Erwin London - Publications

Chemistry Stony Brook University, Stony Brook, NY, United States 

195 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 London E. Ordered Domain (Raft) Formation in Asymmetric Vesicles and Its Induction upon Loss of Lipid Asymmetry in Artificial and Natural Membranes. Membranes. 12. PMID 36135889 DOI: 10.3390/membranes12090870  0.559
2022 Murata M, Matsumori N, Kinoshita M, London E. Molecular substructure of the liquid-ordered phase formed by sphingomyelin and cholesterol: sphingomyelin clusters forming nano-subdomains are a characteristic feature. Biophysical Reviews. 14: 655-678. PMID 35791389 DOI: 10.1007/s12551-022-00967-1  0.447
2022 Bag N, London E, Holowka DA, Baird BA. Transbilayer Coupling of Lipids in Cells Investigated by Imaging Fluorescence Correlation Spectroscopy. The Journal of Physical Chemistry. B. 126: 2325-2336. PMID 35294838 DOI: 10.1021/acs.jpcb.2c00117  0.475
2021 Kakuda S, Suresh P, Li G, London E. LOSS OF PLASMA MEMBRANE LIPID ASYMMETRY CAN INDUCE ORDERED DOMAIN (RAFT) FORMATION. Journal of Lipid Research. 100155. PMID 34843684 DOI: 10.1016/j.jlr.2021.100155  0.564
2021 Bryan AM, You JK, Li G, Kim J, Singh A, Morstein J, Trauner D, Pereira de Sá N, Normile TG, Farnoud AM, London E, Del Poeta M. Cholesterol and sphingomyelin are critical for Fcγ receptor-mediated phagocytosis of Cryptococcus neoformans by macrophages. The Journal of Biological Chemistry. 101411. PMID 34793834 DOI: 10.1016/j.jbc.2021.101411  0.522
2021 Li MH, Raleigh DP, London E. Preparation of Asymmetric Vesicles with Trapped CsCl Avoids Osmotic Imbalance, Non-Physiological External Solutions, and Minimizes Leakage. Langmuir : the Acs Journal of Surfaces and Colloids. PMID 34550698 DOI: 10.1021/acs.langmuir.1c01971  0.373
2021 Suresh P, London E. Using cyclodextrin-induced lipid substitution to study membrane lipid and ordered membrane domain (raft) function in cells. Biochimica Et Biophysica Acta. Biomembranes. 1864: 183774. PMID 34534531 DOI: 10.1016/j.bbamem.2021.183774  0.56
2021 Suresh P, Miller WT, London E. Phospholipid exchange shows insulin receptor activity is supported by both the propensity to form wide bilayers and ordered raft domains. The Journal of Biological Chemistry. 101010. PMID 34324831 DOI: 10.1016/j.jbc.2021.101010  0.486
2021 Kakuda S, Li B, London E. Preparation and utility of asymmetric lipid vesicles for studies of perfringolysin O-lipid interactions. Methods in Enzymology. 649: 253-276. PMID 33712189 DOI: 10.1016/bs.mie.2021.01.005  0.517
2020 Li B, London E. Preparation and Drug Entrapment Properties of Asymmetric Liposomes Containing Cationic and Anionic Lipids. Langmuir : the Acs Journal of Surfaces and Colloids. PMID 33070610 DOI: 10.1021/acs.langmuir.0c01968  0.45
2020 Yano Y, Hanashima S, Tsuchikawa H, Yasuda T, Slotte JP, London E, Murata M. Sphingomyelins and ent-Sphingomyelins Form Homophilic Nano-Subdomains within Liquid Ordered Domains. Biophysical Journal. PMID 32710823 DOI: 10.1016/J.Bpj.2020.06.028  0.548
2020 St Clair JW, Kakuda S, London E. Induction of Ordered Lipid Raft Domain Formation by Loss of Lipid Asymmetry. Biophysical Journal. 119: 483-492. PMID 32710822 DOI: 10.1016/J.Bpj.2020.06.030  0.567
2020 Li G, Wang Q, Kakuda S, London E. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids. Journal of Lipid Research. PMID 31964764 DOI: 10.1194/Jlr.Ra119000565  0.593
2020 Suresh P, London E, Miller WT. Modulation of Insulin Receptor Kinase Activity by Lipid Environment Biophysical Journal. 118: 241a. DOI: 10.1016/J.Bpj.2019.11.1417  0.308
2020 Li G, Kakuda S, Li B, Wang Q, London E. Nanodomains Persist to much Higher Temperatures than Large Scale Phase Separation in Giant Plasma Membrane Vesicles and Can Respond Differently to Alterations of Plasma Membrane Lipid Composition Biophysical Journal. 118: 226a-227a. DOI: 10.1016/J.Bpj.2019.11.1342  0.488
2019 Li G, Kakuda S, Suresh P, Canals D, Salamone S, London E. Replacing plasma membrane outer leaflet lipids with exogenous lipid without damaging membrane integrity. Plos One. 14: e0223572. PMID 31589646 DOI: 10.1371/Journal.Pone.0223572  0.575
