Year |
Citation |
Score |
2020 |
Goebel R, Sanfelice RG. A unifying convex analysis and switching system approach to consensus with undirected communication graphs Automatica. 111: 108598. DOI: 10.1016/J.Automatica.2019.108598 |
0.408 |
|
2019 |
Goebel R. Existence of optimal controls on hybrid time domains Nonlinear Analysis: Hybrid Systems. 31: 153-165. DOI: 10.1016/J.Nahs.2018.07.005 |
0.478 |
|
2019 |
Goebel R. A Lyapunov-like characterization of robustness of pointwise asymptotic stability for differential inclusions Ifac-Papersonline. 52: 251-255. DOI: 10.1016/J.Ifacol.2019.11.787 |
0.498 |
|
2018 |
Goebel R, Sanfelice RG. Pointwise Asymptotic Stability in a Hybrid System and Well-Posed Behavior Beyond Zeno Siam Journal On Control and Optimization. 56: 1358-1385. DOI: 10.1137/16M1082202 |
0.378 |
|
2017 |
Goebel R. Stability and robustness for saddle-point dynamics through monotone mappings Systems & Control Letters. 108: 16-22. DOI: 10.1016/J.Sysconle.2017.07.014 |
0.44 |
|
2017 |
Goebel R. Optimal control for pointwise asymptotic stability in a hybrid control system Automatica. 81: 397-402. DOI: 10.1016/J.Automatica.2017.04.021 |
0.506 |
|
2016 |
Goebel RK, Sanfelice RG. Notions and Sufficient Conditions for Pointwise Asymptotic Stability in Hybrid Systems Ifac-Papersonline. 49: 140-145. DOI: 10.1016/J.Ifacol.2016.10.153 |
0.586 |
|
2014 |
Goebel R. Robustness of stability through necessary and sufficient Lyapunov-like conditions for systems with a continuum of equilibria Systems and Control Letters. 65: 81-88. DOI: 10.1016/J.Sysconle.2013.12.014 |
0.525 |
|
2013 |
Goebel R. Lyapunov functions and duality for convex processes Siam Journal On Control and Optimization. 51: 3332-3350. DOI: 10.1137/120900174 |
0.548 |
|
2013 |
Barron EN, Goebel R, Jensen RR. Quasiconvex functions and nonlinear PDEs Transactions of the American Mathematical Society. 365: 4229-4255. DOI: 10.1090/S0002-9947-2013-05760-1 |
0.352 |
|
2012 |
Barron EN, Goebel R, Jensen RR. The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions Discrete and Continuous Dynamical Systems - Series B. 17: 1693-1706. DOI: 10.3934/Dcdsb.2012.17.1693 |
0.406 |
|
2012 |
Barron EN, Goebel R, Jensen RR. Functions which are quasiconvex under linear perturbations Siam Journal On Optimization. 22: 1089-1108. DOI: 10.1137/110843496 |
0.461 |
|
2012 |
Goebel R, Sanfelice RG, Teel AR. Hybrid dynamical systems: Modeling, stability, and robustness Hybrid Dynamical Systems: Modeling, Stability, and Robustness. 1-212. DOI: 10.1109/Mcs.2008.931718 |
0.479 |
|
2012 |
Goebel R, Hare W, Wang X. The optimal value and optimal solutions of the proximal average of convex functions Nonlinear Analysis, Theory, Methods and Applications. 75: 1290-1304. DOI: 10.1016/J.Na.2011.06.017 |
0.426 |
|
2011 |
Goebel R. Set-valued Lyapunov functions for difference inclusions Automatica. 47: 127-132. DOI: 10.1016/J.Automatica.2010.10.018 |
0.511 |
|
2010 |
Goebel R, Teel AR. Preasymptotic Stability and Homogeneous Approximations of Hybrid Dynamical Systems http://www.siam.org/journals/sirev/52-1/74979.html Siam Review. 52: 87-109. DOI: 10.1137/090749797 |
0.534 |
|
2009 |
Goebel R, Teel AR. Direct design of robustly asymptotically stabilizing hybrid feedback Esaim - Control, Optimisation and Calculus of Variations. 15: 205-213. DOI: 10.1051/Cocv:2008023 |
0.467 |
|
2009 |
Goebel R, Prieur C, Teel AR. Smooth patchy control Lyapunov functions Automatica. 45: 675-683. DOI: 10.1016/J.Automatica.2008.10.023 |
0.488 |
|
2008 |
Bauschke HH, Goebel R, Lucet Y, Wang X. The Proximal Average: Basic Theory Siam Journal On Optimization. 19: 766-785. DOI: 10.1137/070687542 |
0.437 |
|
2008 |
