Year |
Citation |
Score |
2024 |
Chen See JR, Leister J, Wright JR, Kruse PI, Khedekar MV, Besch CE, Kumamoto CA, Madden GR, Stewart DB, Lamendella R. infection is associated with differences in transcriptionally active microbial communities. Frontiers in Microbiology. 15: 1398018. PMID 38680911 DOI: 10.3389/fmicb.2024.1398018 |
0.301 |
|
2023 |
Romo JA, Tomihiro M, Kumamoto CA. Pre-colonization with the fungus exacerbates infection by the bacterial pathogen in a murine model. Msphere. 8: e0012223. PMID 37358292 DOI: 10.1128/msphere.00122-23 |
0.315 |
|
2022 |
Romo JA, Kumamoto CA. Characterization of the Effects of Candida Gastrointestinal Colonization on Clostridioides difficile Infection in a Murine Model. Methods in Molecular Biology (Clifton, N.J.). 2542: 271-285. PMID 36008672 DOI: 10.1007/978-1-0716-2549-1_20 |
0.314 |
|
2020 |
Markey L, Hooper A, Melon LC, Baglot S, Hill MN, Maguire J, Kumamoto CA. Colonization with the commensal fungus Candida albicans perturbs the gut-brain axis through dysregulation of endocannabinoid signaling. Psychoneuroendocrinology. 121: 104808. PMID 32739746 DOI: 10.1016/J.Psyneuen.2020.104808 |
0.327 |
|
2020 |
Romo JA, Markey L, Kumamoto CA. Lipid Species in the GI Tract are Increased by the Commensal Fungus and Decrease the Virulence of . Journal of Fungi (Basel, Switzerland). 6. PMID 32635220 DOI: 10.3390/Jof6030100 |
0.35 |
|
2020 |
Kumamoto CA, Gresnigt MS, Hube B. The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Current Opinion in Microbiology. 56: 7-15. PMID 32604030 DOI: 10.1016/J.Mib.2020.05.006 |
0.434 |
|
2020 |
Romo JA, Kumamoto CA. On Commensalism of . Journal of Fungi (Basel, Switzerland). 6. PMID 31963458 DOI: 10.3390/Jof6010016 |
0.381 |
|
2019 |
Burgain A, Pic É, Markey L, Tebbji F, Kumamoto CA, Sellam A. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. Plos Pathogens. 15: e1007823. PMID 31809527 DOI: 10.1371/Journal.Ppat.1007823 |
0.433 |
|
2019 |
Stewart D, Romo JA, Lamendella R, Kumamoto CA. The Role of Fungi in C. difficile Infection: An Underappreciated Transkingdom Interaction. Fungal Genetics and Biology : Fg & B. PMID 30978391 DOI: 10.1016/J.Fgb.2019.04.007 |
0.38 |
|
2019 |
Tscherner M, Giessen TW, Markey L, Kumamoto C, Silver PA. A synthetic system that senses Candida albicans and inhibits virulence factors. Acs Synthetic Biology. PMID 30608638 DOI: 10.1021/Acssynbio.8B00457 |
0.405 |
|
2018 |
Markey L, Shaban L, Green ER, Lemon KP, Mecsas J, Kumamoto CA. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes. 0. PMID 29667487 DOI: 10.1080/19490976.2018.1465158 |
0.45 |
|
2018 |
Shaban L, Chen Y, Fasciano AC, Lin Y, Kaplan DL, Kumamoto CA, Mecsas J. A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage. Anaerobe. PMID 29462695 DOI: 10.1016/J.Anaerobe.2018.02.006 |
0.318 |
|
2017 |
Regan H, Scaduto C, Hirakawa MP, Gunsalus K, Correia-Mesquita TO, Sun Y, Chen Y, Kumamoto CA, Bennett R, Whiteway M. Negative Regulation of Filamentous Growth in Candida albicans by Dig1p. Molecular Microbiology. PMID 28657681 DOI: 10.1111/Mmi.13738 |
0.795 |
|
2017 |