2019 Huang Z, Zhang XS, Blaser MJ, London E. Helicobacter pylori lipids can form ordered membrane domains (rafts). Biochimica Et Biophysica Acta. Biomembranes. 183050. PMID 31449801 DOI: 10.1016/J.Bbamem.2019.183050  0.555
2019 London E. Membrane Structure-Function Insights from Asymmetric Lipid Vesicles. Accounts of Chemical Research. PMID 31386337 DOI: 10.1021/Acs.Accounts.9B00300  0.653
2019 Caputo GA, London E. Analyzing Transmembrane Protein and Hydrophobic Helix Topography by Dual Fluorescence Quenching. Methods in Molecular Biology (Clifton, N.J.). 2003: 351-368. PMID 31218625 DOI: 10.1007/978-1-4939-9512-7_15  0.759
2019 St Clair JW, London E. Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles. Biochimica Et Biophysica Acta. Biomembranes. PMID 30904407 DOI: 10.1016/J.Bbamem.2019.03.012  0.561
2019 Delle Bovi RJ, Kim J, Suresh P, London E, Miller WT. Sterol structure dependence of insulin receptor and insulin-like growth factor 1 receptor activation. Biochimica Et Biophysica Acta. Biomembranes. PMID 30682326 DOI: 10.1016/J.Bbamem.2019.01.009  0.615
2019 Li B, London E. Preparation of Asymmetric Charged Large Unilamellar Vesicles Containing Both Cationic and Anionic Lipids Biophysical Journal. 116: 80a. DOI: 10.1016/J.Bpj.2018.11.473  0.462
2019 Wang Q, London E. The Influence of Lipid Composition Upon Lipid Domain Formation in the Inner Leaflet of Asymmetric Vesicles Using Spin-Labeled Lipids Biophysical Journal. 116: 78a. DOI: 10.1016/J.Bpj.2018.11.464  0.548
2019 Li G, Kakuda S, Suresh P, London E. Efficient Replacement of Outer Leaflet Lipids of Plasma Membrane using Exogenous Lipids with Minimal Cell Damage Biophysical Journal. 116: 363a. DOI: 10.1016/J.Bpj.2018.11.1974  0.552
2018 Doktorova M, Heberle FA, Eicher B, Standaert RF, Katsaras J, London E, Pabst G, Marquardt D. Preparation of asymmetric phospholipid vesicles for use as cell membrane models. Nature Protocols. PMID 30190552 DOI: 10.1038/S41596-018-0033-6  0.774
2018 Wang Q, London E. Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles. Biophysical Journal. PMID 30082033 DOI: 10.1016/J.Bpj.2018.07.011  0.581
2018 Toledo A, Huang Z, Coleman JL, London E, Benach JL. Lipid rafts can form in the inner and outer membranes of Borrelia burgdorferi and have different properties and associated proteins. Molecular Microbiology. PMID 29377398 DOI: 10.1111/Mmi.13914  0.61
2018 Zhang X, London E, Raleigh DP. Sterol Structure Strongly Modulates Membrane-IAPP Interactions. Biochemistry. PMID 29373018 DOI: 10.1021/Acs.Biochem.7B01190  0.563
2018 Toledo A, Huang Z, Benach JL, London E. Analysis of Lipids and Lipid Rafts in Borrelia. Methods in Molecular Biology (Clifton, N.J.). 1690: 69-82. PMID 29032537 DOI: 10.1007/978-1-4939-7383-5_6  0.599
2018 Park S, Li B, London E. Expanding the Preparation of Asymmetric Lipid Vesicles to Additional Cyclodextrins and Cationic Lipids Biophysical Journal. 114: 96a. DOI: 10.1016/J.Bpj.2017.11.567  0.554
2017 Kim J, Fukuto HS, Brown DA, Bliska JB, London E. Effects of host cell sterol composition upon internalization of Yersinia pseudotuberculosis and clustered beta-1 integrin. The Journal of Biological Chemistry. PMID 29197826 DOI: 10.1074/Jbc.M117.811224  0.483
2017 Raj S, Nazemidashtarjandi S, Kim J, Joffe L, Zhang X, Singh A, Mor V, Desmarini D, Djordjevic J, Raleigh DP, Rodrigues ML, London E, Del Poeta M, Farnoud AM. Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans. Biochimica Et Biophysica Acta. PMID 28865794 DOI: 10.1016/J.Bbamem.2017.08.017  0.625
2017 Kim J, Singh A, DelPoeta M, Brown DA, London E. The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. Journal of Cell Science. PMID 28655854 DOI: 10.1242/Jcs.201731  0.551
2017 Marquardt D, Heberle FA, Miti T, Eicher B, London E, Katsaras J, Pabst G. (1)H NMR Shows Slow Phospholipid Flip-Flop in Gel and Fluid Bilayers. Langmuir : the Acs Journal of Surfaces and Colloids. PMID 28106399 DOI: 10.1021/Acs.Langmuir.6B04485  0.679
2017 Zhang X, St Clair JR, London E, Raleigh DP. Islet Amyloid Polypeptide Membrane Interactions: Effects of Membrane Composition. Biochemistry. PMID 28054763 DOI: 10.1021/Acs.Biochem.6B01016  0.558
