Year |
Citation |
Score |
2023 |
Levitas VI, Dhar A, Pandey KK. Tensorial stress-plastic strain fields in α - ω Zr mixture, transformation kinetics, and friction in diamond-anvil cell. Nature Communications. 14: 5955. PMID 37741842 DOI: 10.1038/s41467-023-41680-1 |
0.394 |
|
2022 |
Levitas VI. Resolving puzzles of the phase-transformation-based mechanism of the strong deep-focus earthquake. Nature Communications. 13: 6291. PMID 36273002 DOI: 10.1038/s41467-022-33802-y |
0.349 |
|
2020 |
Babaei H, Levitas VI. Stress-Measure Dependence of Phase Transformation Criterion under Finite Strains: Hierarchy of Crystal Lattice Instabilities for Homogeneous and Heterogeneous Transformations. Physical Review Letters. 124: 075701. PMID 32142341 DOI: 10.1103/Physrevlett.124.075701 |
0.456 |
|
2020 |
Basak A, Levitas VI. An exact formulation for exponential-logarithmic transformation stretches in a multiphase phase field approach to martensitic transformations Mathematics and Mechanics of Solids. 25: 1219-1246. DOI: 10.1177/1081286520905352 |
0.441 |
|
2020 |
Walzel RK, Levitas VI, Pantoya ML. Aluminum particle reactivity as a function of alumina shell structure: Amorphous versus crystalline Powder Technology. 374: 33-39. DOI: 10.1016/J.Powtec.2020.06.084 |
0.307 |
|
2020 |
Babaei H, Levitas VI. Finite-strain scale-free phase-field approach to multivariant martensitic phase transformations with stress-dependent effective thresholds Journal of the Mechanics and Physics of Solids. 144: 104114. DOI: 10.1016/J.Jmps.2020.104114 |
0.499 |
|
2020 |
Paul S, Momeni K, Levitas VI. Shear-induced diamondization of multilayer graphene structures: A computational study Carbon. 167: 140-147. DOI: 10.1016/J.Carbon.2020.05.038 |
0.434 |
|
2020 |
Ehsan Esfahani S, Ghamarian I, Levitas VI. Strain-induced multivariant martensitic transformations: A scale-independent simulation of interaction between localized shear bands and microstructure Acta Materialia. 196: 430-443. DOI: 10.1016/J.Actamat.2020.06.059 |
0.536 |
|
2020 |
Pandey KK, Levitas VI. In situ quantitative study of plastic strain-induced phase transformations under high pressure: Example for ultra-pure Zr Acta Materialia. 196: 338-346. DOI: 10.1016/J.Actamat.2020.06.015 |
0.471 |
|
2020 |
Basak A, Levitas VI. Matrix-precipitate interface-induced martensitic transformation within nanoscale phase field approach: Effect of energy and dimensionless interface width Acta Materialia. 189: 255-265. DOI: 10.1016/J.Actamat.2020.02.047 |
0.375 |
|
2019 |
Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart TJ, Machado F, Kobrin B, Höhn TO, Rui NZ, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin VV, Moore JE, ... Levitas VI, et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science (New York, N.Y.). 366: 1349-1354. PMID 31831662 DOI: 10.1126/Science.Aaw4352 |
0.382 |
|
2019 |
Hou H, Simsek E, Ma T, Johnson NS, Qian S, Cissé C, Stasak D, Al Hasan N, Zhou L, Hwang Y, Radermacher R, Levitas VI, Kramer MJ, Zaeem MA, Stebner AP, et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science (New York, N.Y.). 366: 1116-1121. PMID 31780556 DOI: 10.1126/Science.Aax7616 |
0.763 |
|
2019 |
Jafarzadeh H, Levitas VI, Farrahi GH, Javanbakht M. Phase field approach for nanoscale interactions between crack propagation and phase transformation. Nanoscale. 11: 22243-22247. PMID 31742314 DOI: 10.1039/C9Nr05960A |
0.592 |
|
2019 |
Bowlan P, Henson BF, Smilowitz L, Levitas VI, Suvorova N, Oschwald D. Kinetics of the γ-δ phase transition in energetic nitramine-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The Journal of Chemical Physics. 150: 064705. PMID 30769966 DOI: 10.1063/1.5080010 |
0.422 |
|
2019 |
Levitas VI. High-Pressure Phase Transformations under Severe Plastic Deformation by Torsion in Rotational Anvils Materials Transactions. 60: 1294-1301. DOI: 10.2320/Matertrans.Mf201923 |
0.438 |
|
2019 |
Kim T, Ouyang G, Poplawsky JD, Kramer MJ, Levitas VI, Cui J, Zhou L. In-situ TEM analysis of the phase transformation mechanism of a Cu–Al–Ni shape memory alloy Journal of Alloys and Compounds. 808: 151743. DOI: 10.1016/J.Jallcom.2019.151743 |
0.447 |
|
2019 |
Cui S, Ouyang G, Ma T, Macziewski CR, Levitas VI, Zhou L, Kramer MJ, Cui J. Thermodynamic and kinetic analysis of the melt spinning process of Fe-6.5 wt.% Si alloy Journal of Alloys and Compounds. 771: 643-648. DOI: 10.1016/J.Jallcom.2018.08.293 |
0.304 |
|
2019 |
Feng B, Levitas VI, Li W. FEM modeling of plastic flow and strain-induced phase transformation in BN under high pressure and large shear in a rotational diamond anvil cell International Journal of Plasticity. 113: 236-254. DOI: 10.1016/J.Ijplas.2018.10.004 |
0.494 |
|
2019 |
Chen H, Levitas V, Xiong L. Slip of shuffle screw dislocations through tilt grain boundaries in silicon Computational Materials Science. 157: 132-135. DOI: 10.1016/J.Commatsci.2018.10.024 |
0.316 |
|
2019 |
Basak A, Levitas VI. Finite element procedure and simulations for a multiphase phase field approach to martensitic phase transformations at large strains and with interfacial stresses Computer Methods in Applied Mechanics and Engineering. 343: 368-406. DOI: 10.1016/J.Cma.2018.08.006 |
0.506 |
|
2019 |
Gao Y, Ma Y, An Q, Levitas V, Zhang Y, Feng B, Chaudhuri J, Goddard WA. Shear driven formation of nano-diamonds at sub-gigapascals and 300 K Carbon. 146: 364-368. DOI: 10.1016/J.Carbon.2019.02.012 |
0.411 |
|
2019 |
Chen H, Levitas VI, Xiong L. Amorphization Induced by 60° Shuffle Dislocation Pileup against Different Grain Boundaries in Silicon Bicrystal under Shear Acta Materialia. 179: 287-295. DOI: 10.1016/J.Actamat.2019.08.023 |
0.426 |
|
2019 |
Babaei H, Levitas VI. Effect of 60∘ dislocation on transformation stresses, nucleation, and growth for phase transformations between silicon I and silicon II under triaxial loading: Phase-field study Acta Materialia. 177: 178-186. DOI: 10.1016/J.Actamat.2019.07.021 |
0.52 |
|
2019 |
