Meihong Wang - Publications

Affiliations: 
2002 Electronic and Electrical Engineering University College London, London, United Kingdom 
 1997-1999 Chemical Engineering Imperial College London, London, England, United Kingdom 
 2016- Chemical Engineering University of Sheffield, Sheffield, England, United Kingdom 

99 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Wang C, Guo F, Li H, Xu J, Hu J, Liu H, Wang M. A porous ionic polymer bionic carrier in a mixed matrix membrane for facilitating selective CO2 permeability Journal of Membrane Science. 598: 117677. DOI: 10.1016/J.Memsci.2019.117677  0.316
2020 Liao P, Li Y, Wu X, Wang M, Oko E. Flexible operation of large-scale coal-fired power plant integrated with solvent-based post-combustion CO2 capture based on neural network inverse control International Journal of Greenhouse Gas Control. 95: 102985. DOI: 10.1016/J.Ijggc.2020.102985  0.463
2020 Otitoju O, Oko E, Wang M. A new method for scale-up of solvent-based post-combustion carbon capture process with packed columns International Journal of Greenhouse Gas Control. 93: 102900. DOI: 10.1016/J.Ijggc.2019.102900  0.426
2020 Akinola TE, Oko E, Wu X, Ma K, Wang M. Nonlinear model predictive control (NMPC) of the solvent-based post-combustion CO2 capture process Energy. 118840. DOI: 10.1016/J.Energy.2020.118840  0.479
2020 Wu X, Wang M, Lee KY. Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control Energy. 206: 118105. DOI: 10.1016/J.Energy.2020.118105  0.504
2020 Wu X, Shen J, Wang M, Lee KY. Intelligent predictive control of large-scale solvent-based CO2 capture plant using artificial neural network and particle swarm optimization Energy. 196: 117070. DOI: 10.1016/J.Energy.2020.117070  0.481
2020 Chai Y, Gao N, Wang M, Wu C. H2 production from co-pyrolysis/gasification of waste plastics and biomass under novel catalyst Ni-CaO-C Chemical Engineering Journal. 382: 122947. DOI: 10.1016/J.Cej.2019.122947  0.34
2020 Wu X, Wang M, Liao P, Shen J, Li Y. Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation Applied Energy. 257: 113941. DOI: 10.1016/J.Apenergy.2019.113941  0.511
2019 Borhani TN, Wang M. Role of solvents in CO2 capture processes: The review of selection and design methods Renewable & Sustainable Energy Reviews. 114: 109299. DOI: 10.1016/J.Rser.2019.109299  0.386
2019 Meng H, Wang M, Olumayegun O, Luo X, Liu X. Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation Renewable Energy. 136: 923-936. DOI: 10.1016/J.Renene.2019.01.043  0.347
2019 Gao F, Huang J, Sun H, Hu J, Wang M, Mi J, Wu C. CO2 capture using mesocellular siliceous foam (MCF)-supported CaO Journal of the Energy Institute. 92: 1591-1598. DOI: 10.1016/J.Joei.2018.07.015  0.369
2019 Borhani TN, Oko E, Wang M. Process modelling, validation and analysis of rotating packed bed stripper in the context of intensified CO2 capture with MEA Journal of Industrial and Engineering Chemistry. 75: 285-295. DOI: 10.1016/J.Jiec.2019.03.040  0.437
2019 Oko E, Wang M, Ramshaw C. Study of mass transfer correlations for rotating packed bed columns in the context of solvent-based carbon capture International Journal of Greenhouse Gas Control. 91: 102831. DOI: 10.1016/J.Ijggc.2019.102831  0.322
2019 Wu X, Wang M, Shen J, Li Y, Lawal A, Lee KY. Flexible operation of coal fired power plant integrated with post combustion CO2 capture using model predictive control International Journal of Greenhouse Gas Control. 82: 138-151. DOI: 10.1016/J.Ijggc.2018.12.004  0.487
2019 Olumayegun O, Wang M. Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes Fuel. 249: 89-102. DOI: 10.1016/J.Fuel.2019.03.078  0.418