Herwald SE, Zucchi PC, Tan S, Kumamoto CA. The two transmembrane regions of Candida albicans Dfi1 contribute to its biogenesis. Biochemical and Biophysical Research Communications. PMID 28483525 DOI: 10.1016/J.Bbrc.2017.04.158 |
0.69 |
|
2016 |
Green ER, Clark S, Crimmins GT, Mack M, Kumamoto CA, Mecsas J. Fis Is Essential for Yersinia pseudotuberculosis Virulence and Protects against Reactive Oxygen Species Produced by Phagocytic Cells during Infection. Plos Pathogens. 12: e1005898. PMID 27689357 DOI: 10.1371/Journal.Ppat.1005898 |
0.445 |
|
2016 |
Gunsalus KT, Tornberg-Belanger SN, Matthan NR, Lichtenstein AH, Kumamoto CA. Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen Candida albicans. Msphere. 1. PMID 27303684 DOI: 10.1128/mSphere.00020-15 |
0.773 |
|
2016 |
Kumamoto CA. The Fungal Mycobiota: Small Numbers, Large Impacts. Cell Host & Microbe. 19: 750-1. PMID 27281565 DOI: 10.1016/J.Chom.2016.05.018 |
0.351 |
|
2016 |
Tyc KM, Herwald SE, Hogan JA, Pierce JV, Klipp E, Kumamoto CA. The game theory of Candida albicans colonization dynamics reveals host status-responsive gene expression. Bmc Systems Biology. 10: 20. PMID 26927448 DOI: 10.1186/S12918-016-0268-1 |
0.744 |
|
2016 |
Gunsalus KT, Kumamoto CA. Transcriptional Profiling of Candida albicans in the Host. Methods in Molecular Biology (Clifton, N.J.). 1356: 17-29. PMID 26519062 DOI: 10.1007/978-1-4939-3052-4_2 |
0.789 |
|
2015 |
Chen Y, Lin Y, Davis KM, Wang Q, Rnjak-Kovacina J, Li C, Isberg RR, Kumamoto CA, Mecsas J, Kaplan DL. Robust bioengineered 3D functional human intestinal epithelium. Scientific Reports. 5: 13708. PMID 26374193 DOI: 10.1038/Srep13708 |
0.33 |
|
2014 |
Strijbis K, Yilmaz OH, Dougan SK, Esteban A, Gröne A, Kumamoto CA, Ploegh HL. Intestinal colonization by Candida albicans alters inflammatory responses in Bruton's tyrosine kinase-deficient mice. Plos One. 9: e112472. PMID 25379804 DOI: 10.1371/Journal.Pone.0112472 |
0.359 |
|
2014 |
Tebbji F, Chen Y, Richard Albert J, Gunsalus KT, Kumamoto CA, Nantel A, Sellam A, Whiteway M. A functional portrait of Med7 and the mediator complex in Candida albicans. Plos Genetics. 10: e1004770. PMID 25375174 DOI: 10.1371/Journal.Pgen.1004770 |
0.807 |
|
2014 |
Herwald SE, Kumamoto CA. Candida albicans Niche Specialization: Features That Distinguish Biofilm Cells from Commensal Cells. Current Fungal Infection Reports. 8: 179-184. PMID 24839528 DOI: 10.1007/S12281-014-0178-X |
0.503 |
|
2014 |
Delattin N, De Brucker K, Craik DJ, Cheneval O, Fröhlich M, Veber M, Girandon L, Davis TR, Weeks AE, Kumamoto CA, Cos P, Coenye T, De Coninck B, Cammue BP, Thevissen K. Plant-derived decapeptide OSIP108 interferes with Candida albicans biofilm formation without affecting cell viability. Antimicrobial Agents and Chemotherapy. 58: 2647-56. PMID 24566179 DOI: 10.1128/Aac.01274-13 |
0.796 |
|
2013 |
Davis TR, Zucchi PC, Kumamoto CA. Calmodulin binding to Dfi1p promotes invasiveness of Candida albicans. Plos One. 8: e76239. PMID 24155896 DOI: 10.1371/Journal.Pone.0076239 |
0.762 |
|
2013 |