Babaei H, Basak A, Levitas VI. Algorithmic aspects and finite element solutions for advanced phase field approach to martensitic phase transformation under large strains Computational Mechanics. 64: 1177-1197. DOI: 10.1007/S00466-019-01699-Y |
0.518 |
|
2018 |
Levitas VI, Esfahani SE, Ghamarian I. Scale-Free Modeling of Coupled Evolution of Discrete Dislocation Bands and Multivariant Martensitic Microstructure. Physical Review Letters. 121: 205701. PMID 30500235 DOI: 10.1103/Physrevlett.121.205701 |
0.489 |
|
2018 |
Zarkevich NA, Chen H, Levitas VI, Johnson DD. Lattice Instability during Solid-Solid Structural Transformations under a General Applied Stress Tensor: Example of Si I→Si II with Metallization. Physical Review Letters. 121: 165701. PMID 30387636 DOI: 10.1103/Physrevlett.121.165701 |
0.474 |
|
2018 |
Levitas VI. High pressure phase transformations revisited. Journal of Physics. Condensed Matter : An Institute of Physics Journal. 30: 163001. PMID 29512511 DOI: 10.1088/1361-648X/Aab4B0 |
0.502 |
|
2018 |
Hill KJ, Tamura N, Levitas VI, Pantoya ML. Impact ignition and combustion of micron-scale aluminum particles pre-stressed with different quenching rates Journal of Applied Physics. 124: 115903-115903. DOI: 10.1063/1.5044546 |
0.353 |
|
2018 |
Basak A, Levitas VI. Phase field study of surface-induced melting and solidification from a nanovoid: Effect of dimensionless width of void surface and void size Applied Physics Letters. 112: 201602. DOI: 10.1063/1.5029911 |
0.358 |
|
2018 |
Levitas VI. Effect of the ratio of two nanosize parameters on the phase transformations Scripta Materialia. 149: 155-162. DOI: 10.1016/J.Scriptamat.2017.08.035 |
0.445 |
|
2018 |
Feng B, Levitas VI, Kamrani M. Coupled strain-induced alpha to omega phase transformation and plastic flow in zirconium under high pressure torsion in a rotational diamond anvil cell Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 731: 623-633. DOI: 10.1016/J.Msea.2018.06.061 |
0.467 |
|
2018 |
Basak A, Levitas VI. Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains Journal of the Mechanics and Physics of Solids. 113: 162-196. DOI: 10.1016/J.Jmps.2018.01.014 |
0.525 |
|
2018 |
Esfahani SE, Ghamarian I, Levitas VI, Collins PC. Microscale phase field modeling of the martensitic transformation during cyclic loading of NiTi single crystal International Journal of Solids and Structures. 146: 80-96. DOI: 10.1016/J.Ijsolstr.2018.03.022 |
0.51 |
|
2018 |
Levitas VI, Jafarzadeh H, Farrahi GH, Javanbakht M. Thermodynamically consistent and scale-dependent phase field approach for crack propagation allowing for surface stresses International Journal of Plasticity. 111: 1-35. DOI: 10.1016/J.Ijplas.2018.07.005 |
0.609 |
|
2018 |
Babaei H, Levitas VI. Phase-field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part 2. simulations of phase transformations Si I↔ Si II International Journal of Plasticity. 107: 223-245. DOI: 10.1016/J.Ijplas.2018.04.006 |
0.515 |
|
2018 |
Levitas VI. Phase field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part I. General theory International Journal of Plasticity. 106: 164-185. DOI: 10.1016/J.Ijplas.2018.03.007 |
0.512 |
|
2018 |
Javanbakht M, Levitas VI. Nanoscale mechanisms for high-pressure mechanochemistry: a phase field study Journal of Materials Science. 53: 13343-13363. DOI: 10.1007/S10853-018-2175-X |
0.685 |
|
2017 |
Feng B, Levitas VI. Pressure Self-focusing Effect and Novel Methods for Increasing the Maximum Pressure in Traditional and Rotational Diamond Anvil Cells. Scientific Reports. 7: 45461. PMID 28429723 DOI: 10.1038/Srep45461 |
0.329 |
|
2017 |
Levitas VI, Chen H, Xiong L. Triaxial-Stress-Induced Homogeneous Hysteresis-Free First-Order Phase Transformations with Stable Intermediate Phases. Physical Review Letters. 118: 025701. PMID 28128597 DOI: 10.1103/Physrevlett.118.025701 |
0.501 |
|
2017 |
Levitas VI, Chen H, Xiong L. Lattice instability during phase transformations under multiaxial stress: Modified transformation work criterion Physical Review B. 96. DOI: 10.1103/Physrevb.96.054118 |
0.439 |
|
2017 |
Levitas VI. Elastic model for stress–tensor-induced martensitic transformation and lattice instability in silicon under large strains Materials Research Letters. 5: 554-561. DOI: 10.1080/21663831.2017.1362054 |
0.397 |
|
2017 |
Hill KJ, Warzywoda J, Pantoya ML, Levitas VI. Dropping the hammer: Examining impact ignition and combustion using pre-stressed aluminum powder Journal of Applied Physics. 122: 125102. DOI: 10.1063/1.5003632 |
0.328 |
|
2017 |
Kamrani M, Levitas VI, Feng B. FEM simulation of large deformation of copper in the quasi-constrain high-pressure-torsion setup Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 705: 219-230. DOI: 10.1016/J.Msea.2017.08.078 |
0.453 |
|
2017 |
Feng B, Levitas VI. Plastic flows and strain-induced alpha to omega phase transformation in zirconium during compression in a diamond anvil cell: Finite element simulations Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 680: 130-140. DOI: 10.1016/J.Msea.2016.10.082 |
0.475 |
|
2017 |
Feng B, Levitas VI. Coupled elastoplasticity and plastic strain-induced phase transformation under high pressure and large strains: Formulation and application to BN sample compressed in a diamond anvil cell International Journal of Plasticity. 96: 156-181. DOI: 10.1016/J.Ijplas.2017.05.002 |
0.472 |
|
2017 |
Feng B, Levitas VI. Large elastoplastic deformation of a sample under compression and torsion in a rotational diamond anvil cell under megabar pressures International Journal of Plasticity. 92: 79-95. DOI: 10.1016/J.Ijplas.2017.03.002 |
0.398 |
|
2017 |
Basak A, Levitas VI. Interfacial stresses within boundary between martensitic variants: Analytical and numerical finite strain solutions for three phase field models Acta Materialia. 139: 174-187. DOI: 10.1016/J.Actamat.2017.07.059 |
0.482 |
|
2016 |
Hwang YS, Levitas VI. Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling. Physical Chemistry Chemical Physics : Pccp. PMID 27722318 DOI: 10.1039/C6Cp03897B |