2019 Wu X, Shen J, Li Y, Wang M, Lawal A, Lee KY. Dynamic behavior investigations and disturbance rejection predictive control of solvent-based post-combustion CO2 capture process Fuel. 242: 624-637. DOI: 10.1016/J.Fuel.2019.01.075  0.461
2019 Akinola TE, Oko E, Gu Y, Wei H, Wang M. Non-linear system identification of solvent-based post-combustion CO2 capture process Fuel. 239: 1213-1223. DOI: 10.1016/J.Fuel.2018.11.097  0.475
2019 Akinola TE, Oko E, Wang M. Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation Fuel. 236: 135-146. DOI: 10.1016/J.Fuel.2018.08.152  0.451
2019 Olumayegun O, Wang M, Oko E. Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture Energy. 166: 1074-1088. DOI: 10.1016/J.Energy.2018.10.127  0.457
2019 Liao P, Wu X, Li Y, Wang M, Shen J, Sun B, Pan L. Flexible operation of coal-fired power plant integrated with post-combustion CO2 capture Energy Procedia. 158: 4810-4815. DOI: 10.1016/J.Egypro.2019.01.715  0.471
2019 Yuan B, Zhang Y, Du W, Wang M, Qian F. Assessment of energy saving potential of an industrial ethylene cracking furnace using advanced exergy analysis Applied Energy. 254: 113583. DOI: 10.1016/J.Apenergy.2019.113583  0.35
2019 Wu X, Wang M, Shen J, Li Y, Lawal A, Lee KY. Reinforced coordinated control of coal-fired power plant retrofitted with solvent based CO2 capture using model predictive controls Applied Energy. 238: 495-515. DOI: 10.1016/J.Apenergy.2019.01.082  0.484
2018 Diyoke C, Aneke M, Wang M, Wu C. Techno-economic analysis of wind power integrated with both compressed air energy storage (CAES) and biomass gasification energy storage (BGES) for power generation Rsc Advances. 8: 22004-22022. DOI: 10.1039/C8Ra03128B  0.348
2018 Borhani TN, Oko E, Wang M. Process modelling and analysis of intensified CO2 capture using monoethanolamine (MEA) in rotating packed bed absorber Journal of Cleaner Production. 204: 1124-1142. DOI: 10.1016/J.Jclepro.2018.09.089  0.418
2018 Liao P, Wu X, Li Y, Wang M, Shen J, Lawal A, Xu C. Application of piece-wise linear system identification to solvent-based post-combustion carbon capture Fuel. 234: 526-537. DOI: 10.1016/J.Fuel.2018.07.045  0.466
2018 Li Z, Ding Z, Wang M, Oko E. Model-free adaptive control for MEA-based post-combustion carbon capture processes Fuel. 224: 637-643. DOI: 10.1016/J.Fuel.2018.03.096  0.445
2018 Wu X, Shen J, Li Y, Wang M, Lawal A. Flexible operation of post-combustion solvent-based carbon capture for coal-fired power plants using multi-model predictive control: A simulation study Fuel. 220: 931-941. DOI: 10.1016/J.Fuel.2018.02.061  0.5
2018 Wei M, Qian F, Du W, Hu J, Wang M, Luo X, Yang M. Study on the integration of fluid catalytic cracking unit in refinery with solvent-based carbon capture through process simulation Fuel. 219: 364-374. DOI: 10.1016/J.Fuel.2018.01.066  0.479
2018 Meng H, Wang M, Aneke M, Luo X, Olumayegun O, Liu X. Technical performance analysis and economic evaluation of a compressed air energy storage system integrated with an organic Rankine cycle Fuel. 211: 318-330. DOI: 10.1016/J.Fuel.2017.09.042  0.417
2018 Wu X, Shen J, Li Y, Wang M, Lawal A, Lee KY. Nonlinear dynamic analysis and control design of a solvent-based post-combustion CO2 capture process Computers & Chemical Engineering. 115: 397-406. DOI: 10.1016/J.Compchemeng.2018.04.028  0.468
2018 Diyoke C, Gao N, Aneke M, Wang M, Wu C. Modelling of down-draft gasification of biomass - An integrated pyrolysis, combustion and reduction process Applied Thermal Engineering. 142: 444-456. DOI: 10.1016/J.Applthermaleng.2018.06.079  0.415
2018 Li F, Zhang J, Shang C, Huang D, Oko E, Wang M. Modelling of a post-combustion CO2 capture process using deep belief network Applied Thermal Engineering. 130: 997-1003. DOI: 10.1016/J.Applthermaleng.2017.11.078  0.384
