Kuang Shen - Publications

Affiliations: 
2013 Chemistry California Institute of Technology, Pasadena, CA 

35 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Ivanova I, Shen K. Structures and Functions of the Human GATOR1 Complex. Sub-Cellular Biochemistry. 104: 269-294. PMID 38963491 DOI: 10.1007/978-3-031-58843-3_12  0.361
2023 Tettoni SD, Egri SB, Doxsey DD, Veinotte K, Ouch C, Chang JY, Song K, Xu C, Shen K. Structure of the Schizosaccharomyces pombe Gtr-Lam complex reveals evolutionary divergence of mTORC1-dependent amino acid sensing. Structure (London, England : 1993). PMID 37453417 DOI: 10.1016/j.str.2023.06.012  0.346
2022 Doxsey DD, Shen K. Purification and biochemical characterization of the Rag GTPase heterodimer. Methods in Enzymology. 675: 131-158. PMID 36220268 DOI: 10.1016/bs.mie.2022.07.007  0.317
2022 Egri S, Ouch C, Chou HT, Yu Z, Song K, Xu C, Shen K. Cryo-EM structures of the Human GATOR1-Rag-Ragulator Complex Reveal a Spatial-Constraint Regulated GAP Mechanism. Faseb Journal : Official Publication of the Federation of American Societies For Experimental Biology. PMID 35552818 DOI: 10.1096/fasebj.2022.36.S1.R1985  0.32
2022 Egri SB, Ouch C, Chou HT, Yu Z, Song K, Xu C, Shen K. Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism. Molecular Cell. PMID 35338845 DOI: 10.1016/j.molcel.2022.03.002  0.319
2021 Schlingmann KP, Jouret F, Shen K, Nigam A, Arjona F, Dafinger C, Houillier P, Jones D, Kleinerüschkamp F, Oh J, Godefroid N, Eltan M, Güran T, Burtey S, Parotte MC, et al. mTOR-Activating Mutations in RRAGD are Causative for Kidney Tubulopathy and Cardiomyopathy. Journal of the American Society of Nephrology : Jasn. PMID 34607910 DOI: 10.1681/ASN.2021030333  0.469
2020 Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C, Veinotte K, Egri SB, Schaffner SF, Lemieux JE, Munro JB, ... ... Shen K, et al. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell. PMID 32991842 DOI: 10.1016/J.Cell.2020.09.032  0.354
2019 Shen K, Rogala KB, Chou HT, Huang RK, Yu Z, Sabatini DM. Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex. Cell. PMID 31704029 DOI: 10.1016/J.Cell.2019.10.036  0.757
2019 Rasheed N, Lima TB, Mercaldi GF, Nascimento AFZ, Silva ALS, Righetto GL, Bar-Peled L, Shen K, Sabatini Shen DM, Gozzo FC, Aparicio R, Smetana JHC. C7orf59/Lamtor4 phosphorylation and structural flexibility modulate Ragulator assembly. Febs Open Bio. PMID 31314152 DOI: 10.1002/2211-5463.12700  0.307
2019 Shen K, Valenstein ML, Gu X, Sabatini DM. Arg78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases. The Journal of Biological Chemistry. PMID 30651352 DOI: 10.1074/Jbc.Ac119.007382  0.62
2018 Heo JM, Ordureau A, Swarup S, Paulo JA, Shen K, Sabatini DM, Harper JW. RAB7A phosphorylation by TBK1 promotes mitophagy via the PINK-PARKIN pathway. Science Advances. 4: eaav0443. PMID 30627666 DOI: 10.1126/Sciadv.Aav0443  0.599
2018 Shen K, Sabatini DM. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proceedings of the National Academy of Sciences of the United States of America. 115: 9545-9550. PMID 30181260 DOI: 10.1073/Pnas.1811727115  0.57
2018 Shen K, Huang RK, Brignole EJ, Condon KJ, Valenstein ML, Chantranupong L, Bomaliyamu A, Choe A, Hong C, Yu Z, Sabatini DM. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature. PMID 29590090 DOI: 10.1038/Nature26158  0.636
2017 Shen K, Choe A, Sabatini DM. Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability. Molecular Cell. 68: 821. PMID 29149601 DOI: 10.1016/j.molcel.2017.10.031  0.431
2017 Shen K, Choe A, Sabatini DM. Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability. Molecular Cell. PMID 29056322 DOI: 10.1016/J.Molcel.2017.09.026  0.576
2017 Hwang Fu YH, Huang WYC, Shen K, Groves JT, Miller T, Shan SO. Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting. Elife. 6. PMID 28753124 DOI: 10.1016/J.Bpj.2017.11.1170  0.634
2017 Wolfson RL, Chantranupong L, Wyant GA, Gu X, Orozco JM, Shen K, Condon KJ, Petri S, Kedir J, Scaria SM, Abu-Remaileh M, Frankel WN, Sabatini DM. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature. PMID 28199306 DOI: 10.1038/Nature21423  0.745
