Year |
Citation |
Score |
2020 |
Allen EJ, Allen LJS, Smith HL. On real-valued SDE and nonnegative-valued SDE population models with demographic variability. Journal of Mathematical Biology. PMID 32676719 DOI: 10.1007/S00285-020-01516-8 |
0.368 |
|
2018 |
Browne CJ, Smith HL. Dynamics of virus and immune response in multi-epitope network. Journal of Mathematical Biology. PMID 29476197 DOI: 10.1007/S00285-018-1224-Z |
0.319 |
|
2017 |
Schuster M, Foxall E, Finch D, Smith H, Leenheer PD. Tragedy of the commons in the chemostat. Plos One. 12. PMID 29261671 DOI: 10.1371/Journal.Pone.0186119 |
0.313 |
|
2017 |
Korytowski DA, Smith H. Permanence and Stability of a Kill the Winner Model in Marine Ecology. Bulletin of Mathematical Biology. PMID 28349407 DOI: 10.1007/S11538-017-0265-6 |
0.383 |
|
2017 |
Korytowski DA, Smith HL. Persistence in phage-bacteria communities with nested and one-to-one infection networks Discrete and Continuous Dynamical Systems-Series B. 22: 859-875. DOI: 10.3934/Dcdsb.2017043 |
0.309 |
|
2016 |
Jones DA, Smith HL, Thieme HR. Spread of phage infection of bacteria in a petri dish Discrete and Continuous Dynamical Systems - Series B. 21: 471-496. DOI: 10.3934/Dcdsb.2016.21.471 |
0.316 |
|
2016 |
Smith HL. Monotone dynamical systems: Reflections on new advances & applications Discrete and Continuous Dynamical Systems. 37: 485-504. DOI: 10.3934/Dcds.2017020 |
0.327 |
|
2016 |
Fan G, Smith HL, Thieme HR. Competition in the Chemostat with Time-Dependent Differential Removal Rates Vietnam Journal of Mathematics. 45: 153-178. DOI: 10.1007/S10013-016-0208-9 |
0.306 |
|
2015 |
Jin W, Smith HL, Thieme HR. Persistence versus extinction for a class of discrete-time structured population models. Journal of Mathematical Biology. PMID 26032653 DOI: 10.1007/S00285-015-0898-8 |
0.372 |
|
2014 |
Imran M, Smith HL. A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences and Engineering : Mbe. 11: 547-71. PMID 24506551 DOI: 10.3934/Mbe.2014.11.547 |
0.7 |
|
2014 |
Klapper I, Dockery J, Smith H. Niche Partitioning Along an Environmental Gradient Siam Journal On Applied Mathematics. 74: 1511-1534. DOI: 10.1137/14095786X |
0.314 |
|
2013 |
Smith HL, Thieme HR. Chemostats and epidemics: competition for nutrients/hosts. Mathematical Biosciences and Engineering : Mbe. 10: 1635-50. PMID 24245640 DOI: 10.3934/Mbe.2013.10.1635 |
0.311 |
|
2013 |
Smith HL, Thieme HR. Persistence and global stability for a class of discrete time structured population models Discrete and Continuous Dynamical Systems- Series A. 33: 4627-4646. DOI: 10.3934/Dcds.2013.33.4627 |
0.404 |
|
2012 |
Han Z, Smith HL. Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat. Mathematical Biosciences and Engineering : Mbe. 9: 737-65. PMID 23311420 DOI: 10.3934/Mbe.2012.9.737 |
0.676 |
|
2012 |
Kang Y, Smith H. Global dynamics of a discrete two-species Lottery-Ricker competition model Journal of Biological Dynamics. 6: 358-376. PMID 22873595 DOI: 10.1080/17513758.2011.586064 |
0.395 |
|
2012 |
Smith HL, Thieme HR. Persistence of bacteria and phages in a chemostat. Journal of Mathematical Biology. 64: 951-79. PMID 21656281 DOI: 10.1007/S00285-011-0434-4 |
0.369 |
|
2011 |
Jones DA, Smith HL. Bacteriophage and bacteria in a flow reactor. Bulletin of Mathematical Biology. 73: 2357-83. PMID 21221829 DOI: 10.1007/S11538-010-9626-0 |
0.363 |
|
2011 |
Smith HL. Global dynamics of the smallest chemical reaction system with Hopf bifurcation Journal of Mathematical Chemistry. 50: 989-995. DOI: 10.1007/S10910-011-9946-9 |
0.307 |
|
2010 |
Smith HL. Preface: tribute to Horst R. Thieme on the occasion of his 60th birthday. Mathematical Biosciences and Engineering : Mbe. 7: i-iii. PMID 20104943 DOI: 10.3934/Mbe.2010.7.1I |