2018 Oko E, Ramshaw C, Wang M. Study of intercooling for rotating packed bed absorbers in intensified solvent-based CO2 capture process Applied Energy. 223: 302-316. DOI: 10.1016/J.Apenergy.2018.04.057  0.464
2018 Oko E, Zacchello B, Wang M, Fethi A. Process analysis and economic evaluation of mixed aqueous ionic liquid and monoethanolamine (MEA) solvent for CO2 capture from a coke oven plant Greenhouse Gases-Science and Technology. 8: 686-700. DOI: 10.1002/Ghg.1772  0.336
2017 Oko E, Wang M, Joel AS. Current status and future development of solvent-based carbon capture. International Journal of Coal Science & Technology. 4: 5-14. PMID 32226642 DOI: 10.1007/S40789-017-0159-0  0.405
2017 Olaleye AK, Wang M. Conventional and advanced exergy analysis of post-combustion CO 2 capture based on chemical absorption integrated with supercritical coal-fired power plant International Journal of Greenhouse Gas Control. 64: 246-256. DOI: 10.1016/J.Ijggc.2017.08.002  0.463
2017 Zhang W, Chen J, Luo X, Wang M. Modelling and process analysis of post-combustion carbon capture with the blend of 2-amino-2-methyl-1-propanol and piperazine International Journal of Greenhouse Gas Control. 63: 37-46. DOI: 10.1016/J.Ijggc.2017.04.018  0.501
2017 Li Z, Ding Z, Wang M. Operation and Bidding Strategies of Power Plants with Carbon Capture Ifac-Papersonline. 50: 3244-3249. DOI: 10.1016/J.Ifacol.2017.08.454  0.464
2017 Li Z, Ding Z, Wang M. Optimal Bidding and Operation of a Power Plant with Solvent-Based Carbon Capture under a CO 2 Allowance Market: A Solution with a Reinforcement Learning-Based Sarsa Temporal-Difference Algorithm Engineering. 3: 257-265. DOI: 10.1016/J.Eng.2017.02.014  0.437
2017 Luo X, Wang M. Improving Prediction Accuracy of a Rate-Based Model of an MEA-Based Carbon Capture Process for Large-Scale Commercial Deployment Engineering. 3: 232-243. DOI: 10.1016/J.Eng.2017.02.001  0.521
2017 Oko E, Ramshaw C, Wang M. Study of absorber intercooling in solvent-based CO2 capture based on rotating packed bed technology Energy Procedia. 142: 3511-3516. DOI: 10.1016/J.Egypro.2017.12.238  0.407
2017 Liao P, Li Y, Wang M, Wu X, Shen J. Review of dynamic modelling, system identification and control scheme in solvent-based post-combustion carbon capture process Energy Procedia. 142: 3505-3510. DOI: 10.1016/J.Egypro.2017.12.237  0.44
2017 Aneke M, Wang M. Thermodynamic Comparison of alternative Biomass Gasification Techniques for producing Syngas for Gas Turbine Application Energy Procedia. 142: 829-834. DOI: 10.1016/J.Egypro.2017.12.133  0.351
2017 Joel AS, Wang M. Preliminary Performance Assessment of Intensified Stripper in Post-combustion Carbon Capture through Modelling and Simulation Energy Procedia. 114: 1637-1642. DOI: 10.1016/J.Egypro.2017.03.1293  0.435
2017 Oko E, Wang M, Ramshaw C. Study of Mass Transfer Correlations for Intensified Absorbers in Post-combustion CO2 Capture Based on Chemical Absorption Energy Procedia. 114: 1630-1636. DOI: 10.1016/J.Egypro.2017.03.1292  0.335
2017 Joel AS, Wang M, Ramshaw C, Oko E. Modelling, simulation and analysis of intensified regenerator for solvent based carbon capture using rotating packed bed technology Applied Energy. 203: 11-25. DOI: 10.1016/J.Apenergy.2017.05.157  0.454
2017 Luo X, Wang M. Study of solvent-based carbon capture for cargo ships through process modelling and simulation Applied Energy. 195: 402-413. DOI: 10.1016/J.Apenergy.2017.03.027  0.476
2017 Olumayegun O, Wang M, Kelsall G. Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR) Applied Energy. 191: 436-453. DOI: 10.1016/J.Apenergy.2017.01.099  0.378