2017 Kim J, Fukuto HS, Bliska JB, London E. Effects of Sterol Substitution in Plasma Membrane of Host Cell upon Internalization of Yersinia Pseudotuberculosis Biophysical Journal. 112: 92a. DOI: 10.1016/J.Bpj.2016.11.539  0.633
2017 St Clair JR, Wang Q, London E. Investigating Lipid Domain Formation in Asymmetric Large Unilamellar Vesicles using Förster Resonance Energy Transfer (FRET) Biophysical Journal. 112: 82a. DOI: 10.1016/J.Bpj.2016.11.489  0.464
2016 Huang Z, Toledo AM, Benach JL, London E. Ordered Membrane Domain-Forming Properties of the Lipids of Borrelia burgdorferi. Biophysical Journal. 111: 2666-2675. PMID 28002743 DOI: 10.1016/J.Bpj.2016.11.012  0.584
2016 Li G, Kim J, Huang Z, St Clair JR, Brown DA, London E. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proceedings of the National Academy of Sciences of the United States of America. PMID 27872310 DOI: 10.1073/Pnas.1610705113  0.693
2016 LeBarron J, London E. Highly hydrophilic segments attached to hydrophobic peptides translocate rapidly across membranes. Langmuir : the Acs Journal of Surfaces and Colloids. PMID 27649909 DOI: 10.1021/Acs.Langmuir.6B02597  0.573
2016 London E. New Insights into How Cholesterol and Unsaturation Control Lipid Domain Formation. Biophysical Journal. 111: 465-6. PMID 27508431 DOI: 10.1016/J.Bpj.2016.06.037  0.537
2016 LeBarron J, London E. Effect of lipid composition and amino acid sequence upon transmembrane peptide-accelerated lipid transleaflet diffusion (flip-flop). Biochimica Et Biophysica Acta. PMID 27131444 DOI: 10.1016/J.Bbamem.2016.04.011  0.454
2016 Heberle FA, Marquardt D, Doktorova M, Geier B, Standaert RF, Heftberger P, Kollmitzer B, Nickels JD, Dick RA, Feigenson GW, Katsaras J, London E, Pabst G. Subnanometer Structure of an Asymmetric Model Membrane: Interleaflet Coupling Influences Domain Properties. Langmuir : the Acs Journal of Surfaces and Colloids. 32: 5195-200. PMID 27128636 DOI: 10.1021/Acs.Langmuir.5B04562  0.833
2016 Huang Z, London E. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria. Chemistry and Physics of Lipids. PMID 26964703 DOI: 10.1016/J.Chemphyslip.2016.03.002  0.606
2016 St Clair J, Wang Q, London E. Improved Methods for Preparing Asymmetric Vesicles using Methyl-Alpha-Cyclodextrin Biophysical Journal. 110: 86a. DOI: 10.1016/J.Bpj.2015.11.520  0.579
2016 Hyun Kim J, Singh A, Del Poeta M, Brown D, London E. Effects of Sterol Structure and Sterol Ability to form Ordered Membrane Domains upon Cellular Endocytosis Biophysical Journal. 110: 595a. DOI: 10.1016/J.Bpj.2015.11.3176  0.63
2016 Huang Z, London E, Benach JL, Toledo A. How Lipid Composition Controls Ordered Membrane Domain (“Raft”) Formation in Membranes of Pathogenic Bacteria Biophysical Journal. 110: 583a-584a. DOI: 10.1016/J.Bpj.2015.11.3118  0.606
2016 London E, Brown DA, Huang Z, Kim J, Li G, St Clair J, Wang Q. Lipid Structure and Control of Membrane Ordered Domain Formation And Size by Lipid Composition and Asymmetry in Vitro and in Vivo Biophysical Journal. 110: 342a-343a. DOI: 10.1016/J.Bpj.2015.11.1843  0.736
2015 Pathak P, London E. The Effect of Membrane Lipid Composition on the Formation of Lipid Ultrananodomains. Biophysical Journal. 109: 1630-8. PMID 26488654 DOI: 10.1016/J.Bpj.2015.08.029  0.778
2015 Farnoud AM, Toledo AM, Konopka JB, Del Poeta M, London E. Raft-like membrane domains in pathogenic microorganisms. Current Topics in Membranes. 75: 233-68. PMID 26015285 DOI: 10.1016/Bs.Ctm.2015.03.005  0.567
2015 London E. Membrane fusion: A new role for lipid domains? Nature Chemical Biology. 11: 383-4. PMID 25978994 DOI: 10.1038/Nchembio.1812  0.549
2015 Lin Q, London E. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles. Biophysical Journal. 108: 2212-22. PMID 25954879 DOI: 10.1016/J.Bpj.2015.03.056  0.574
2015 Lin Q, Wang T, Li H, London E. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size. The Journal of Membrane Biology. 248: 517-27. PMID 25850715 DOI: 10.1007/S00232-015-9798-5  0.377
2015 Kim J, London E. Using Sterol Substitution to Probe the Role of Membrane Domains in Membrane Functions. Lipids. 50: 721-34. PMID 25804641 DOI: 10.1007/S11745-015-4007-Y  0.705