0.418 |
|
2016 |
Momeni K, Levitas VI. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses. Physical Chemistry Chemical Physics : Pccp. PMID 27078783 DOI: 10.1039/C6Cp00943C |
0.534 |
|
2016 |
Javanbakht M, Levitas VI. Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear Physical Review B. 94. DOI: 10.1103/Physrevb.94.214104 |
0.649 |
|
2016 |
Kulnitskiy BA, Blank VD, Levitas VI, Perezhogin IA, Yu Popov M, Kirichenko AN, Tyukalova EV. Transformation-deformation bands in C60 after the treatment in a shear diamond anvil cell Materials Research Express. 3. DOI: 10.1088/2053-1591/3/4/045601 |
0.387 |
|
2016 |
Feng B, Levitas VI. Effects of gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell Journal of Applied Physics. 119. DOI: 10.1063/1.4939488 |
0.48 |
|
2016 |
Levitas VI, Warren JA. Phase field approach with anisotropic interface energy and interface stresses: Large strain formulation Journal of the Mechanics and Physics of Solids. 91: 94-125. DOI: 10.1016/J.Jmps.2016.02.029 |
0.496 |
|
2016 |
Levitas VI, McCollum J, Pantoya ML, Tamura N. Stress relaxation in pre-stressed aluminum core-shell particles: X-ray diffraction study, modeling, and improved reactivity Combustion and Flame. 170: 30-36. DOI: 10.1016/J.Combustflame.2016.05.012 |
0.375 |
|
2016 |
Levitas VI, Roy AM. Multiphase phase field theory for temperature-induced phase transformations: Formulation and application to interfacial phases Acta Materialia. 105: 244-257. DOI: 10.1016/J.Actamat.2015.12.013 |
0.481 |
|
2015 |
Hwang YS, Levitas VI. Coupled phase field, heat conduction, and elastodynamic simulations of kinetic superheating and nanoscale melting of aluminum nanolayer irradiated by picosecond laser. Physical Chemistry Chemical Physics : Pccp. 17: 31758-68. PMID 26561920 DOI: 10.1039/C5Cp04443J |
0.379 |
|
2015 |
Momeni K, Levitas VI, Warren JA. The strong influence of internal stresses on the nucleation of a nanosized, deeply undercooled melt at a solid-solid phase interface. Nano Letters. 15: 2298-303. PMID 25789667 DOI: 10.1021/Nl504380C |
0.359 |
|
2015 |
Levitas VI, McCollum J, Pantoya M. Pre-stressing micron-scale aluminum core-shell particles to improve reactivity. Scientific Reports. 5: 7879. PMID 25597747 DOI: 10.1038/Srep07879 |
0.332 |
|
2015 |
Levitas VI, Warren JA. Thermodynamically consistent phase field theory of phase transformations with anisotropic interface energies and stresses Physical Review B - Condensed Matter and Materials Physics. 92. DOI: 10.1103/Physrevb.92.144106 |
0.46 |
|
2015 |
Levitas VI, Roy AM. Multiphase phase field theory for temperature- and stress-induced phase transformations Physical Review B - Condensed Matter and Materials Physics. 91. DOI: 10.1103/Physrevb.91.174109 |
0.501 |
|
2015 |
Levitas VI, McCollum J, Pantoya ML, Tamura N. Internal stresses in pre-stressed micron-scale aluminum core-shell particles and their improved reactivity Journal of Applied Physics. 118. DOI: 10.1063/1.4929642 |
0.331 |
|
2015 |
Momeni K, Levitas VI, Warren JA. The Strong Influence of Internal Stresses on the Nucleation of a Nanosized, Deeply Undercooled Melt at a Solid-Solid Phase Interface Nano Letters. 15: 2298-2303. DOI: 10.1021/nl504380c |
0.336 |
|
2015 |
Levitas VI, Javanbakht M. Interaction of Phase Transformations and Plasticity at the Nanoscale: Phase Field Approach Materials Today: Proceedings. 2: S493-S498. DOI: 10.1016/J.Matpr.2015.07.334 |
0.683 |
|
2015 |
Levitas VI, Javanbakht M. Thermodynamically consistent phase field approach to dislocation evolution at small and large strains Journal of the Mechanics and Physics of Solids. 82: 345-366. DOI: 10.1016/J.Jmps.2015.05.009 |
0.639 |
|
2015 |
Javanbakht M, Levitas VI. Interaction between phase transformations and dislocations at the nanoscale. Part 2: Phase field simulation examples Journal of the Mechanics and Physics of Solids. 82: 161-185. DOI: 10.1016/J.Jmps.2015.05.006 |
0.67 |
|
2015 |
Levitas VI, Javanbakht M. Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach Journal of the Mechanics and Physics of Solids. 82: 287-319. DOI: 10.1016/J.Jmps.2015.05.005 |
0.649 |
|
2015 |
Javanbakht M, Levitas VI. Phase field approach to dislocation evolution at large strains: Computational aspects International Journal of Solids and Structures. DOI: 10.1016/J.Ijsolstr.2015.10.021 |
0.654 |
|
2015 |
Momeni K, Levitas VI. A phase-field approach to solid-solid phase transformations via intermediate interfacial phases under stress tensor International Journal of Solids and Structures. 71: 39-56. DOI: 10.1016/J.Ijsolstr.2015.05.027 |
0.494 |
|
2015 |
Feng B, Levitas VI, Hemley RJ. Large elastoplasticity under static megabar pressures: Formulation and application to compression of samples in diamond anvil cells International Journal of Plasticity. DOI: 10.1016/J.Ijplas.2016.04.017 |
0.431 |
|
2014 |
Levitas VI, Javanbakht M. Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale. 6: 162-6. PMID 24213214 DOI: 10.1039/C3Nr05044K |
0.673 |
|
2014 |
Momeni K, Levitas VI. Propagating phase interface with intermediate interfacial phase: Phase field approach Physical Review B - Condensed Matter and Materials Physics. 89. DOI: 10.1103/Physrevb.89.184102 |
0.469 |
|
2014 |
Levitas VI. Unambiguous Gibbs dividing surface for nonequilibrium finite-width interface: Static equivalence approach Physical Review B - Condensed Matter and Materials Physics. 89. DOI: 10.1103/Physrevb.89.094107 |
0.387 |
|
2014 |
Levitas VI, Samani K. Melting and solidification of nanoparticles: Scale effects, thermally activated surface nucleation, and bistable states Physical Review B - Condensed Matter and Materials Physics. 89. DOI: 10.1103/Physrevb.89.075427 |
0.723 |
|
2014 |
Hwang YS, Levitas VI. Internal stress-induced melting below melting temperature at high-rate laser heating Applied Physics Letters. 104. DOI: 10.1063/1.4886799 |
0.383 |
|
2014 |