0.333 |
|
2010 |
Salceanu PL, Smith HL. Persistence in a discrete-time, stage-structured epidemic model Journal of Difference Equations and Applications. 16: 73-103. DOI: 10.1080/10236190802400733 |
0.749 |
|
2009 |
Salceanu PL, Smith HL. Persistence in a discrete-time stage-structured fungal disease model. Journal of Biological Dynamics. 3: 271-85. PMID 22880834 DOI: 10.1080/17513750802379028 |
0.748 |
|
2009 |
Salceanu PL, Smith HL. Lyapunov exponents and persistence in discrete dynamical systems Discrete and Continuous Dynamical Systems-Series B. 12: 187-203. DOI: 10.3934/Dcdsb.2009.12.187 |
0.756 |
|
2009 |
Smith HL, Trevino RT. Bacteriophage Infection Dynamics: Multiple Host Binding Sites Mathematical Modelling of Natural Phenomena. 4: 109-134. DOI: 10.1051/Mmnp/20094604 |
0.321 |
|
2009 |
Salceanu PL, Smith HL. Lyapunov Exponents and Uniform Weak Normally Repelling Invariant Sets Lecture Notes in Control and Information Sciences. 17-27. DOI: 10.1007/978-3-642-02894-6_2 |
0.724 |
|
2008 |
Malik T, Smith HL. Does dormancy increase fitness of bacterial populations in time-varying environments? Bulletin of Mathematical Biology. 70: 1140-62. PMID 18239978 DOI: 10.1007/S11538-008-9294-5 |
0.33 |
|
2008 |
Smith HL. Models of Virulent Phage Growth with Application to Phage Therapy Siam Journal On Applied Mathematics. 68: 1717-1737. DOI: 10.1137/070704514 |
0.36 |
|
2008 |
Smith H. Global stability for mixed monotone systems Journal of Difference Equations and Applications. 14: 1159-1164. DOI: 10.1080/10236190802332126 |
0.318 |
|
2008 |
Enciso GA, Hirsch MW, Smith HL. Prevalent behavior of strongly order preserving semiflows Journal of Dynamics and Differential Equations. 20: 115-132. DOI: 10.1007/S10884-007-9084-Z |
0.32 |
|
2007 |
Li B, Smith HL. Global dynamics of microbial competition for two resources with internal storage. Journal of Mathematical Biology. 55: 481-515. PMID 17505828 DOI: 10.1007/S00285-007-0092-8 |
0.363 |
|
2007 |
Imran M, Smith HL. The dynamics of bacterial infection, innate immune response, and antibiotic treatment Discrete and Continuous Dynamical Systems-Series B. 8: 127-143. DOI: 10.3934/Dcdsb.2007.8.127 |
0.689 |
|
2007 |
Wang H, Smith HL, Kuang Y, Elser JJ. Dynamics of stoichiometric bacteria-algae interactions in the epilimnion Siam Journal On Applied Mathematics. 68: 503-522. DOI: 10.1137/060665919 |
0.367 |
|
2006 |
Smith HL. The discrete dynamics of monotonically decomposable maps. Journal of Mathematical Biology. 53: 747-58. PMID 16718499 DOI: 10.1007/S00285-006-0004-3 |
0.354 |
|
2006 |
Malik T, Smith H. A resource-based model of microbial quiescence Journal of Mathematical Biology. 53: 231-252. PMID 16680470 DOI: 10.1007/S00285-006-0003-4 |
0.308 |
|
2006 |
Baer SM, Li B, Smith HL. Multiple limit cycles in the standard model of three species competition for three essential resources. Journal of Mathematical Biology. 52: 745-60. PMID 16463185 DOI: 10.1007/S00285-005-0367-X |
0.36 |
|
2006 |
Hirsch MW, Smith HL. Asymptotically stable equilibria for monotone semiflows Discrete and Continuous Dynamical Systems. 14: 385-398. DOI: 10.3934/Dcds.2006.14.385 |
0.35 |
|
2006 |
Mudassar I, Smith H. The Pharmacodynamics of Antibiotic Treatment Computational and Mathematical Methods in Medicine. 7: 229-263. DOI: 10.1080/10273660601122773 |
0.365 |
|
2006 |
Enciso GA, Smith HL, Sontag ED. Nonmonotone systems decomposable into monotone systems with negative feedback Journal of Differential Equations. 224: 205-227. DOI: 10.1016/J.Jde.2005.05.007 |
0.321 |
|
2005 |