2015 Kohno M, Ghahremani DG, Morales AM, Robertson CL, Ishibashi K, Morgan AT, Mandelkern MA, London ED. Risk-taking behavior: dopamine D2/D3 receptors, feedback, and frontolimbic activity. Cerebral Cortex (New York, N.Y. : 1991). 25: 236-45. PMID 23966584 DOI: 10.1093/Cercor/Bht218  0.403
2015 Kim JH, Brown D, London E. Antibody Induced PLAP Endocytosis is Dependent on the Structure and Amount of Sterols in Cellular Plasma Membrane Biophysical Journal. 108: 100a. DOI: 10.1016/J.Bpj.2014.11.573  0.57
2014 Toledo A, Crowley JT, Coleman JL, LaRocca TJ, Chiantia S, London E, Benach JL. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi. Mbio. 5: e00899-14. PMID 24618252 DOI: 10.1128/Mbio.00899-14  0.574
2014 Lin Q, London E. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry. Plos One. 9: e87903. PMID 24489974 DOI: 10.1371/Journal.Pone.0087903  0.609
2014 Lin Q, London E. The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O). The Journal of Biological Chemistry. 289: 5467-78. PMID 24398685 DOI: 10.1074/Jbc.M113.533943  0.626
2013 Lin Q, London E. Transmembrane protein (perfringolysin o) association with ordered membrane domains (rafts) depends upon the raft-associating properties of protein-bound sterol. Biophysical Journal. 105: 2733-42. PMID 24359745 DOI: 10.1016/J.Bpj.2013.11.002  0.576
2013 Huang Z, London E. Effect of cyclodextrin and membrane lipid structure upon cyclodextrin-lipid interaction. Langmuir : the Acs Journal of Surfaces and Colloids. 29: 14631-8. PMID 24175704 DOI: 10.1021/La4031427  0.543
2013 Son M, London E. The dependence of lipid asymmetry upon polar headgroup structure. Journal of Lipid Research. 54: 3385-93. PMID 24101657 DOI: 10.1194/Jlr.M041749  0.598
2013 Su CY, London E, Sampson NS. Mapping peptide thiol accessibility in membranes using a quaternary ammonium isotope-coded mass tag (ICMT). Bioconjugate Chemistry. 24: 1235-47. PMID 23725486 DOI: 10.1021/Bc400171J  0.481
2013 LaRocca TJ, Pathak P, Chiantia S, Toledo A, Silvius JR, Benach JL, London E. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. Plos Pathogens. 9: e1003353. PMID 23696733 DOI: 10.1371/Journal.Ppat.1003353  0.778
2013 Chiantia S, London E. Sphingolipids and membrane domains: recent advances. Handbook of Experimental Pharmacology. 33-55. PMID 23579448 DOI: 10.1007/978-3-7091-1368-4_2  0.586
2013 Caputo GA, London E. Analyzing transmembrane protein and hydrophobic helix topography by dual fluorescence quenching. Methods in Molecular Biology (Clifton, N.J.). 974: 279-95. PMID 23404281 DOI: 10.1007/978-1-62703-275-9_13  0.764
2013 Crowley JT, Toledo AM, LaRocca TJ, Coleman JL, London E, Benach JL. Lipid exchange between Borrelia burgdorferi and host cells. Plos Pathogens. 9: e1003109. PMID 23326230 DOI: 10.1371/Journal.Ppat.1003109  0.51
2013 Lin Q, London E. Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O. The Journal of Biological Chemistry. 288: 1340-52. PMID 23150664 DOI: 10.1074/Jbc.M112.415596  0.538
2013 Son M, London E. The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure. Journal of Lipid Research. 54: 223-31. PMID 23093551 DOI: 10.1194/Jlr.M032722  0.507
2013 LeBarron J, London E. Several Asparagine Residues Flanking a Hydrophobic Helix are required to Block Interconversion between Transmembrane and Non-Transmembrane Configurations Biophysical Journal. 104: 593a. DOI: 10.1016/J.Bpj.2012.11.3296  0.495
2013 London E. Both Detergent Effects Upon Domain Size and Transmembrane Protein Length Effects Upon Domain Binding Suggest that Hydrophobic Mismatch can Control the Properties of Ordered Membrane Domains (“Rafts”) Biophysical Journal. 104: 10a. DOI: 10.1016/J.Bpj.2012.11.082  0.5
2012 Chiantia S, London E. Acyl chain length and saturation modulate interleaflet coupling in asymmetric bilayers: effects on dynamics and structural order. Biophysical Journal. 103: 2311-9. PMID 23283230 DOI: 10.1016/J.Bpj.2012.10.033  0.433
2012 Kaczocha M, Lin Q, Nelson LD, McKinney MK, Cravatt BF, London E, Deutsch DG. Anandamide externally added to lipid vesicles containing trapped fatty acid amide hydrolase (FAAH) is readily hydrolyzed in a sterol-modulated fashion. Acs Chemical Neuroscience. 3: 364-8. PMID 22860204 DOI: 10.1021/Cn300001W  0.56
