús R, Wei T. Visualizing elusive phase transitions with geometric entanglement Physical Review B. 82: 1-6. DOI: 10.1103/Physrevb.82.155120 |
0.475 |
|
2010 |
Wei TC. Entanglement under the renormalization-group transformations on quantum states and in quantum phase transitions Physical Review a - Atomic, Molecular, and Optical Physics. 81. DOI: 10.1103/Physreva.81.062313 |
0.514 |
|
2010 |
Wei TC. Exchange symmetry and global entanglement and full separability Physical Review a - Atomic, Molecular, and Optical Physics. 81. DOI: 10.1103/Physreva.81.054102 |
0.456 |
|
2010 |
Wei T, Severini S. Matrix permanent and quantum entanglement of permutation invariant states Journal of Mathematical Physics. 51: 92203-92203. DOI: 10.1063/1.3464263 |
0.493 |
|
2009 |
Tamaryan S, Wei T, Park D. Maximally entangled three-qubit states via geometric measure of entanglement Physical Review A. 80: 52315. DOI: 10.1103/Physreva.80.052315 |
0.475 |
|
2009 |
Hübener R, Kleinmann M, Wei T, González-Guillén C, Gühne O. Geometric measure of entanglement for symmetric states Physical Review A. 80: 32324. DOI: 10.1103/Physreva.80.032324 |
0.499 |
|
2009 |
Sahu M, Bae MH, Rogachev A, Pekker D, Wei TC, Shah N, Goldbart PM, Bezryadin A. Individual topological tunnelling events of a quantum field probed through their macroscopic consequences Nature Physics. 5: 503-508. DOI: 10.1038/Nphys1276 |
0.365 |
|
2008 |
Wei TC, Goldbart PM. Emergence of h/e -period oscillations in the critical temperature of small superconducting rings threaded by magnetic flux Physical Review B - Condensed Matter and Materials Physics. 77. DOI: 10.1103/Physrevb.77.224512 |
0.31 |
|
2008 |
Wei TC. Relative entropy of entanglement for multipartite mixed states: Permutation-invariant states and Dür states Physical Review a - Atomic, Molecular, and Optical Physics. 78. DOI: 10.1103/Physreva.78.012327 |
0.448 |
|
2008 |
Barreiro JT, Wei TC, Kwiat PG. Beating the channel capacity limit for linear photonic superdense coding Nature Physics. 4: 282-286. DOI: 10.1038/Nphys919 |
0.306 |
|
2007 |
Wei TC, Barreiro JT, Kwiat PG. Hyperentangled Bell-state analysis Physical Review a - Atomic, Molecular, and Optical Physics. 75. DOI: 10.1103/Physreva.75.060305 |
0.329 |
|
2006 |
Peters NA, Altepeter JB, Branning D, Jeffrey ER, Wei TC, Kwiat PG. Erratum: Maximally Entangled Mixed States: Creation and Concentration [Phys. Rev. Lett.92, 133601 (2004)] Physical Review Letters. 96: 159901. DOI: 10.1103/Physrevlett.96.159901 |
0.302 |
|
2005 |
Peters NA, Barreiro JT, Goggin ME, Wei TC, Kwiat PG. Remote state preparation: arbitrary remote control of photon polarization. Physical Review Letters. 94: 150502. PMID 15904126 DOI: 10.1103/Physrevlett.94.150502 |
0.33 |
|
2005 |
Peters NA, Barreiro JT, Goggin ME, Wei TC, Kwiat PG. Remote State Preparation: Arbitrary remote control of photon polarizations for quantum communication Proceedings of Spie - the International Society For Optical Engineering. 5893: 1-10. DOI: 10.1117/12.615734 |
0.333 |
|
2005 |
Wei TC, Das D, Mukhopadyay S, Vishveshwara S, Goldbart PM. Global entanglement and quantum criticality in spin chains Physical Review a - Atomic, Molecular, and Optical Physics. 71. DOI: 10.1103/Physreva.71.060305 |
0.419 |
|
2004 |
Peters NA, Altepeter JB, Branning D, Jeffrey ER, Wei TC, Kwiat PG. Maximally entangled mixed states: creation and concentration. Physical Review Letters. 92: 133601. PMID 15089612 DOI: 10.1103/Physrevlett.92.133601 |
0.449 |
|
2004 |
Peters NA, Wei TC, Kwiat PG. Mixed-state sensitivity of several quantum-information benchmarks Physical Review a - Atomic, Molecular, and Optical Physics. 70: 052309-1-052309-6. DOI: 10.1103/Physreva.70.052309 |
0.394 |
|
2004 |
Wei TC, Altepeter JB, Goldbart PM, Munro WJ. Measures of entanglement in multipartite bound entangled states Physical Review a - Atomic, Molecular, and Optical Physics. 70. DOI: 10.1103/Physreva.70.022322 |
0.471 |
|
2003 |
Altepeter JB, Branning D, Jeffrey E, Wei TC, Kwiat PG, Thew RT, O'Brien JL, Nielsen MA, White AG. Ancilla-assisted quantum process tomography. Physical Review Letters. 90: 193601. PMID 12785945 DOI: 10.1103/Physrevlett.90.193601 |
0.316 |
|
2003 |
Wei T, Goldbart PM. Geometric measure of entanglement and applications to bipartite and multipartite quantum states Physical Review A. 68: 42307. DOI: 10.1103/Physreva.68.042307 |
0.527 |
|
2003 |
Wei TC, Nemoto K, Goldbart PM, Kwiat PG, Munro WJ, Verstraete F. Maximal entanglement versus entropy for mixed quantum states Physical Review a - Atomic, Molecular, and Optical Physics. 67: 022110/1-022110/12. DOI: 10.1103/Physreva.67.022110 |
0.422 |
|
2003 |
Wei TC, Goldbart PM. Geometric measure of entanglement and applications to bipartite and multipartite quantum states Physical Review a - Atomic, Molecular, and Optical Physics. 68. |
0.425 |
|
Show low-probability matches. |