Imran M, Jones D, Smith H. Biofilms and the plasmid maintenance question. Mathematical Biosciences. 193: 183-204. PMID 15748729 DOI: 10.1016/J.Mbs.2004.10.008 |
0.695 |
|
2003 |
Jones D, Kojouharov HV, Le D, Smith H. The Freter model: a simple model of biofilm formation. Journal of Mathematical Biology. 47: 137-52. PMID 12883858 DOI: 10.1007/S00285-003-0202-1 |
0.345 |
|
2003 |
Smith HL, De Leenheer P. Virus Dynamics: A Global Analysis Siam Journal On Applied Mathematics. 63: 1313-1327. DOI: 10.1137/S0036139902406905 |
0.312 |
|
2002 |
Jones D, Kojouharov HV, Le D, Smith H. Bacterial wall attachment in a flow reactor Siam Journal On Applied Mathematics. 62: 1728-1771. DOI: 10.1137/S0036139901390416 |
0.332 |
|
2001 |
Ballyk MM, Jones D, Smith H. Microbial Competition in Reactors with Wall Attachment. Microbial Ecology. 41: 210-221. PMID 11391459 DOI: 10.1007/S002480000005 |
0.328 |
|
2001 |
Smith HL, Zhao X. Competitive exclusion in a discrete-time, size-structured chemostat model Discrete and Continuous Dynamical Systems-Series B. 1: 183-191. DOI: 10.3934/Dcdsb.2001.1.183 |
0.337 |
|
2001 |
Li MY, Smith HL, Wang L. Global Dynamics of an SEIR Epidemic Model with Vertical Transmission Siam Journal On Applied Mathematics. 62: 58-69. DOI: 10.1137/S0036139999359860 |
0.344 |
|
2001 |
Smith HL, Thieme HR. Stable coexistence and bi-stability for competitive systems on ordered Banach spaces Journal of Differential Equations. 176: 195-222. DOI: 10.1006/Jdeq.2001.3981 |
0.327 |
|
2000 |
Smith HL, Zhao X. Global Asymptotic Stability of Traveling Waves in Delayed Reaction-Diffusion Equations Siam Journal On Mathematical Analysis. 31: 514-534. DOI: 10.1137/S0036141098346785 |
0.302 |
|
2000 |
Stemmons ED, Smith HL. Competition in a Chemostat with Wall Attachment Siam Journal On Applied Mathematics. 61: 567-595. DOI: 10.1137/S0036139999358131 |
0.353 |
|
2000 |
Jones DA, Smith H. Microbial Competition for Nutrient and Wall Sites in Plug Flow Siam Journal On Applied Mathematics. 60: 1576-1600. DOI: 10.1137/S0036139998341588 |
0.356 |
|
2000 |
Cavani M, Lizana M, Smith HL. Stable Periodic Orbits for a Predator–Prey Model with Delay Journal of Mathematical Analysis and Applications. 249: 324-339. DOI: 10.1006/Jmaa.2000.6802 |
0.336 |
|
1999 |
Ballyk M, Smith H. A model of microbial growth in a plug flow reactor with wall attachment Bellman Prize in Mathematical Biosciences. 158: 95-126. PMID 10232005 DOI: 10.1016/S0025-5564(99)00006-1 |
0.336 |
|
1999 |
Dung L, Smith HL. Steady States of Models of Microbial Growth and Competition with Chemotaxis Journal of Mathematical Analysis and Applications. 229: 295-318. DOI: 10.1006/Jmaa.1998.6167 |
0.301 |
|
1999 |
Smith HL, Zhao X. Dynamics of a Periodically Pulsed Bio-reactor Model Journal of Differential Equations. 155: 368-404. DOI: 10.1006/Jdeq.1998.3587 |
0.361 |
|
1998 |
Jones DA, Smith HL, Dung L, Ballyk M. Effects of Random Motility on Microbial Growth and Competition in a Flow Reactor Siam Journal On Applied Mathematics. 59: 573-596. DOI: 10.1137/S0036139997325345 |
0.376 |
|
1998 |
Smith H. Planar competitive and cooperative difference equations Journal of Difference Equations and Applications. 3: 335-357. DOI: 10.1080/10236199708808108 |
0.3 |
|
1997 |
Zhao T, Kuang Y, Smith HL. Global existence of periodic solutions in a class of delayed gause-type predator-prey systems Nonlinear Analysis, Theory, Methods and Applications. 28: 1373-1394. DOI: 10.1016/0362-546X(95)00230-S |
0.357 |
|
1997 |
Smith HL. The periodically forced Droop model for phytoplankton growth in a chemostat Journal of Mathematical Biology. 35: 545-556. DOI: 10.1007/S002850050065 |
0.347 |
|
1996 |