2012 Chiantia S, Klymchenko AS, London E. A novel leaflet-selective fluorescence labeling technique reveals differences between inner and outer leaflets at high bilayer curvature. Biochimica Et Biophysica Acta. 1818: 1284-90. PMID 22349432 DOI: 10.1016/J.Bbamem.2012.02.005  0.492
2012 LeBarron J, London E. Effect of Hydrophobic Peptide Sequence upon Peptide-Dependent Acceleration of Lipid Flip-Flop Biophysical Journal. 102: 80a. DOI: 10.1016/J.Bpj.2011.11.464  0.503
2012 LaRocca TJ, Pathak P, Chiantia S, Silvius JR, Benach JL, London E. Lipid Raft Formation and Properties are Necessary and Sufficient to Explain the Properties of Membrane Domains in B. Burgdorferi and are Necessary for its Membrane Integrity Biophysical Journal. 102: 27a. DOI: 10.1016/J.Bpj.2011.11.174  0.741
2012 Lin Q, London E. The Effect of Hydrophobic Match on Transmembrane Protein Raft Affinity Biophysical Journal. 102: 295a-296a. DOI: 10.1016/J.Bpj.2011.11.1636  0.568
2012 Bhattacharjee D, London E. Control of Transverse Position of the Notch Transmembrane Helix by Amino Acid Sequence: Effect on γ-Secretase Mediated Cleavage and Activity of Notch Biophysical Journal. 102: 267a. DOI: 10.1016/J.Bpj.2011.11.1471  0.378
2012 Chiantia S, London E. Inter-Leaflet Coupling and Domain Formation in Asymmetric Giant Unilamellar Vesicles Biophysical Journal. 102: 295a. DOI: 10.1016/J.Bpj.2010.12.393  0.594
2011 Pathak P, London E. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Biophysical Journal. 101: 2417-25. PMID 22098740 DOI: 10.1016/J.Bpj.2011.08.059  0.744
2011 Cheng HT, London E. Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature. Biophysical Journal. 100: 2671-8. PMID 21641312 DOI: 10.1016/J.Bpj.2011.04.048  0.775
2011 Chiantia S, Schwille P, Klymchenko AS, London E. Asymmetric GUVs prepared by MβCD-mediated lipid exchange: an FCS study. Biophysical Journal. 100: L1-3. PMID 21190650 DOI: 10.1016/J.Bpj.2010.11.051  0.429
2011 Cheng HT, Megha, London E. Preparation and properties of asymmetric vesicles that mimic cell membranes. Effect upon lipid raft formation and transmembrane helix orientation (Journal of Biological Chemistry (2009) 284, (6079-6092)) Journal of Biological Chemistry. 286: 29441. DOI: 10.1074/jbc.A111.806077  0.847
2011 Pathak P, London E. Triton X −100 and TM Helices Increase Ordered Domain (lipid Raft) Size Biophysical Journal. 100: 337a. DOI: 10.1016/J.Bpj.2010.12.2046  0.745
2011 Son MJ, London E. Extending Techniques to Prepare Asymmetric Vesicles to Additional Lipid Compositions: Lipid Structure Affects the Ability to Maintain Lipid Asymmetry Biophysical Journal. 100: 337a. DOI: 10.1016/J.Bpj.2010.12.2045  0.742
2010 Nelson LD, Chiantia S, London E. Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity. Biophysical Journal. 99: 3255-63. PMID 21081073 DOI: 10.1016/J.Bpj.2010.09.028  0.571
2010 LaRocca TJ, Crowley JT, Cusack BJ, Pathak P, Benach J, London E, Garcia-Monco JC, Benach JL. Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host & Microbe. 8: 331-42. PMID 20951967 DOI: 10.1016/J.Chom.2010.09.001  0.718
2010 Lai B, Agarwal R, Nelson LD, Swaminathan S, London E. Low pH-induced pore formation by the T domain of botulinum toxin type A is dependent upon NaCl concentration. The Journal of Membrane Biology. 236: 191-201. PMID 20711775 DOI: 10.1007/S00232-010-9292-Z  0.519
2010 Shahidullah K, Krishnakumar SS, London E. The effect of hydrophilic substitutions and anionic lipids upon the transverse positioning of the transmembrane helix of the ErbB2 (neu) protein incorporated into model membrane vesicles. Journal of Molecular Biology. 396: 209-20. PMID 19931543 DOI: 10.1016/J.Jmb.2009.11.037  0.845
2010 Chiantia S, Schwille P, London E. Protein-Lipid Interaction and Domain Formation in Asymmetric Membranes Biophysical Journal. 98: 668a. DOI: 10.1016/J.Bpj.2009.12.3667  0.64
2009 Wang J, London E. The membrane topography of the diphtheria toxin T domain linked to the a chain reveals a transient transmembrane hairpin and potential translocation mechanisms. Biochemistry. 48: 10446-56. PMID 19780588 DOI: 10.1021/Bi9014665  0.655