Feng B, Levitas VI, Ma Y. Strain-induced phase transformation under compression in a diamond anvil cell: Simulations of a sample and gasket Journal of Applied Physics. 115. DOI: 10.1063/1.4873460 |
0.475 |
|
2014 |
Levitas VI. Phase field approach to martensitic phase transformations with large strains and interface stresses Journal of the Mechanics and Physics of Solids. 70: 154-189. DOI: 10.1016/J.Jmps.2014.05.013 |
0.493 |
|
2014 |
Levitas VI, Attariani H. Anisotropic compositional expansion in elastoplastic materials and corresponding chemical potential: Large-strain formulation and application to amorphous lithiated silicon Journal of the Mechanics and Physics of Solids. 69: 84-111. DOI: 10.1016/J.Jmps.2014.04.012 |
0.789 |
|
2014 |
Feng B, Levitas VI, Zarechnyy OM. Strain-induced phase transformations under high pressure and large shear in a rotational diamond anvil cell: Simulation of loading, unloading, and reloading Computational Materials Science. 84: 404-416. DOI: 10.1016/J.Commatsci.2013.11.058 |
0.457 |
|
2014 |
Levitas VI, Momeni K. Solid-solid transformations via nanoscale intermediate interfacial phase: Multiple structures, scale and mechanics effects Acta Materialia. 65: 125-132. DOI: 10.1016/J.Actamat.2013.11.051 |
0.496 |
|
2013 |
Levitas VI. Mechanochemical mechanism for reaction of aluminium nano- and micrometre-scale particles. Philosophical Transactions. Series a, Mathematical, Physical, and Engineering Sciences. 371: 20120215. PMID 24146008 DOI: 10.1098/Rsta.2012.0215 |
0.366 |
|
2013 |
Levitas VI, Attariani H. Anisotropic compositional expansion and chemical potential for amorphous lithiated silicon under stress tensor. Scientific Reports. 3: 1615. PMID 23563528 DOI: 10.1038/Srep01615 |
0.771 |
|
2013 |
Levitas VI, Roy AM, Preston DL. Multiple twinning and variant-variant transformations in martensite: Phase-field approach Physical Review B - Condensed Matter and Materials Physics. 88. DOI: 10.1103/Physrevb.88.054113 |
0.38 |
|
2013 |
Levitas VI. Interface stress for nonequilibrium microstructures in the phase field approach: Exact analytical results Physical Review B - Condensed Matter and Materials Physics. 87. DOI: 10.1103/Physrevb.87.054112 |
0.491 |
|
2013 |
Hwang YS, Levitas VI. Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser Applied Physics Letters. 103. DOI: 10.1063/1.4858395 |
0.337 |
|
2013 |
Feng B, Levitas VI. Coupled phase transformations and plastic flows under torsion at high pressure in rotational diamond anvil cell: Effect of contact sliding Journal of Applied Physics. 114. DOI: 10.1063/1.4840875 |
0.447 |
|
2013 |
Feng B, Levitas VI, Zarechnyy OM. Plastic flows and phase transformations in materials under compression in diamond anvil cell: Effect of contact sliding Journal of Applied Physics. 114. DOI: 10.1063/1.4816050 |
0.458 |
|
2013 |
Levitas VI, Javanbakht M. Phase field approach to interaction of phase transformation and dislocation evolution Applied Physics Letters. 102. DOI: 10.1063/1.4812488 |
0.659 |
|
2013 |
Feng B, Zarechnyy OM, Levitas VI. Strain-induced phase transformations under compression, unloading, and reloading in a diamond anvil cell Journal of Applied Physics. 113. DOI: 10.1063/1.4803851 |
0.503 |
|
2013 |
Levin VA, Levitas VI, Zingerman KM, Freiman EI. Phase-field simulation of stress-induced martensitic phase transformations at large strains International Journal of Solids and Structures. 50: 2914-2928. DOI: 10.1016/J.Ijsolstr.2013.05.003 |
0.493 |
|
2013 |
Levitas VI. Phase-field theory for martensitic phase transformations at large strains International Journal of Plasticity. 49: 85-118. DOI: 10.1016/J.Ijplas.2013.03.002 |
0.494 |
|
2013 |
Levitas VI. Thermodynamically consistent phase field approach to phase transformations with interface stresses Acta Materialia. 61: 4305-4319. DOI: 10.1016/J.Actamat.2013.03.034 |
0.49 |
|
2012 |
Ji C, Levitas VI, Zhu H, Chaudhuri J, Marathe A, Ma Y. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure. Proceedings of the National Academy of Sciences of the United States of America. 109: 19108-12. PMID 23129624 DOI: 10.1073/Pnas.1214976109 |
0.451 |
|
2012 |
Levitas VI, Ravelo R. Virtual melting as a new mechanism of stress relaxation under high strain rate loading. Proceedings of the National Academy of Sciences of the United States of America. 109: 13204-7. PMID 22847409 DOI: 10.1073/Pnas.1203285109 |
0.443 |
|
2012 |
Levitas VI, Javanbakht M. Advanced phase-field approach to dislocation evolution Physical Review B - Condensed Matter and Materials Physics. 86. DOI: 10.1103/Physrevb.86.140101 |
0.643 |
|
2012 |
Levitas VI, Ren Z, Zeng Y, Zhang Z, Han G. Crystal-crystal phase transformation via surface-induced virtual premelting Physical Review B - Condensed Matter and Materials Physics. 85. DOI: 10.1103/Physrevb.85.220104 |
0.332 |
|
2012 |
Levitas VI, Ma Y, Selvi E, Wu J, Patten JA. High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure Physical Review B - Condensed Matter and Materials Physics. 85. DOI: 10.1103/Physrevb.85.054114 |
0.386 |
|
2012 |
Zarechnyy OM, Levitas VI, Ma Y. Coupled plastic flow and phase transformation under compression of materials in a diamond anvil cell: Effects of transformation kinetics and yield strength Journal of Applied Physics. 111. DOI: 10.1063/1.3677977 |
0.484 |
|
2012 |
Levitas VI, Attariani H. Reply to "comment on 'Mechanochemical continuum modeling of nanovoid nucleation and growth in reacting nanoparticles'", Journal of Physical Chemistry C. 116: 12991-12993. DOI: 10.1021/Jp3038472 |
0.727 |
|
2012 |
Levitas VI, Attariani H. Mechanochemical continuum modeling of nanovoid nucleation and growth in reacting nanoparticles Journal of Physical Chemistry C. 116: 54-62. DOI: 10.1021/Jp2055365 |
0.767 |
|
2012 |
Cho JY, Idesman AV, Levitas VI, Park T. Finite element simulations of dynamics of multivariant martensitic phase transitions based on Ginzburg-Landau theory International Journal of Solids and Structures. 49: 1973-1992. DOI: 10.1016/J.Ijsolstr.2012.04.008 |