Pérez JC, Kumamoto CA, Johnson AD. Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit. Plos Biology. 11: e1001510. PMID 23526879 DOI: 10.1371/Journal.Pbio.1001510 |
0.48 |
|
2013 |
Pierce JV, Dignard D, Whiteway M, Kumamoto CA. Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes. Eukaryotic Cell. 12: 37-49. PMID 23125349 DOI: 10.1128/Ec.00236-12 |
0.779 |
|
2012 |
Pierce JV, Kumamoto CA. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. Mbio. 3: e00117-12. PMID 22829676 DOI: 10.1128/Mbio.00117-12 |
0.757 |
|
2012 |
Petrovska I, Kumamoto CA. Functional importance of the DNA binding activity of Candida albicans Czf1p. Plos One. 7: e39624. PMID 22761849 DOI: 10.1371/Journal.Pone.0039624 |
0.762 |
|
2012 |
Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, Govaert G, Bink A, Rozental S, de Groot PW, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, et al. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Molecular Microbiology. 84: 166-80. PMID 22384976 DOI: 10.1111/J.1365-2958.2012.08017.X |
0.78 |
|
2011 |
Bruzual I, Kumamoto CA. An MDR1 promoter allele with higher promoter activity is common in clinically isolated strains of Candida albicans. Molecular Genetics and Genomics : Mgg. 286: 347-57. PMID 21972105 DOI: 10.1007/S00438-011-0650-Z |
0.327 |
|
2011 |
Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Current Opinion in Microbiology. 14: 386-91. PMID 21802979 DOI: 10.1016/J.Mib.2011.07.015 |
0.314 |
|
2011 |
Kumamoto CA, Pierce JV. Immunosensing during colonization by Candida albicans: does it take a village to colonize the intestine? Trends in Microbiology. 19: 263-7. PMID 21354799 DOI: 10.1016/J.Tim.2011.01.009 |
0.743 |
|
2010 |
Sellam A, Hogues H, Askew C, Tebbji F, van Het Hoog M, Lavoie H, Kumamoto CA, Whiteway M, Nantel A. Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays. Genome Biology. 11: R71. PMID 20618945 DOI: 10.1186/Gb-2010-11-7-R71 |
0.321 |
|
2010 |
Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA. Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryotic Cell. 9: 1075-86. PMID 20435697 DOI: 10.1128/Ec.00034-10 |
0.783 |
|
2010 |
Zucchi PC, Davis TR, Kumamoto CA. A Candida albicans cell wall-linked protein promotes invasive filamentation into semi-solid medium. Molecular Microbiology. 76: 733-48. PMID 20384695 DOI: 10.1111/J.1365-2958.2010.07137.X |
0.756 |
|
2008 |
Kumamoto CA. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nature Reviews. Microbiology. 6: 667-73. PMID 18679170 DOI: 10.1038/Nrmicro1960 |
0.353 |
|
2008 |
Kumamoto CA. Niche-specific gene expression during C. albicans infection. Current Opinion in Microbiology. 11: 325-30. PMID 18579433 DOI: 10.1016/J.Mib.2008.05.008 |
0.47 |
|
2007 |
White SJ, Rosenbach A, Lephart P, Nguyen D, Benjamin A, Tzipori S, Whiteway M, Mecsas J, Kumamoto CA. Self-regulation of Candida albicans population size during GI colonization. Plos Pathogens. 3: e184. PMID 18069889 DOI: 10.1371/Journal.Ppat.0030184 |
0.797 |
|
2007 |
Carruthers VB, Cotter PA, Kumamoto CA. Microbial pathogenesis: mechanisms of infectious disease. Cell Host & Microbe. 2: 214-9. PMID 18005739 DOI: 10.1016/J.Chom.2007.09.007 |
0.306 |