2009 London E, Shahidullah K. Transmembrane vs. non-transmembrane hydrophobic helix topography in model and natural membranes. Current Opinion in Structural Biology. 19: 464-72. PMID 19665887 DOI: 10.1016/J.Sbi.2009.07.007  0.843
2009 Zhao G, London E. Strong correlation between statistical transmembrane tendency and experimental hydrophobicity scales for identification of transmembrane helices. The Journal of Membrane Biology. 229: 165-8. PMID 19521654 DOI: 10.1007/S00232-009-9178-0  0.461
2009 Cheng HT, Megha, London E. Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. The Journal of Biological Chemistry. 284: 6079-92. PMID 19129198 DOI: 10.1074/Jbc.M806077200  0.87
2009 Krishnakumar SS, London E. Corrigendum to "The Control of Transmembrane Helix Transverse Position in Membranes by Hydrophilic Residues" [J. Mol. Biol. 374 (2007) 1251-1269] (DOI:10.1016/j.jmb.2007.10.032) Journal of Molecular Biology. 390: 830-833. DOI: 10.1016/J.Jmb.2007.10.091  0.496
2009 Pathak P, London E. Unsaturated Phosphatidylcholine Acyl Chain Structure Affects the Size of Ordered Nanodomains (Lipid Rafts) Formed by Sphingomyelin and Cholesterol Biophysical Journal. 96: 363a. DOI: 10.1016/J.Bpj.2008.12.1955  0.735
2009 Shahidullah K, London E. Control of Hydrophobic Helix Topography in Membranes by Lipid Composition Biophysical Journal. 96: 1a-2a. DOI: 10.1016/J.Bpj.2008.12.011  0.863
2008 Shahidullah K, London E. Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids. Journal of Molecular Biology. 379: 704-18. PMID 18479706 DOI: 10.1016/J.Jmb.2008.04.026  0.861
2008 Lai B, Zhao G, London E. Behavior of the deeply inserted helices in diphtheria toxin T domain: helices 5, 8, and 9 interact strongly and promote pore formation, while helices 6/7 limit pore formation. Biochemistry. 47: 4565-74. PMID 18355037 DOI: 10.1021/Bi7025134  0.471
2008 Nelson LD, Johnson AE, London E. How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction. The Journal of Biological Chemistry. 283: 4632-42. PMID 18089559 DOI: 10.1074/Jbc.M709483200  0.609
2008 Zhao G, London E. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: Control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains (Biochemistry (2005) 44, 11, (4488-4498)) Biochemistry. 47: 5258. DOI: 10.1021/bi800558r  0.547
2008 Krishnakumar SS, London E. Corrigendum to "Effect of Sequence Hydrophobicity and Bilayer Width upon the Minimum Length Required for the Formation of Transmembrane Helices in Membranes" [J. Mol. Biol. 374 (2007), 671-687] (DOI:10.1016/j.jmb.2007.09.037) Journal of Molecular Biology. DOI: 10.1016/J.Jmb.2008.09.058  0.524
2007 Bakht O, London E. Detecting ordered domain formation (lipid rafts) in model membranes using Tempo. Methods in Molecular Biology (Clifton, N.J.). 398: 29-40. PMID 18214372 DOI: 10.1007/978-1-59745-513-8_4  0.841
2007 Krishnakumar SS, London E. The control of transmembrane helix transverse position in membranes by hydrophilic residues. Journal of Molecular Biology. 374: 1251-69. PMID 17997412 DOI: 10.1016/J.Jmb.2007.10.032  0.472
2007 Krishnakumar SS, London E. Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes. Journal of Molecular Biology. 374: 671-87. PMID 17950311 DOI: 10.1016/J.Jmb.2007.09.037  0.516
2007 Bakht O, Pathak P, London E. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms. Biophysical Journal. 93: 4307-18. PMID 17766350 DOI: 10.1529/Biophysj.107.114967  0.828
2007 London E. Using model membrane-inserted hydrophobic helices to study the equilibrium between transmembrane and nontransmembrane states. The Journal of General Physiology. 130: 229-32. PMID 17635963 DOI: 10.1085/Jgp.200709842  0.508
2007 Megha, Sawatzki P, Kolter T, Bittman R, London E. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts). Biochimica Et Biophysica Acta. 1768: 2205-12. PMID 17574203 DOI: 10.1016/J.Bbamem.2007.05.007  0.765
2007 Bakht O, Delgado J, Amat-Guerri F, Acuña AU, London E. The phenyltetraene lysophospholipid analog PTE-ET-18-OMe as a fluorescent anisotropy probe of liquid ordered membrane domains (lipid rafts) and ceramide-rich membrane domains. Biochimica Et Biophysica Acta. 1768: 2213-21. PMID 17573036 DOI: 10.1016/J.Bbamem.2007.05.008  0.832