0.452 |
|
2012 |
Levitas VI. Sublimation, chemical decomposition, and melting inside an elastoplastic material: General continuum thermodynamic and kinetic theory International Journal of Plasticity. 34: 41-60. DOI: 10.1016/J.Ijplas.2012.01.006 |
0.442 |
|
2012 |
Levitas VI, Altukhova N. Thermodynamics and kinetics of nucleation of a spherical gas bubble inside an elastoplastic material due to sublimation International Journal of Plasticity. 34: 12-40. DOI: 10.1016/J.Ijplas.2012.01.005 |
0.493 |
|
2011 |
Levitas VI, Javanbakht M. Surface-induced phase transformations: multiple scale and mechanics effects and morphological transitions. Physical Review Letters. 107: 175701. PMID 22107539 DOI: 10.1103/Physrevlett.107.175701 |
0.619 |
|
2011 |
Levitas VI, Samani K. Size and mechanics effects in surface-induced melting of nanoparticles. Nature Communications. 2: 284. PMID 21505440 DOI: 10.1038/Ncomms1275 |
0.729 |
|
2011 |
Levitas VI, Javanbakht M. Phase-field approach to martensitic phase transformations: Effect of martensite-martensite interface energy International Journal of Materials Research. 102: 652-665. DOI: 10.3139/146.110529 |
0.64 |
|
2011 |
Levitas VI, Samani K. Coherent solid/liquid interface with stress relaxation in a phase-field approach to the melting/solidification transition Physical Review B - Condensed Matter and Materials Physics. 84. DOI: 10.1103/Physrevb.84.140103 |
0.767 |
|
2011 |
Levitas VI, Idesman AV, Palakala AK. Phase-field modeling of fracture in liquid Journal of Applied Physics. 110: 033531. DOI: 10.1063/1.3619807 |
0.442 |
|
2011 |
Hou D, Zhang F, Ji C, Hannon T, Zhu H, Wu J, Levitas VI, Ma Y. Phase transition and structure of silver azide at high pressure Journal of Applied Physics. 110. DOI: 10.1063/1.3610501 |
0.388 |
|
2011 |
Ji C, Zhang F, Hou D, Zhu H, Wu J, Chyu MC, Levitas VI, Ma Y. High pressure X-ray diffraction study of potassium azide Journal of Physics and Chemistry of Solids. 72: 736-739. DOI: 10.1016/J.Jpcs.2011.03.005 |
0.374 |
|
2011 |
Levitas VI, Dikici B, Pantoya ML. Toward design of the pre-stressed nano- and microscale aluminum particles covered by oxide shell Combustion and Flame. 158: 1413-1417. DOI: 10.1016/J.Combustflame.2010.12.002 |
0.325 |
|
2011 |
Levitas VI, Altukhova NS. Thermodynamics and kinetics of nanovoid nucleation inside elastoplastic material Acta Materialia. 59: 7051-7059. DOI: 10.1016/J.Actamat.2011.07.060 |
0.347 |
|
2010 |
Levitas VI, Javanbakht M. Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. Physical Review Letters. 105: 165701. PMID 21230982 DOI: 10.1103/Physrevlett.105.165701 |
0.612 |
|
2010 |
Levin VA, Levitas VI, Lokhin VV, Zingerman KM, Sayakhova LF, Freiman EI. Solid-state stress-induced phase transitions in a material with nanodimensional inhomogeneities: Model and computational experiment Doklady Physics. 55: 507-511. DOI: 10.1134/S1028335810100083 |
0.367 |
|
2010 |
Levitas VI, Zarechnyy OM. Modeling and simulation of strain-induced phase transformations under compression and torsion in a rotational diamond anvil cell Physical Review B. 82. DOI: 10.1103/Physrevb.82.174124 |
0.507 |
|
2010 |
Levitas VI, Zarechnyy OM. Modeling and simulation of strain-induced phase transformations under compression in a diamond anvil cell Physical Review B - Condensed Matter and Materials Physics. 82. DOI: 10.1103/Physrevb.82.174123 |
0.48 |
|
2010 |
Levitas VI, Zarechnyy OM. Numerical study of stress and plastic strain evolution under compression and shear of a sample in a rotational anvil cell High Pressure Research. 30: 653-669. DOI: 10.1080/08957959.2010.534990 |
0.455 |
|
2010 |
Levitas VI, Lee DW, Preston DL. Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations International Journal of Plasticity. 26: 395-422. DOI: 10.1016/J.Ijplas.2009.08.003 |
0.508 |
|
2009 |
Levitas VI, Levin VA, Zingerman KM, Freiman EI. Displacive phase transitions at large strains: phase-field theory and simulations. Physical Review Letters. 103: 025702. PMID 19659221 DOI: 10.1103/Physrevlett.103.025702 |
0.479 |
|
2009 |
Levitas VI, Smilowitz LB, Henson BF, Asay BW. HMX polymorphism: Virtual melting growth mechanism, cluster-to-cluster nucleation mechanism and physically based kinetics International Journal of Energetic Materials and Chemical Propulsion. 8: 571-593. DOI: 10.1615/Intjenergeticmaterialschemprop.V8.I6.80 |
0.446 |
|
2009 |
Levitas VI, Zarechnyy OM. Modeling and simulation of mechanochemical processes in a rotational diamond anvil cell Epl. 88. DOI: 10.1209/0295-5075/88/16004 |
0.436 |
|
2009 |
Levitas VI, Altukhova N. Sublimation via virtual melting inside an elastoplastic material Physical Review B - Condensed Matter and Materials Physics. 79. DOI: 10.1103/Physrevb.79.212101 |
0.399 |
|
2009 |
Levitas VI, Pantoya ML, Chauhan G, Rivero I. Effect of the alumina shell on the melting temperature depression for aluminum nanoparticles Journal of Physical Chemistry C. 113: 14088-14096. DOI: 10.1021/Jp902317M |
0.399 |
|
2009 |
Dikici B, Dean SW, Pantoya ML, Levitas VI, Jouet RJ. Influence of aluminum passivation on the reaction mechanism: Flame propagation studies Energy and Fuels. 23: 4231-4235. DOI: 10.1021/Ef801116X |
0.31 |
|
2009 |
Levitas VI, Ozsoy IB. Micromechanical modeling of stress-induced phase transformations. Part 2. Computational algorithms and examples International Journal of Plasticity. 25: 546-583. DOI: 10.1016/J.Ijplas.2008.02.005 |
0.501 |
|
2009 |
Levitas VI, Ozsoy IB. Micromechanical modeling of stress-induced phase transformations. Part 1. Thermodynamics and kinetics of coupled interface propagation and reorientation International Journal of Plasticity. 25: 239-280. DOI: 10.1016/J.Ijplas.2008.02.004 |
0.506 |
|
2008 |
Levitas VI, Altukhova N. Sublimation inside an elastoplastic material. Physical Review Letters. 101: 145703. PMID 18851543 DOI: 10.1103/Physrevlett.101.145703 |
0.474 |
|
2008 |