|
2007 |
Vinces MD, Kumamoto CA. The morphogenetic regulator Czf1p is a DNA-binding protein that regulates white opaque switching in Candida albicans. Microbiology (Reading, England). 153: 2877-84. PMID 17768232 DOI: 10.1099/Mic.0.2007/005983-0 |
0.433 |
|
2007 |
Bruzual I, Riggle P, Hadley S, Kumamoto CA. Biofilm formation by fluconazole-resistant Candida albicans strains is inhibited by fluconazole. The Journal of Antimicrobial Chemotherapy. 59: 441-50. PMID 17261564 DOI: 10.1093/Jac/Dkl521 |
0.34 |
|
2007 |
Francetic O, Buddelmeijer N, Lewenza S, Kumamoto CA, Pugsley AP. Signal recognition particle-dependent inner membrane targeting of the PulG Pseudopilin component of a type II secretion system. Journal of Bacteriology. 189: 1783-93. PMID 17158657 DOI: 10.1128/Jb.01230-06 |
0.354 |
|
2006 |
Chen X, Kumamoto CA. A conserved G protein (Drg1p) plays a role in regulation of invasive filamentation in Candida albicans. Microbiology (Reading, England). 152: 3691-700. PMID 17159222 DOI: 10.1099/Mic.0.29246-0 |
0.476 |
|
2006 |
Riggle PJ, Kumamoto CA. Transcriptional regulation of MDR1, encoding a drug efflux determinant, in fluconazole-resistant Candida albicans strains through an Mcm1p binding site. Eukaryotic Cell. 5: 1957-68. PMID 17041190 DOI: 10.1128/Ec.00243-06 |
0.387 |
|
2006 |
LaFleur MD, Kumamoto CA, Lewis K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrobial Agents and Chemotherapy. 50: 3839-46. PMID 16923951 DOI: 10.1128/Aac.00684-06 |
0.412 |
|
2006 |
Vinces MD, Haas C, Kumamoto CA. Expression of the Candida albicans morphogenesis regulator gene CZF1 and its regulation by Efg1p and Czf1p. Eukaryotic Cell. 5: 825-35. PMID 16682460 DOI: 10.1128/Ec.5.5.825-835.2006 |
0.494 |
|
2005 |
Kumamoto CA, Vinces MD. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cellular Microbiology. 7: 1546-54. PMID 16207242 DOI: 10.1111/J.1462-5822.2005.00616.X |
0.509 |
|
2005 |
Kumamoto CA, Vinces MD. Alternative Candida albicans lifestyles: growth on surfaces. Annual Review of Microbiology. 59: 113-33. PMID 16153165 DOI: 10.1146/Annurev.Micro.59.030804.121034 |
0.425 |
|
2005 |
Kumamoto CA. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proceedings of the National Academy of Sciences of the United States of America. 102: 5576-81. PMID 15800048 DOI: 10.1073/Pnas.0407097102 |
0.457 |
|
2003 |
Schierle CF, Berkmen M, Huber D, Kumamoto C, Boyd D, Beckwith J. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. Journal of Bacteriology. 185: 5706-13. PMID 13129941 DOI: 10.1128/Jb.185.19.5706-5713.2003 |
0.302 |
|
2002 |
Giusani AD, Vinces M, Kumamoto CA. Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression. Genetics. 160: 1749-53. PMID 11973327 |
0.309 |
|
2000 |
Riggle PJ, Kumamoto CA. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. Journal of Bacteriology. 182: 4899-905. PMID 10940034 DOI: 10.1128/Jb.182.17.4899-4905.2000 |
0.355 |
|
2000 |
Woodbury RL, Topping TB, Diamond DL, Suciu D, Kumamoto CA, Hardy SJ, Randall LL. Complexes between protein export chaperone SecB and SecA. Evidence for separate sites on SecA providing binding energy and regulatory interactions. The Journal of Biological Chemistry. 275: 24191-8. PMID 10807917 DOI: 10.1074/Jbc.M002885200 |