Cai C, Goebel R. Smooth Lyapunov Functions for Hybrid Systems Part II: (Pre)Asymptotically Stable Compact Sets Ieee Transactions On Automatic Control. 53: 734-748. DOI: 10.1109/Tac.2008.919257 |
0.54 |
|
2008 |
Sanfelice RG, Goebel R, Teel AR. Generalized solutions to hybrid dynamical systems Esaim - Control, Optimisation and Calculus of Variations. 14: 699-724. DOI: 10.1051/Cocv:2008008 |
0.445 |
|
2008 |
Goebel R, Sanfelice RG, Teel AR. Invariance principles for switching systems via hybrid systems techniques Systems and Control Letters. 57: 980-986. DOI: 10.1016/J.Sysconle.2008.06.002 |
0.481 |
|
2008 |
Cai C, Goebel R, Teel AR. Relaxation results for hybrid inclusions Set-Valued Analysis. 16: 733-757. DOI: 10.1007/S11228-007-0067-3 |
0.435 |
|
2007 |
Goebel R, Prieur C, Teel AR. RELAXED CHARACTERIZATIONS OF SMOOTH PATCHY CONTROL LYAPUNOV FUNCTIONS Ifac Proceedings Volumes. 40: 486-491. DOI: 10.3182/20070822-3-Za-2920.00080 |
0.47 |
|
2007 |
Sanfelice RG, Goebel R, Teel AR. Invariance principles for hybrid systems with connections to detectability and asymptotic stability Ieee Transactions On Automatic Control. 52: 2282-2297. DOI: 10.1109/Tac.2007.910684 |
0.512 |
|
2007 |
Prieur C, Goebel R, Teel AR. Hybrid Feedback Control and Robust Stabilization of Nonlinear Systems Ieee Transactions On Automatic Control. 52: 2103-2117. DOI: 10.1109/Tac.2007.908320 |
0.52 |
|
2007 |
Cai C, Teel AR, Goebel R. Smooth Lyapunov Functions for Hybrid Systems—Part I: Existence Is Equivalent to Robustness Ieee Transactions On Automatic Control. 52: 1264-1277. DOI: 10.1109/Tac.2007.900829 |
0.505 |
|
2007 |
Goebel R, Subbotin M. Continuous time linear quadratic regulator with control constraints via convex duality Ieee Transactions On Automatic Control. 52: 886-892. DOI: 10.1109/Tac.2007.895915 |
0.465 |
|
2006 |
Goebel R, Teel A, Hu T, Lin Z. Conjugate Convex Lyapunov Functions for Dual Linear Differential Inclusions Ieee Transactions On Automatic Control. 51: 661-666. DOI: 10.1109/Tac.2006.872764 |
0.507 |
|
2006 |
Goebel R, Teel AR. Solutions to hybrid inclusions via set and graphical convergence with stability theory applications Automatica. 42: 573-587. DOI: 10.1016/J.Automatica.2005.12.019 |
0.536 |
|
2005 |
Goebel R. Convex optimal control problems with smooth Hamiltonians Siam Journal On Control and Optimization. 43: 1787-1811. DOI: 10.1137/S0363012902411581 |
0.501 |
|
2005 |
Goebel R. Duality and uniqueness of convex solutions to stationary Hamilton-Jacobi equations Transactions of the American Mathematical Society. 357: 2187-2203. DOI: 10.1090/S0002-9947-05-03817-1 |
0.46 |
|
2005 |
Hu T, Goebel R, Teel AR, Lin Z. Conjugate Lyapunov functions for saturated linear systems Automatica. 41: 1949-1956. DOI: 10.1016/J.Automatica.2005.05.021 |
0.507 |
|
2004 |
Goebel R. Regularity of the Optimal Feedback and the Value Function in Convex Problems of Optimal Control Set-Valued Analysis. 12: 127-145. DOI: 10.1023/B:Svan.0000023404.46708.60 |
0.49 |
|
2004 |
Goebel R, Hespanha J, Teel AR, Cai C, Sanfelice R. Hybrid systems: Generalized solutions and robust stability Ifac Proceedings Volumes. 37: 1-12. DOI: 10.1016/S1474-6670(17)31194-1 |
0.489 |
|
2003 |
Borwein JM, Goebel R. Notions of relative interior in Banach spaces Journal of Mathematical Sciences. 115: 2542-2553. DOI: 10.1023/A:1022988116044 |
0.345 |
|
2003 |
Dačić DB, Goebel RK, Kokotović PV. A Factorization Approach to C1 Stabilization of Nonlinear Triangular Systems Proceedings of the Ieee Conference On Decision and Control. 5: 4705-4710. |
0.331 |
|
2002 |
Goebel R. Convexity in zero-sum differential games Siam Journal On Control and Optimization. 40: 1491-1504. DOI: 10.1137/S0363012999360737 |
0.432 |
|
Show low-probability matches. |