2007 Fujita K, Krishnakumar SS, Franco D, Paul AV, London E, Wimmer E. Membrane topography of the hydrophobic anchor sequence of poliovirus 3A and 3AB proteins and the functional effect of 3A/3AB membrane association upon RNA replication. Biochemistry. 46: 5185-99. PMID 17417822 DOI: 10.1021/Bi6024758  0.533
2007 London E. Advances in understanding of lipid raft structure Gbm Annual Spring Meeting Mosbach 2007. 2007. DOI: 10.1240/sav_gbm_2007_m_001684  0.366
2006 Wu Z, Jakes KS, Samelson-Jones BS, Lai B, Zhao G, London E, Finkelstein A. Protein translocation by bacterial toxin channels: a comparison of diphtheria toxin and colicin Ia. Biophysical Journal. 91: 3249-56. PMID 16905612 DOI: 10.1529/Biophysj.106.085753  0.523
2006 Zhao G, London E. An amino acid "transmembrane tendency" scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity. Protein Science : a Publication of the Protein Society. 15: 1987-2001. PMID 16877712 DOI: 10.1110/Ps.062286306  0.417
2006 White D, Musse AA, Wang J, London E, Merrill AR. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain. The Journal of Biological Chemistry. 281: 32375-84. PMID 16854987 DOI: 10.1074/Jbc.M605880200  0.715
2006 Wang J, Rosconi MP, London E. Topography of the hydrophilic helices of membrane-inserted diphtheria toxin T domain: TH1-TH3 as a hydrophilic tether. Biochemistry. 45: 8124-34. PMID 16800637 DOI: 10.1021/Bi060587F  0.817
2006 Megha, Bakht O, London E. Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders. The Journal of Biological Chemistry. 281: 21903-13. PMID 16735517 DOI: 10.1074/Jbc.M600395200  0.823
2006 Musse AA, Wang J, Deleon GP, Prentice GA, London E, Merrill AR. Scanning the membrane-bound conformation of helix 1 in the colicin E1 channel domain by site-directed fluorescence labeling. The Journal of Biological Chemistry. 281: 885-95. PMID 16299381 DOI: 10.1074/Jbc.M511140200  0.705
2005 London E. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochimica Et Biophysica Acta. 1746: 203-20. PMID 16225940 DOI: 10.1016/J.Bbamcr.2005.09.002  0.605
2005 Ryndak MB, Chung H, London E, Bliska JB. Role of predicted transmembrane domains for type III translocation, pore formation, and signaling by the Yersinia pseudotuberculosis YopB protein. Infection and Immunity. 73: 2433-43. PMID 15784589 DOI: 10.1128/Iai.73.4.2433-2443.2005  0.47
2005 Zhao G, London E. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains. Biochemistry. 44: 4488-98. PMID 15766279 DOI: 10.1021/Bi047705O  0.593
2005 Shogomori H, Hammond AT, Ostermeyer-Fay AG, Barr DJ, Feigenson GW, London E, Brown DA. Palmitoylation and intracellular domain interactions both contribute to raft targeting of linker for activation of T cells. The Journal of Biological Chemistry. 280: 18931-42. PMID 15753089 DOI: 10.1074/Jbc.M500247200  0.725
2005 Hayashibara M, London E. Topography of diphtheria toxin A chain inserted into lipid vesicles. Biochemistry. 44: 2183-96. PMID 15697244 DOI: 10.1021/Bi0482093  0.579
2004 Rosconi MP, Zhao G, London E. Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: at low pH, helices 8 and 9 form a transmembrane hairpin but helices 5-7 form stable nonclassical inserted segments on the cis side of the bilayer. Biochemistry. 43: 9127-39. PMID 15248770 DOI: 10.1021/Bi049354J  0.844
2004 Caputo GA, London E. Position and ionization state of Asp in the core of membrane-inserted alpha helices control both the equilibrium between transmembrane and nontransmembrane helix topography and transmembrane helix positioning. Biochemistry. 43: 8794-806. PMID 15236588 DOI: 10.1021/Bi049696P  0.726
2004 Wang J, Megha, London E. Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. Biochemistry. 43: 1010-8. PMID 14744146 DOI: 10.1021/Bi035696Y  0.827
2004 Megha, London E. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. The Journal of Biological Chemistry. 279: 9997-10004. PMID 14699154 DOI: 10.1074/Jbc.M309992200  0.816
2003 Fastenberg ME, Shogomori H, Xu X, Brown DA, London E. Exclusion of a transmembrane-type peptide from ordered-lipid domains (rafts) detected by fluorescence quenching: extension of quenching analysis to account for the effects of domain size and domain boundaries. Biochemistry. 42: 12376-90. PMID 14567699 DOI: 10.1021/Bi034718D  0.55