Idesman AV, Cho JY, Levitas VI. Finite element modeling of dynamics of martensitic phase transitions Applied Physics Letters. 93. DOI: 10.1063/1.2955514 |
0.441 |
|
2007 |
Levitas VI, Lee DW. Athermal resistance to interface motion in the phase-field theory of microstructure evolution. Physical Review Letters. 99: 245701. PMID 18233458 DOI: 10.1103/Physrevlett.99.245701 |
0.471 |
|
2007 |
Levitas VI, Ozsoy IB, Preston DL. Interface reorientation during coherent phase transformations Epl. 78. DOI: 10.1209/0295-5075/78/16003 |
0.418 |
|
2007 |
Levitas VI, Henson BF, Smilowitz LB, Zerkle DK, Asay BW. Coupled phase transformation, chemical decomposition, and deformation in plastic-bonded explosive: Models Journal of Applied Physics. 102. DOI: 10.1063/1.2817616 |
0.541 |
|
2007 |
Levitas VI, Zarechnyy OM. Plastic flow under compression and shear in rotational diamond anvil cell: Finite-element study Applied Physics Letters. 91. DOI: 10.1063/1.2794431 |
0.445 |
|
2007 |
Levitas VI, Asay BW, Son SF, Pantoya M. Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal Journal of Applied Physics. 101. DOI: 10.1063/1.2720182 |
0.381 |
|
2006 |
Ma Y, Selvi E, Levitas VI, Hashemi J. Effect of shear strain on the α-ε phase transition of iron: a new approach in the rotational diamond anvil cell. Journal of Physics. Condensed Matter : An Institute of Physics Journal. 18: S1075-82. PMID 22611098 DOI: 10.1088/0953-8984/18/25/S14 |
0.435 |
|
2006 |
Levitas VI, Ma Y, Hashemi J, Holtz M, Guven N. Strain-induced disorder, phase transformations, and transformation-induced plasticity in hexagonal boron nitride under compression and shear in a rotational diamond anvil cell: in situ x-ray diffraction study and modeling. The Journal of Chemical Physics. 125: 44507. PMID 16942156 DOI: 10.1063/1.2208353 |
0.427 |
|
2006 |
Levitas VI, Zarechnyy OM. Kinetics of strain-induced structural changes under high pressure. The Journal of Physical Chemistry. B. 110: 16035-46. PMID 16898761 DOI: 10.1021/Jp061795K |
0.475 |
|
2006 |
Levitas VI, Henson BF, Smilowitz LB, Asay BW. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal. The Journal of Physical Chemistry. B. 110: 10105-19. PMID 16706472 DOI: 10.1021/Jp057438B |
0.481 |
|
2006 |
Levitas VI, Smilowitz LB, Henson BF, Asay BW. Interfacial and volumetric kinetics of the beta-->delta phase transition in the energetic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine based on the virtual melting mechanism. The Journal of Chemical Physics. 124: 026101. PMID 16422653 DOI: 10.1063/1.2140698 |
0.335 |
|
2006 |
Levitas VI, Lee DW, Preston DL. Phase field theory of surface- and size-induced microstructures Europhysics Letters. 76: 81-87. DOI: 10.1209/Epl/I2006-10229-Y |
0.428 |
|
2006 |
Levitas VI, Preston DL, Lee DW. Ginzburg-Landau theory of microstructures: Stability, transient dynamics, and functionally graded nanophases Europhysics Letters. 75: 84-90. DOI: 10.1209/Epl/I2006-10086-8 |
0.34 |
|
2006 |
Levitas VI, Smilowitz LB, Henson BF, Asay BW. Nucleation mechanism for reconstructive solid-solid phase transitions via melt mediated nanocluster transformation Applied Physics Letters. 89. DOI: 10.1063/1.2403900 |
0.407 |
|
2006 |
Levitas VI, Asay BW, Son SF, Pantoya M. Melt dispersion mechanism for fast reaction of nanothermites Applied Physics Letters. 89. DOI: 10.1063/1.2335362 |
0.339 |
|
2006 |
Ma Y, Levitas VI, Hashemi J. X-ray diffraction measurements in a rotational diamond anvil cell Journal of Physics and Chemistry of Solids. 67: 2083-2090. DOI: 10.1016/J.Jpcs.2006.05.052 |
0.38 |
|
2005 |
Levitas VI. Crystal-amorphous and crystal-crystal phase transformations via virtual melting. Physical Review Letters. 95: 075701. PMID 16196796 DOI: 10.1103/Physrevlett.95.075701 |
0.368 |
|
2005 |
Levitas VI, Smilowitz LB, Henson BF, Asay BW. Solid-solid phase transformation via internal stress-induced virtual melting: Additional confirmations Applied Physics Letters. 87: 1-3. DOI: 10.1063/1.2126795 |
0.412 |
|
2005 |
Levitas VI, Ma Y, Hashemi J. Transformation-induced plasticity and cascading structural changes in hexagonal boron nitride under high pressure and shear Applied Physics Letters. 86: 1-3. DOI: 10.1063/1.1866226 |
0.424 |
|
2005 |
Levitas VI, Preston DL. Thermomechanical lattice instability and phase field theory of martensitic phase transformations, twinning and dislocations at large strains Physics Letters, Section a: General, Atomic and Solid State Physics. 343: 32-39. DOI: 10.1016/J.Physleta.2005.05.034 |
0.475 |
|
2005 |
Idesman AV, Levitas VI, Preston DL, Cho JY. Finite element simulations of martensitic phase transitions and microstructures based on a strain softening model Journal of the Mechanics and Physics of Solids. 53: 495-523. DOI: 10.1016/J.Jmps.2004.10.001 |
0.455 |
|
2004 |
Levitas VI, Idesman AV, Preston DL. Microscale simulation of martensitic microstructure evolution. Physical Review Letters. 93: 105701. PMID 15447419 DOI: 10.1103/Physrevlett.93.105701 |
0.337 |
|
2004 |
Levitas VI, Henson BF, Smilowitz LB, Asay BW. Solid-solid phase transformation via virtual melting significantly below the melting temperature. Physical Review Letters. 92: 235702. PMID 15245170 DOI: 10.1103/Physrevlett.92.235702 |
0.463 |
|
2004 |
Levitas VI, Hashemi J, Ma YZ. Strain-induced disorder and phase transformation in hexagonal boron nitride under quasi-homogeneous pressure: In situ X-ray study in a rotational diamond anvil cell Europhysics Letters. 68: 550-556. DOI: 10.1209/Epl/I2004-10235-1 |
0.406 |
|
2004 |
Levitas VI. A microscale model for strain-induced phase transformations and chemical reactions under high pressure Europhysics Letters. 66: 687-693. DOI: 10.1209/Epl/I2003-10249-1 |
0.474 |
|
2004 |
Levitas VI. High-pressure mechanochemistry: Conceptual multiscale theory and interpretation of experiments Physical Review B - Condensed Matter and Materials Physics. 70: 1-24. DOI: 10.1103/Physrevb.70.184118 |
0.484 |
|
2004 |