0.353 |
|
2000 |
Andrutis KA, Riggle PJ, Kumamoto CA, Tzipori S. Intestinal Lesions Associated with Disseminated Candidiasis in an Experimental Animal Model Journal of Clinical Microbiology. 38: 2317-2323. DOI: 10.1128/Jcm.38.6.2317-2323.2000 |
0.392 |
|
1999 |
Brown DH, Giusani AD, Chen X, Kumamoto CA. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Molecular Microbiology. 34: 651-62. PMID 10564506 DOI: 10.1046/J.1365-2958.1999.01619.X |
0.515 |
|
1999 |
Volkert TL, Baleja JD, Kumamoto CA. A highly mobile C-terminal tail of the Escherichia coli protein export chaperone SecB. Biochemical and Biophysical Research Communications. 264: 949-54. PMID 10544036 DOI: 10.1006/Bbrc.1999.1590 |
0.392 |
|
1999 |
Riggle PJ, Andrutis KA, Chen X, Tzipori SR, Kumamoto CA. Invasive lesions containing filamentous forms produced by a Candida albicans mutant that is defective in filamentous growth in culture. Infection and Immunity. 67: 3649-52. PMID 10377153 DOI: 10.1128/Iai.67.7.3649-3652.1999 |
0.399 |
|
1999 |
Cook HA, Kumamoto CA. Overproduction of SecA suppresses the export defect caused by a mutation in the gene encoding the Escherichia coli export chaperone secB. Journal of Bacteriology. 181: 3010-7. PMID 10322000 DOI: 10.1128/Jb.181.10.3010-3017.1999 |
0.376 |
|
1999 |
Riggle PJ, Kumamoto CA. Genetic analysis in fungi using restriction-enzyme-mediated integration. Current Opinion in Microbiology. 1: 395-9. PMID 10066514 DOI: 10.1016/S1369-5274(98)80055-6 |
0.306 |
|
1998 |
Fekkes P, de Wit JG, van der Wolk JP, Kimsey HH, Kumamoto CA, Driessen AJ. Preprotein transfer to the Escherichia coli translocase requires the co-operative binding of SecB and the signal sequence to SecA. Molecular Microbiology. 29: 1179-90. PMID 9767586 DOI: 10.1046/J.1365-2958.1998.00997.X |
0.34 |
|
1997 |
Riggle PJ, Slobodkin IV, Brown DH, Hanson MP, Volkert TL, Kumamoto CA. Two transcripts, differing at their 3' ends, are produced from the Candida albicans SEC14 gene. Microbiology (Reading, England). 143: 3527-35. PMID 9387231 DOI: 10.1099/00221287-143-11-3527 |
0.481 |
|
1996 |
Francetic O, Kumamoto CA. Escherichia coli SecB stimulates export without maintaining export competence of ribose-binding protein signal sequence mutants. Journal of Bacteriology. 178: 5954-9. PMID 8830692 DOI: 10.1128/Jb.178.20.5954-5959.1996 |
0.339 |
|
1996 |
Brown DH, Slobodkin IV, Kumamoto CA. Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration. Molecular & General Genetics : Mgg. 251: 75-80. PMID 8628250 DOI: 10.1007/Bf02174347 |
0.381 |
|
1995 |
Kimsey HH, Dagarag MD, Kumamoto CA. Diverse effects of mutation on the activity of the Escherichia coli export chaperone SecB. The Journal of Biological Chemistry. 270: 22831-5. PMID 7559415 DOI: 10.1074/Jbc.270.39.22831 |
0.355 |
|
1993 |
McFarland L, Francetić O, Kumamoto CA. A mutation of Escherichia coli SecA protein that partially compensates for the absence of SecB. Journal of Bacteriology. 175: 2255-62. PMID 8468286 DOI: 10.1128/Jb.175.8.2255-2262.1993 |