Smith HL. A discrete, size-structured model of microbial growth and competition in the chemostat Journal of Mathematical Biology. 34: 734-754. DOI: 10.1007/Bf00161517 |
0.345 |
|
1996 |
Dung L, Smith HL. A Parabolic System Modeling Microbial Competition in an Unmixed Bio-reactor Journal of Differential Equations. 130: 59-91. DOI: 10.1006/Jdeq.1996.0132 |
0.324 |
|
1995 |
Smith HL. Equivalent Dynamics for a Structured Population Model and a Related Functional Differential Equation Rocky Mountain Journal of Mathematics. 25: 491-499. DOI: 10.1216/Rmjm/1181072298 |
0.35 |
|
1994 |
Smith HL, Waltman P. Competition for a Single Limiting Resource in Continuous Culture: The Variable-Yield Model Siam Journal On Applied Mathematics. 54: 1113-1131. DOI: 10.1137/S0036139993245344 |
0.34 |
|
1994 |
Smith HL. A structured population model and a related functional differential equation: Global attractors and uniform persistence Journal of Dynamics and Differential Equations. 6: 71-99. DOI: 10.1007/Bf02219189 |
0.363 |
|
1994 |
Zhu H, Smith H. Stable Periodic Orbits for a Class of Three Dimensional Competitive Systems Journal of Differential Equations. 110: 143-156. DOI: 10.1006/Jdeq.1994.1063 |
0.337 |
|
1993 |
Smith HL. Reduction of structured population models to threshold-type delay equations and functional differential equations: a case study. Mathematical Biosciences. 113: 1-23. PMID 8431644 DOI: 10.1016/0025-5564(93)90006-V |
0.338 |
|
1993 |
Smith HL. Existence and Uniqueness of Global Solutions for a Size-Structured Model of an Insect Population with Variable Instar Duration Rocky Mountain Journal of Mathematics. 24: 311-334. DOI: 10.1216/Rmjm/1181072468 |
0.327 |
|
1993 |
Kuang Y, Smith HL. Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks The Journal of the Australian Mathematical Society. Series B. Applied Mathematics. 34: 471-494. DOI: 10.1017/S0334270000009036 |
0.328 |
|
1993 |
Kuang Y, Smith HL. Convergence in lotka-volterra-type delay systems without instantaneous feedbacks Proceedings of the Royal Society of Edinburgh: Section a Mathematics. 123: 45-58. DOI: 10.1017/S0308210500021235 |
0.307 |
|
1993 |
Kuang Y, Smith HL. Global Stability for Infinite Delay Lotka-Volterra Type Systems Journal of Differential Equations. 103: 221-246. DOI: 10.1006/Jdeq.1993.1048 |
0.302 |
|
1992 |
Kuang Y, Smith HL. Slowly oscillating periodic solutions of autonomous state-dependent delay equations Nonlinear Analysis. 19: 855-872. DOI: 10.1016/0362-546X(92)90055-J |
0.346 |
|
1991 |
Smith HL, Waltman P. The gradostat: A model of competition along a nutrient gradient. Microbial Ecology. 22: 207-226. PMID 24194337 DOI: 10.1007/Bf02540224 |
0.309 |
|
1991 |
Martin RH, Smith HL. Reaction-diffusion systems with time delays: monotonicity, invariance, comparison and convergence. Crelle's Journal. 413: 1-35. DOI: 10.1515/Crll.1991.413.1 |
0.302 |
|
1991 |
Smith HL. Periodic Tridiagonal Competitive and Cooperative Systems of Differential Equations Siam Journal On Mathematical Analysis. 22: 1102-1109. DOI: 10.1137/0522071 |
0.321 |
|
1991 |
Smith HL, Tang B, Waltman P. Competition in an n-Vessel Gradostat Siam Journal On Applied Mathematics. 51: 1451-1471. DOI: 10.1137/0151072 |
0.305 |
|
1991 |
Smith HL, Thieme HR. Strongly order preserving semiflows generated by functional differential equations Journal of Differential Equations. 93: 332-363. DOI: 10.1016/0022-0396(91)90016-3 |
0.363 |
|
1991 |
Hofbauer J, Mallet-Paret J, Smith HL. Stable periodic solutions for the hypercycle system Journal of Dynamics and Differential Equations. 3: 423-436. DOI: 10.1007/Bf01049740 |
0.334 |
|
1991 |