Levitas VI. Strain-induced nucleation at a dislocation pile-up: A nanoscale model for high pressure mechanochemistry Physics Letters, Section a: General, Atomic and Solid State Physics. 327: 180-185. DOI: 10.1016/J.Physleta.2004.05.029 |
0.443 |
|
2003 |
Levitas VI, Preston DL, Lee DW. Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory Physical Review B - Condensed Matter and Materials Physics. 68: 1342011-13420124. DOI: 10.1103/Physrevb.68.134201 |
0.506 |
|
2002 |
Levitas VI, Preston DL. Three-dimensional landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis Physical Review B - Condensed Matter and Materials Physics. 66: 1342071-13420715. DOI: 10.1103/Physrevb.66.134207 |
0.489 |
|
2002 |
Levitas VI, Preston DL. Three-dimensional landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite↔martensite Physical Review B - Condensed Matter and Materials Physics. 66: 1342061-1342069. DOI: 10.1103/Physrevb.66.134206 |
0.481 |
|
2002 |
Levitas VI, Shvedov LK. Low-pressure phase transformation from rhombohedral to cubic BN: Experiment and theory Physical Review B - Condensed Matter and Materials Physics. 65: 1041091-1041096. DOI: 10.1103/Physrevb.65.104109 |
0.521 |
|
2002 |
Levitas VI, Idesman AV, Olson GB, Stein E. Numerical modelling of martensitic growth in an elastoplastic material Philosophical Magazine a: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 82: 429-462. DOI: 10.1080/01418610208239609 |
0.508 |
|
2002 |
Levitas VI. Critical thought experiment to choose the driving force for interface propagation in inelastic materials International Journal of Plasticity. 18: 1499-1525. DOI: 10.1016/S0749-6419(02)00027-X |
0.462 |
|
2002 |
Mielke A, Theil F, Levitas VI. A variational formulation of rate-independent phase transformations using an extremum principle Archive For Rational Mechanics and Analysis. 162: 137-177. DOI: 10.1007/S002050200194 |
0.408 |
|
2002 |
Leshchuk AA, Novikov NV, Levitas VI. Thermomechanical model for graphite-to-diamond phase transformation Sverkhtverdye Materialy. 49-57. |
0.356 |
|
2001 |
Leshchuk AA, Novikov NV, Levitas VI. Computer simulation of physical and mechanical processes running in the reaction cells of high-pressure installations in the course of synthesis of diamonds Strength of Materials. 33: 277-292. DOI: 10.1023/A:1010472414042 |
0.416 |
|
2000 |
Theil F, Levitas VI. Study of a Hamiltonian model for martensitic phase transformations including microkinetic energy Mathematics and Mechanics of Solids. 5: 337-368. DOI: 10.1177/108128650000500304 |
0.348 |
|
2000 |
Levitas VI. Structural changes without stable intermediate state in inelastic material. Part I. General thermomechanical and kinetic approaches International Journal of Plasticity. 16: 805-849. DOI: 10.1016/S0749-6419(99)00084-4 |
0.375 |
|
2000 |
Levitas VI. Structural changes without stable intermediate state in inelastic material. Part II. Applications to displacive and diffusional-displacive phase transformations, strain-induced chemical reactions and ductile fracture International Journal of Plasticity. 16: 851-892. DOI: 10.1016/S0749-6419(99)00083-2 |
0.501 |
|
2000 |
Idesman AV, Levitas VI, Stein E. Structural changes in elastoplastic material International Journal of Plasticity. 16: 893-949. DOI: 10.1016/S0749-6419(99)00082-0 |
0.437 |
|
2000 |
Levitas VI. Thermomechanical and kinetic approaches to diffusional-displacive phase transitions in inelastic materials Mechanics Research Communications. 27: 217-227. DOI: 10.1016/S0093-6413(00)00085-9 |
0.46 |
|
2000 |
Idesman AV, Levitas VI, Stein E. Finite-element-analysis of appearance and growth of a martensitic plate in an austenitic matrix Zamm Zeitschrift Fur Angewandte Mathematik Und Mechanik. 80. |
0.329 |
|
1999 |
Levitas VI, Idesman AV, Stein E. Shape memory alloys: Micromechanical modeling and numerical analysis of structures Journal of Intelligent Material Systems and Structures. 10: 983-996. DOI: 10.1106/Cy6M-Pk9Q-Vy2B-121C |
0.435 |
|
1999 |
Idesman AV, Levitas VI, Stein E. Elastoplastic materials with martensitic phase transition and twinning at finite strains: Numerical solution with the finite element method Computer Methods in Applied Mechanics and Engineering. 173: 71-98. DOI: 10.1016/S0045-7825(98)00258-8 |
0.469 |
|
1998 |
Levitas VI, Idesman AV, Stein E, Spielfeld J, Hornbogen E. A simple micromechanical model for pseudoelastic behavior of CuZnAl alloy Journal of Intelligent Material Systems and Structures. 9: 324-334. DOI: 10.1177/1045389X9800900502 |
0.467 |
|
1998 |
Levitas VI, Idesman AV, Olson GB. Continuum modeling of strain-induced martensitic transformation at shear-band intersections Acta Materialia. 47: 219-233. DOI: 10.1016/S1359-6454(98)00314-0 |
0.419 |
|
1998 |
Levitas V, Nesterenko V, Meyers M. Strain-induced structural changes and chemical reactions—I. Thermomechanical and kinetic models Acta Materialia. 46: 5929-5945. DOI: 10.1016/S1359-6454(98)00215-8 |
0.397 |
|
1998 |
Levitas V, Nesterenko V, Meyers M. Strain-induced structural changes and chemical reactions—II. Modelling of reactions in shear band Acta Materialia. 46: 5947-5963. DOI: 10.1016/S1359-6454(98)00214-6 |
0.472 |
|
1998 |
Levitas VI. Thermomechanics and kinetics of generalized second-order phase transitions in inelastic materials. Application to ductile fracture Mechanics Research Communications. 25: 427-436. DOI: 10.1016/S0093-6413(98)00056-1 |
0.342 |
|
1998 |
Levitas VI. Thermomechanical theory of martensitic phase transformations in inelastic materials International Journal of Solids and Structures. 35: 889-940. DOI: 10.1016/S0020-7683(97)00089-9 |
0.474 |
|
1998 |
Levitas VI, Idesman AV, Stein E. Finite element simulation of martensitic phase transitions in elastoplastic materials International Journal of Solids and Structures. 35: 855-887. DOI: 10.1016/S0020-7683(97)00088-7 |
0.433 |
|
1998 |
Levitas VI, Nesterenko VF, Meyers MA. Strain-induced structural changes and chemical reactions - II. Modelling of reactions in shear band Acta Materialia. 46: 5947-5963. |
0.366 |
|
1997 |