0.324 |
|
1993 |
Kumamoto CA, Francetić O. Highly selective binding of nascent polypeptides by an Escherichia coli chaperone protein in vivo. Journal of Bacteriology. 175: 2184-8. PMID 8468278 DOI: 10.1128/Jb.175.8.2184-2188.1993 |
0.322 |
|
1993 |
Francetic O, Hanson MP, Kumamoto CA. prlA suppression of defective export of maltose-binding protein in secB mutants of Escherichia coli Journal of Bacteriology. 175: 4036-4044. PMID 8320219 DOI: 10.1128/Jb.175.13.4036-4044.1993 |
0.351 |
|
1991 |
Kumamoto CA. Molecular chaperones and protein translocation across the Escherichia coli inner membrane. Molecular Microbiology. 5: 19-22. PMID 1673017 DOI: 10.1111/J.1365-2958.1991.Tb01821.X |
0.31 |
|
1990 |
Kumamoto CA. SecB protein: a cytosolic export factor that associates with nascent exported proteins. Journal of Bioenergetics and Biomembranes. 22: 337-51. PMID 2202722 DOI: 10.1007/Bf00763171 |
0.335 |
|
1989 |
Kumamoto CA. Escherichia coli SecB protein associates with exported protein precursors in vivo. Proceedings of the National Academy of Sciences of the United States of America. 86: 5320-4. PMID 2664780 DOI: 10.1073/Pnas.86.14.5320 |
0.34 |
|
1989 |
Kumamoto CA, Nault AK. Characterization of the Escherichia coli protein-export gene secB. Gene. 75: 167-75. PMID 2656409 DOI: 10.1016/0378-1119(89)90393-4 |
0.339 |
|
1989 |
Gannon PM, Li P, Kumamoto CA. The mature portion of Escherichia coli maltose-binding protein (MBP) determines the dependence of MBP on SecB for export. Journal of Bacteriology. 171: 813-8. PMID 2644237 DOI: 10.1128/Jb.171.2.813-818.1989 |
0.368 |
|
1988 |
Trun NJ, Stader J, Lupas A, Kumamoto C, Silhavy TJ. Two cellular components, PrlA and SecB, that recognize different sequence determinants are required for efficient protein export Journal of Bacteriology. 170: 5928-5930. PMID 3056926 DOI: 10.1128/Jb.170.12.5928-5930.1988 |
0.3 |
|
1986 |
Strauch KL, Kumamoto CA, Beckwith J. Does secA mediate coupling between secretion and translation in Escherichia coli? Journal of Bacteriology. 166: 505-512. DOI: 10.1128/Jb.166.2.505-512.1986 |
0.337 |
|
1985 |
Kumamoto CA, Beckwith J. Evidence for specificity at an early step in protein export in Escherichia coli. Journal of Bacteriology. 163: 267-74. PMID 3891730 DOI: 10.1128/Jb.163.1.267-274.1985 |
0.357 |
|
1984 |
Brickman ER, Oliver DB, Garwin JL, Kumamoto C, Beckwith J. The use of extragenic suppressors to define genes involved in protein export in Escherichia coli Mgg Molecular &Amp; General Genetics. 196: 24-27. PMID 6384729 DOI: 10.1007/Bf00334087 |
0.367 |
|
1984 |
Kumamoto CA, Oliver DB, Beckwith J. Signal sequence mutations disrupt feedback between secretion of an exported protein and its synthesis in E. coli Nature. 308: 863-864. PMID 6371546 DOI: 10.1038/308863A0 |
0.333 |
|
1983 |
Kumamoto CA, Beckwith J. Mutations in a new gene, secB, cause defective protein localization in Escherichia coli. Journal of Bacteriology. 154: 253-60. PMID 6403503 DOI: 10.1128/Jb.154.1.253-260.1983 |
0.347 |
|
Show low-probability matches. |