2017 Fu YH, Huang WYC, Shen K, Groves JT, Miller T, Shan S. Author response: Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting Elife. DOI: 10.7554/Elife.25885.026  0.673
2016 Chen Y, Shen K, Shan SO, Kou SC. Analyzing Single-Molecule Protein Transportation Experiments via Hierarchical Hidden Markov Models. Journal of the American Statistical Association. 111: 951-966. PMID 28943680 DOI: 10.1080/01621459.2016.1140050  0.591
2016 Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, Wang T, Harper JW, Gygi SP, Sabatini DM. The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell. PMID 26972053 DOI: 10.1016/J.Cell.2016.02.035  0.62
2015 Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science (New York, N.Y.). PMID 26449471 DOI: 10.1126/Science.Aab2674  0.618
2015 Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science (New York, N.Y.). 347: 188-94. PMID 25567906 DOI: 10.1126/Science.1257132  0.586
2014 Diaz-Muñoz G, Harchar TA, Lai TP, Shen KF, Hopper AK. Requirement of the spindle pole body for targeting and/or tethering proteins to the inner nuclear membrane. Nucleus (Austin, Tex.). 5: 352-66. PMID 25482124 DOI: 10.4161/Nucl.29793  0.341
2014 Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S, Jordan A, Beck AH, Sabatini DM. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discovery. 4: 554-63. PMID 24631838 DOI: 10.1158/2159-8290.CD-13-0929  0.636
2013 Voigts-Hoffmann F, Schmitz N, Shen K, Shan SO, Ataide SF, Ban N. The structural basis of FtsY recruitment and GTPase activation by SRP RNA. Molecular Cell. 52: 643-54. PMID 24211265 DOI: 10.1016/J.Molcel.2013.10.005  0.629
2013 Shen K, Wang Y, Hwang Fu YH, Zhang Q, Feigon J, Shan SO. Molecular mechanism of GTPase activation at the signal recognition particle (SRP) RNA distal end. The Journal of Biological Chemistry. 288: 36385-97. PMID 24151069 DOI: 10.1074/Jbc.M113.513614  0.604
2013 Jaru-Ampornpan P, Liang FC, Nisthal A, Nguyen TX, Wang P, Shen K, Mayo SL, Shan SO. Mechanism of an ATP-independent protein disaggregase: II. distinct molecular interactions drive multiple steps during aggregate disassembly. The Journal of Biological Chemistry. 288: 13431-45. PMID 23519468 DOI: 10.1074/Jbc.M113.462861  0.77
2013 Akopian D, Shen K, Zhang X, Shan SO. Signal recognition particle: an essential protein-targeting machine. Annual Review of Biochemistry. 82: 693-721. PMID 23414305 DOI: 10.1146/Annurev-Biochem-072711-164732  0.741
2013 Akopian D, Dalal K, Shen K, Duong F, Shan SO. SecYEG activates GTPases to drive the completion of cotranslational protein targeting. The Journal of Cell Biology. 200: 397-405. PMID 23401005 DOI: 10.1083/Jcb.201208045  0.74
2013 Shen K, Arslan S, Akopian D, Ha T, Shan S. Activated GTPase Movement on SRP RNA Drives Cotranslational Protein Targeting Biophysical Journal. 104: 419a. DOI: 10.1016/J.Bpj.2012.11.2334  0.727
2012 Shen K, Arslan S, Akopian D, Ha T, Shan SO. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature. 492: 271-5. PMID 23235881 DOI: 10.1038/Nature11726  0.74
2011 Shen K, Zhang X, Shan SO. Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting. Rna (New York, N.Y.). 17: 892-902. PMID 21460239 DOI: 10.1261/Rna.2610411  0.635
2011 Ataide SF, Schmitz N, Shen K, Ke A, Shan SO, Doudna JA, Ban N. The crystal structure of the signal recognition particle in complex with its receptor. Science (New York, N.Y.). 331: 881-6. PMID 21330537 DOI: 10.1126/Science.1196473  0.64
2010 Jaru-Ampornpan P, Shen K, Lam VQ, Ali M, Doniach S, Jia TZ, Shan SO. ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit. Nature Structural & Molecular Biology. 17: 696-702. PMID 20424608 DOI: 10.1038/Nsmb.1836  0.781
2010 Shen K, Shan SO. Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting. Proceedings of the National Academy of Sciences of the United States of America. 107: 7698-703. PMID 20385832 DOI: 10.1073/Pnas.1002968107  0.624
Show low-probability matches.