Kuang Y, Smith HL, Martin RH. Global stability for infinite-delay, dispersive Lotka-Volterra systems: Weakly interacting populations in nearly identical patches Journal of Dynamics and Differential Equations. 3: 339-360. DOI: 10.1007/Bf01049736 |
0.307 |
|
1990 |
Smith HL, Thieme HR. Quasi Convergence and Stability for Strongly Order-Preserving Semiflows Siam Journal On Mathematical Analysis. 21: 673-692. DOI: 10.1137/0521036 |
0.343 |
|
1990 |
Martin RH, Smith HL. Abstract functional differential equations and reaction-diffusion systems Transactions of the American Mathematical Society. 321: 1-44. DOI: 10.1090/S0002-9947-1990-0967316-X |
0.319 |
|
1990 |
Smith HL, Thieme HR. Monotone semiflows in scalar non-quasi-monotone functional differential equations Journal of Mathematical Analysis and Applications. 150: 289-306. DOI: 10.1016/0022-247X(90)90105-O |
0.315 |
|
1989 |
Smith H. Competing subcommunities of mutualists Computers & Mathematics With Applications. 18: 949-957. DOI: 10.1016/0898-1221(89)90013-8 |
0.311 |
|
1988 |
Smith HL. Systems of Ordinary Differential Equations Which Generate an Order Preserving Flow. A Survey of Results Siam Review. 30: 87-113. DOI: 10.1137/1030003 |
0.312 |
|
1987 |
Smith H. Oscillations and multiple steady states in a cyclic gene model with repression Journal of Mathematical Biology. 25: 169-190. PMID 3611980 DOI: 10.1007/Bf00276388 |
0.312 |
|
1986 |
Smith HL. Periodic Solutions of Periodic Competitive and Cooperative Systems Siam Journal On Mathematical Analysis. 17: 1289-1318. DOI: 10.1137/0517091 |
0.332 |
|
1986 |
Smith HL. Competing Subcommunities of Mutualists and a Generalized Kamke Theorem Siam Journal On Applied Mathematics. 46: 856-874. DOI: 10.1137/0146052 |
0.329 |
|
1986 |
Smith HL. On the Asymptotic Behavior of a Class of Deterministic Models of Cooperating Species Siam Journal On Applied Mathematics. 46: 368-375. DOI: 10.1137/0146025 |
0.316 |
|
1986 |
Smith HL. Periodic competitive differential equations and the discrete dynamics of competitive maps Journal of Differential Equations. 64: 165-194. DOI: 10.1016/0022-0396(86)90086-0 |
0.308 |
|
1986 |
Smith HL. Periodic orbits of competitive and cooperative systems Journal of Differential Equations. 65: 361-373. DOI: 10.1016/0022-0396(86)90024-0 |
0.325 |
|
1984 |
Schwartz IB, Smith HL. Infinite subharmonic bifurcation in an SEIR epidemic model. Journal of Mathematical Biology. 18: 233-53. PMID 6663207 DOI: 10.1007/Bf00276090 |
0.359 |
|
1983 |
Smith HL. Multiple stable subharmonics for a periodic epidemic model. Journal of Mathematical Biology. 17: 179-90. PMID 6886570 DOI: 10.1007/Bf00305758 |
0.301 |
|
1983 |
Smith H. Hopf Bifurcation in a System of Functional Equations Modeling the Spread of an Infectious Disease Siam Journal On Applied Mathematics. 43: 370-385. DOI: 10.1137/0143025 |
0.367 |
|
1982 |
Smith HL. The Interaction of Steady State and Hopf Bifurcations in a Two-Predator–One-Prey Competition Model Siam Journal On Applied Mathematics. 42: 27-43. DOI: 10.1137/0142003 |
0.351 |
|
1981 |
Smith HL. Competitive Coexistence in an Oscillating Chemostat Siam Journal On Applied Mathematics. 40: 498-522. DOI: 10.1137/0140042 |
0.3 |
|
1978 |
Smith H. Periodic solutions for a class of epidemic equations Journal of Mathematical Analysis and Applications. 64: 467-479. DOI: 10.1016/0022-247X(78)90055-0 |
0.325 |
|
1977 |
Smith HL. On periodic solutions of a delay integral equation modelling epidemics. Journal of Mathematical Biology. 4: 69-80. PMID 845513 DOI: 10.1007/Bf00276353 |
0.315 |
|
1977 |
Gatica J, Smith HL. Fixed point techniques in a cone with applications Journal of Mathematical Analysis and Applications. 61: 58-71. DOI: 10.1016/0022-247X(77)90143-3 |
0.32 |
|
Show low-probability matches. |