2017 Wang M, Oko E. Special issue on carbon capture in the context of carbon capture, utilisation and storage (CCUS) International Journal of Coal Science & Technology. 4: 1-4. DOI: 10.1007/S40789-017-0162-5  0.306
2017 Li F, Zhang J, Oko E, Wang M. Modelling of a post-combustion CO 2 capture process using extreme learning machine International Journal of Coal Science & Technology. 4: 33-40. DOI: 10.1007/S40789-017-0158-1  0.414
2017 Zacchello B, Oko E, Wang M, Fethi A. Process simulation and analysis of carbon capture with an aqueous mixture of ionic liquid and monoethanolamine solvent International Journal of Coal Science & Technology. 4: 25-32. DOI: 10.1007/S40789-016-0150-1  0.363
2017 Xue B, Yu Y, Chen J, Luo X, Wang M. A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations International Journal of Coal Science & Technology. 4: 15-24. DOI: 10.1007/S40789-016-0149-7  0.424
2016 Luo X, Wang M. Optimal operation of MEA-based post-combustion carbon capture for natural gas combined cycle power plants under different market conditions International Journal of Greenhouse Gas Control. 48: 312-320. DOI: 10.1016/J.Ijggc.2015.11.014  0.46
2016 Olumayegun O, Wang M, Kelsall G. Closed-cycle gas turbine for power generation: A state-of-the-art review Fuel. 180: 694-717. DOI: 10.1016/J.Fuel.2016.04.074  0.416
2016 Bai Z, Li F, Zhang J, Oko E, Wang M, Xiong Z, Huang D. Modelling of a Post-combustion CO2 Capture Process Using Bootstrap Aggregated Extreme Learning Machines Computer-Aided Chemical Engineering. 38: 2007-2012. DOI: 10.1016/B978-0-444-63428-3.50339-8  0.454
2015 Liu X, Chen J, Luo X, Wang M, Meng H. Study on heat integration of supercritical coal-fired power plant with post-combustion CO2 capture process through process simulation Fuel. 158: 625-633. DOI: 10.1016/J.Fuel.2015.06.033  0.468
2015 Luo X, Wang M, Li X, Li Y, Chen C, Sui H. Modelling and process analysis of hybrid hydration-absorption column for ethylene recovery from refinery dry gas Fuel. 158: 424-434. DOI: 10.1016/J.Fuel.2015.05.035  0.384
2015 Li F, Zhang J, Oko E, Wang M. Modelling of a post-combustion CO2 capture process using neural networks Fuel. 151: 156-163. DOI: 10.1016/J.Fuel.2015.02.038  0.37
2015 Oko E, Wang M, Zhang J. Neural network approach for predicting drum pressure and level in coal-fired subcritical power plant Fuel. 151: 139-145. DOI: 10.1016/J.Fuel.2015.01.091  0.435
2015 Luo X, Wang M, Chen J. Heat integration of natural gas combined cycle power plant integrated with post-combustion CO2 capture and compression Fuel. 151: 110-117. DOI: 10.1016/J.Fuel.2015.01.030  0.448
2015 Olaleye AK, Wang M, Kelsall G. Steady state simulation and exergy analysis of supercritical coal-fired power plant with CO2 capture Fuel. 151: 57-72. DOI: 10.1016/J.Fuel.2015.01.013  0.5
2015 Oko E, Wang M, Olaleye AK. Simplification of detailed rate-based model of post-combustion CO2 capture for full chain CCS integration studies Fuel. 142: 87-93. DOI: 10.1016/J.Fuel.2014.10.083  0.431
2015 Aneke M, Wang M. Potential for improving the energy efficiency of cryogenic air separation unit (ASU) using binary heat recovery cycles Applied Thermal Engineering. 81: 223-231. DOI: 10.1016/J.Applthermaleng.2015.02.034  0.389
2015 Joel AS, Wang M, Ramshaw C. Modelling and simulation of intensified absorber for post-combustion CO2 capture using different mass transfer correlations Applied Thermal Engineering. 74: 47-53. DOI: 10.1016/J.Applthermaleng.2014.02.064  0.443
2015 Canepa R, Wang M. Techno-economic analysis of a CO2 capture plant integrated with a commercial scale combined cycle gas turbine (CCGT) power plant Applied Thermal Engineering. 74: 10-19. DOI: 10.1016/J.Applthermaleng.2014.01.014  0.445