Idesman AV, Levitas VI, Stein E. Simulation of martensitic phase transition progress with continuous and discontinuous displacements at the interface Computational Materials Science. 9: 64-75. DOI: 10.1016/S0927-0256(97)00059-1 |
0.445 |
|
1997 |
Levitas VI, Stein E. Simple micromechanical model of thermoelastic martensitic transformations Mechanics Research Communications. 24: 309-318. DOI: 10.1016/S0093-6413(97)00028-1 |
0.334 |
|
1997 |
Levitas VI. Phase transitions in elastoplastic materials: Continuum thermomechanical theory and examples of control - Part I Journal of the Mechanics and Physics of Solids. 45: 923-947. DOI: 10.1016/S0022-5096(96)00123-8 |
0.468 |
|
1997 |
Levitas VI. Phase transitions in elastoplastic materials: Continuum thermomechanical theory and examples of control. Part II Journal of the Mechanics and Physics of Solids. 45: 1203-1222. |
0.351 |
|
1996 |
Levitas VI, Stein E, Idesman AV. Phase transitions in elastoplastic materials: Thermodynamical theory and numerical simulation Journal De Physique. Iv : Jp. 6. DOI: 10.1051/Jp4:1996130 |
0.488 |
|
1996 |
Levitas VI. Phase transitions in inelastic materials at finite strains: A local description Journal De Physique. Iv : Jp. 6. DOI: 10.1051/Jp4:1996106 |
0.409 |
|
1996 |
Levitas VI. Theory of martensitic phase transformations in inelastic materials in local description Mechanics Research Communications. 23: 495-503. DOI: 10.1016/0093-6413(96)00049-3 |
0.385 |
|
1996 |
Levitas VI, Polotnyak SB, Idesman AV. Large elastoplastic strains and the stressed state of a deformable gasket in high pressure equipment with diamond anvils Strength of Materials. 28: 221-227. DOI: 10.1007/BF02133199 |
0.315 |
|
1996 |
Stein E, Levitas VI, Kuczma MS. A nonconvex problem for solids with phase transformations Zamm Zeitschrift Fur Angewandte Mathematik Und Mechanik. 76: 499-500. |
0.369 |
|
1996 |
Levitas VI, Polotnyak SB, Idesman AV. The large elastoplastic deformations and stresses of deformable interlayer of high pressure apparatus with diamond anvils Problemy Prochnosti. 78-87. |
0.325 |
|
1995 |
Levitas VI. Conditions of Nucleation and Interface Propagation in Thermoplastic Materials Le Journal De Physique Iv. 5: C8-173-C8-178. DOI: 10.1051/Jp4:1995822 |
0.472 |
|
1995 |
Levitas VI. Theory of Martensitic Phase Transitions in Elastoplastic Materials Le Journal De Physique Iv. 5: C2-41-C2-46. DOI: 10.1051/Jp4:1995205 |
0.495 |
|
1995 |
Levitas VI. Thermomechanics of martensitic phase transitions in elastoplastic materials Mechanics Research Communications. 22: 87-94. DOI: 10.1016/0093-6413(94)00045-F |
0.372 |
|
1995 |
Idesman AV, Levitas VI. Finite element procedure for solving contact thermoelastoplastic problems at large strains, normal and high pressures Computer Methods in Applied Mechanics and Engineering. 126: 39-66. DOI: 10.1016/0045-7825(95)00757-R |
0.405 |
|
1995 |
Levitas VI. The postulate of realizability: Formulation and applications to the post-bifurcation behaviour and phase transitions in elastoplastic materials-II International Journal of Engineering Science. 33: 947-971. DOI: 10.1016/0020-7225(94)00116-2 |
0.316 |
|
1994 |
Levitas VI. Thermomechanical description of pseudoelasticity-The threshold-type dissipative force with discrete memory Mechanics Research Communications. 21: 273-280. DOI: 10.1016/0093-6413(94)90078-7 |
0.427 |
|
1994 |
Levitas VI. Plasticity theory of microinhomogeneous materials at large strain gradient Mechanics Research Communications. 21: 11-17. DOI: 10.1016/0093-6413(94)90003-5 |
0.437 |
|
1994 |
Novikov NV, Levitas VI, Polotnyak SB, Potemkin MM. Numerical method for optimizing the design of a high-pressure apparatus with diamond anvils Strength of Materials. 26: 294-302. DOI: 10.1007/Bf02207410 |
0.35 |
|
1992 |
Levitas VI. On correct account of finite rotations in finite plasticity theory Acta Mechanica Sinica. 8: 253-260. DOI: 10.1007/Bf02489249 |
0.372 |
|
1991 |
Novikov NV, Levitas VI, Shestakov SI. Numeric modeling of the strength and longevity of structures with allowance for scale effect. Report 1. Substantiation of strength and longevity criteria Strength of Materials. 23: 527-535. DOI: 10.1007/Bf00771451 |
0.399 |
|
1991 |
Novikov NV, Shestakov SI, Levitas VI, Borimskii AI, Idesman AV. Numerical modeling of the strength and longevity of structures with allowance for scale effect. Report 3. Investigation of the stress state, strength, and longevity of cylindrical-type high-pressure apparatus Strength of Materials. 23: 644-652. DOI: 10.1007/Bf00771232 |
0.431 |
|
1991 |
Novikov NV, Levitas VI, Shestakov SI. Numeric modeling of the strength and longevity of structures with allowance for scale effect. Report 2. Investigation of the strength and longevity of hard-alloy dies for high-pressure apparatus Strength of Materials. 23: 635-643. DOI: 10.1007/Bf00771231 |
0.417 |
|
1991 |
Novikov NV, Shestakov SI, Levitas VI, Borimskij AI. Numerical modelling of strength and durability of constructions with regard to the scaling effect. Communication 3. Study of stressed state, Strength and durability of high pressure Apparatus of a cylindrical type Problemy Prochnosti. 35-42. |
0.303 |
|
1988 |
Tsybenko AS, Levitas VI, Shestakov SI, Idesman AV, Leshchuk AA, Sokolov AG. Elastoplastic state in high-pressure apparatus dies Strength of Materials. 20: 1236-1240. DOI: 10.1007/Bf02082747 |
0.399 |
|
1986 |
Novikov NV, Levitas VI, Shestakov SI. Fundamentals of strength and durability calculations for high-pressure apparatus elements Physica B+C. 139: 782-784. DOI: 10.1016/0378-4363(86)90700-X |
0.429 |
|
1986 |
Levitas VI. Theory of large elastoplastic deformations under high pressure Strength of Materials. 18: 1094-1103. DOI: 10.1007/Bf01525360 |
0.332 |
|
1984 |
Novikov NV, Levitas VI, Shestakov SI. Study of the stress state of the mechanical elements of high-pressure equipment Strength of Materials. 16: 1550-1556. DOI: 10.1007/Bf01529504 |
0.36 |
|
Show low-probability matches. |