2015 Wang M, Joel AS, Ramshaw C, Eimer D, Musa NM. Process intensification for post-combustion CO2 capture with chemical absorption: A critical review Applied Energy. 158: 275-291. DOI: 10.1016/J.Apenergy.2015.08.083  0.469
2015 Aneke M, Wang M. Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines Applied Energy. 154: 556-566. DOI: 10.1016/J.Apenergy.2015.05.030  0.392
2015 Aneke M, Wang M. Improving the Energy Efficiency of Cryogenic Air Separation Units (ASU) through Compressor Waste Heat Recovery using Direct Binary Heat Engine Cycle Computer-Aided Chemical Engineering. 37: 2375-2380. DOI: 10.1016/B978-0-444-63576-1.50090-X  0.338
2014 Joel AS, Wang M, Ramshaw C, Oko E. Process analysis of intensified absorber for post-combustion CO2 capture through modelling and simulation International Journal of Greenhouse Gas Control. 21: 91-100. DOI: 10.1016/J.Ijggc.2013.12.005  0.475
2014 Olaleye AK, Adedayo KJ, Wu C, Nahil MA, Wang M, Williams PT. Experimental study, dynamic modelling, validation and analysis of hydrogen production from biomass pyrolysis/gasification of biomass in a two-stage fixed bed reaction system Fuel. 137: 364-374. DOI: 10.1016/J.Fuel.2014.07.076  0.426
2014 Oko E, Wang M. Dynamic modelling, validation and analysis of coal-fired subcritical power plant Fuel. 135: 292-300. DOI: 10.1016/J.Fuel.2014.06.055  0.449
2014 Olaleye AK, Wang M. Techno-economic analysis of chemical looping combustion with humid air turbine power cycle Fuel. 124: 221-231. DOI: 10.1016/J.Fuel.2014.02.002  0.474
2014 Wu C, Budarin VL, Wang M, Sharifi V, Gronnow MJ, Wu Y, Swithenbank J, Clark JH, Williams PT. CO2 gasification of bio-char derived from conventional and microwave pyrolysis Applied Energy. DOI: 10.1016/J.Apenergy.2015.04.075  0.411
2014 Luo X, Wang M, Oko E, Okezue C. Simulation-based techno-economic evaluation for optimal design of CO2 transport pipeline network Applied Energy. 132: 610-620. DOI: 10.1016/J.Apenergy.2014.07.063  0.388
2014 Luo X, Mistry K, Okezue C, Wang M, Cooper R, Oko E, Field J. Process Simulation and Analysis for CO2 Transport Pipeline Design and Operation – Case Study for the Humber Region in the UK Computer-Aided Chemical Engineering. 33: 1633-1638. DOI: 10.1016/B978-0-444-63455-9.50107-0  0.4
2014 Pacheco KA, Li Y, Wang M. Study of integration of cryogenic air energy storage and coal oxy-fuel combustion through modelling and simulation Computer Aided Chemical Engineering. 33: 1537-1542. DOI: 10.1016/B978-0-444-63455-9.50091-X  0.416
2014 Olaleye A, Wang M. Technical and Economic Analysis of Chemical Looping Combustion with Humid Air Turbine Power Cycle Computer-Aided Chemical Engineering. 33: 1123-1128. DOI: 10.1016/B978-0-444-63455-9.50022-2  0.465
2013 Hamisu AA, Kabantiok S, Wang M. Refinery scheduling of crude oil unloading with tank inventory management Computers & Chemical Engineering. 55: 134-147. DOI: 10.1016/J.Compchemeng.2013.04.003  0.33
2013 Hamisu AA, Kabantiok S, Wang M. An improved MILP model for scheduling crude oil unloading, storage and processing Computer-Aided Chemical Engineering. 32: 631-636. DOI: 10.1016/B978-0-444-63234-0.50106-8  0.321
2013 Girei SA, Wang M, Hamisu AA. Heat Exchanger Network Design and Economic Analysis for Coal-fired Power Plant retrofitted with CO2 Capture Computer-Aided Chemical Engineering. 32: 433-438. DOI: 10.1016/B978-0-444-63234-0.50073-7  0.421
2013 Biliyok C, Canepa R, Wang M, Yeung H. Techno-Economic Analysis of a Natural Gas Combined Cycle Power Plant with CO2 Capture Computer-Aided Chemical Engineering. 32: 187-192. DOI: 10.1016/B978-0-444-63234-0.50032-4  0.463
2012 Biliyok C, Lawal A, Wang M, Seibert F. Dynamic modelling, validation and analysis of post-combustion chemical absorption CO2 capture plant International Journal of Greenhouse Gas Control. 9: 428-445. DOI: 10.1016/J.Ijggc.2012.05.001  0.493
2012 Lawal A, Wang M, Stephenson P, Obi O. Demonstrating full-scale post-combustion CO2 capture for coal-fired power plants through dynamic modelling and simulation Fuel. 101: 115-128. DOI: 10.1016/J.Fuel.2010.10.056  0.427
2012 Ejikeme-Ugwu E, Wang M. Aggregate Model for Refinery Production Planning Computer-Aided Chemical Engineering. 30: 917-921. DOI: 10.1016/B978-0-444-59520-1.50042-7  0.314
2012 Biliyok C, Lawal A, Wang M, Seibert F. Dynamic Validation of Model for Post-Combustion Chemical Absorption CO2 Capture Plant Computer Aided Chemical Engineering. 30: 807-811. DOI: 10.1016/B978-0-444-59520-1.50020-8  0.479
2012 Bello BZ, Nwokoagbara E, Wang M. Comparative Techno-economic Analysis of Biodiesel Production from Microalgae via Transesterification Methods Computer-Aided Chemical Engineering. 30: 132-136. DOI: 10.1016/B978-0-444-59519-5.50027-7  0.368
2011 Lawal A, Wang M, Stephenson P. Investigating the dynamic response of CO 2 chemical absorption process in enhanced-O 2 coal power plant with post-combustion CO 2 capture Energy Procedia. 4: 1035-1042. DOI: 10.1016/J.Egypro.2011.01.152  0.456
2011 Berreni M, Wang M. Modelling and dynamic optimization of thermal cracking of propane for ethylene manufacturing Computers & Chemical Engineering. 35: 2876-2885. DOI: 10.1016/J.Compchemeng.2011.05.010  0.367
2011 Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review Chemical Engineering Research & Design. 89: 1609-1624. DOI: 10.1016/J.Cherd.2010.11.005  0.498
2011 Berreni M, Wang M. Modelling and dynamic optimisation for optimal operation of industrial tubular reactor for propane cracking Computer-Aided Chemical Engineering. 29: 955-959. DOI: 10.1016/B978-0-444-53711-9.50191-7  0.351
2010 Lawal A, Wang M, Stephenson P, Koumpouras G, Yeung H. Dynamic modelling and analysis of post-combustion CO2 chemical absorption process for coal-fired power plants Fuel. 89: 2791-2801. DOI: 10.1016/J.Fuel.2010.05.030  0.527
2009 Lawal A, Wang M, Stephenson P, Yeung H. Dynamic modeling and simulation of CO2 chemical absorption process for coal-fired power plants Computer Aided Chemical Engineering. 27: 1725-1730. DOI: 10.1016/S1570-7946(09)70678-9  0.479
2009 Gao G-, Wang M, Pantelides CC, Li X-, Yeung H. Mathematical Modeling and Optimal Operation of Industrial Tubular Reactor for Naphtha Cracking Computer-Aided Chemical Engineering. 27: 501-506. DOI: 10.1016/S1570-7946(09)70304-9  0.412
2009 Lawal A, Wang M, Stephenson P, Yeung H. Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants Fuel. 88: 2455-2462. DOI: 10.1016/J.Fuel.2008.11.009  0.494
2009 Gao G-, Wang M, Ramshaw C, Li X-, Yeung H. Optimal operation of tubular reactors for naphtha cracking by numerical simulation Asia-Pacific Journal of Chemical Engineering. 4: 885-892. DOI: 10.1002/Apj.351  0.37
2005 Wang M, Sutton R. System identification of a remotely-operated flight vehicle Journal of Marine Engineering and Technology. 4: 17-22. DOI: 10.1080/20464177.2005.11020184  0.38
2004 Wang M, Sutton R. Model predictive control of a remotely operated flight vehicle Ifac Proceedings Volumes. 37: 327-332. DOI: 10.1016/S1474-6670(17)31753-6  0.337
2004 Wang M, Sutton R, Chudley J. Closed Loop Identification of a Remotely Operated Flight Vehicle Ifac Proceedings Volumes. 37: 163-168. DOI: 10.1016/S1474-6670(17)31098-4  0.316
2002 Wang M, Thornhill N, Huang B. CLOSED LOOP IDENTIFICATION BASED ON QUANTIZATION Ifac Proceedings Volumes. 35: 319-324. DOI: 10.3182/20020721-6-Es-1901.01362  0.545
Show low-probability matches.