2003 Lew S, Caputo GA, London E. The effect of interactions involving ionizable residues flanking membrane-inserted hydrophobic helices upon helix-helix interaction. Biochemistry. 42: 10833-42. PMID 12962508 DOI: 10.1021/Bi034929I  0.797
2003 Caputo GA, London E. Cumulative effects of amino acid substitutions and hydrophobic mismatch upon the transmembrane stability and conformation of hydrophobic alpha-helices. Biochemistry. 42: 3275-85. PMID 12641459 DOI: 10.1021/Bi026697D  0.714
2003 Caputo GA, London E. Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic alpha-helix locations within membranes. Biochemistry. 42: 3265-74. PMID 12641458 DOI: 10.1021/Bi026696L  0.768
2002 London E. Insights into lipid raft structure and formation from experiments in model membranes. Current Opinion in Structural Biology. 12: 480-6. PMID 12163071 DOI: 10.1016/S0959-440X(02)00351-2  0.628
2002 Hammond K, Caputo GA, London E. Interaction of the membrane-inserted diphtheria toxin T domain with peptides and its possible implications for chaperone-like T domain behavior. Biochemistry. 41: 3243-53. PMID 11863463 DOI: 10.1021/Bi011163I  0.741
2002 Rosconi MP, London E. Topography of helices 5-7 in membrane-inserted diphtheria toxin T domain: identification and insertion boundaries of two hydrophobic sequences that do not form a stable transmembrane hairpin. The Journal of Biological Chemistry. 277: 16517-27. PMID 11859081 DOI: 10.1074/Jbc.M200442200  0.836
2002 Dhanvantari S, Arnaoutova I, Snell CR, Steinbach PJ, Hammond K, Caputo GA, London E, Loh YP. Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion. Biochemistry. 41: 52-60. PMID 11772002 DOI: 10.1021/Bi015698N  0.782
2002 London E, Ladokhin AS. Measuring the depth of amino acid residues in membrane-inserted peptides by fluorescence quenching Current Topics in Membranes. 52: 89-115. DOI: 10.1016/S1063-5823(02)52006-8  0.527
2001 Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide Journal of Biological Chemistry. 276: 33540-33546. PMID 11432870 DOI: 10.1074/Jbc.M104776200  0.592
2000 London E, Brown DA. Insolubility of lipids in Triton X-100: Physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts) Biochimica Et Biophysica Acta - Biomembranes. 1508: 182-195. PMID 11090825 DOI: 10.1016/S0304-4157(00)00007-1  0.631
2000 London E, Brown DA, Xu X. Fluorescence quenching assay of sphingolipid/phospholipid phase separation in model membranes Methods in Enzymology. 312: 272-290. PMID 11070878 DOI: 10.1016/S0076-6879(00)12915-5  0.476
2000 Lew S, Ren J, London E. The effects of polar and/or ionizable residues in the core and flanking regions of hydrophobic helices on transmembrane conformation and oligomerization. Biochemistry. 39: 9632-40. PMID 10933779 DOI: 10.1021/Bi000694O  0.792
2000 Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts Journal of Biological Chemistry. 275: 17221-17224. PMID 10770957 DOI: 10.1074/Jbc.R000005200  0.541
2000 Xu X, London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation Biochemistry. 39: 843-849. PMID 10653627 DOI: 10.1021/Bi992543V  0.569
1999 Sharpe JC, Kachel K, London E. The effects of inhibitors upon pore formation by diphtheria toxin and diphtheria toxin T domain Journal of Membrane Biology. 171: 223-233. PMID 10501830 DOI: 10.1007/s002329900573  0.388
1999 Sharpe JC, London E. Diphtheria toxin forms pores of different sizes depending on its concentration in membranes: Probable relationship to oligomerization Journal of Membrane Biology. 171: 209-221. PMID 10501829 DOI: 10.1007/S002329900572  0.518
1999 Ren J, Kachel K, Kim H, Malenbaum SE, Collier RJ, London E. Interaction of diphtheria toxin T domain with molten globule-like proteins and its implications for translocation. Science (New York, N.Y.). 284: 955-7. PMID 10320374 DOI: 10.1126/Science.284.5416.955  0.478
1999 Ren J, Lew S, Wang J, London E. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Biochemistry. 38: 5905-12. PMID 10231543 DOI: 10.1021/Bi982942A  0.644
1999 Ren J, Sharpe JC, Collier RJ, London E. Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin. Biochemistry. 38: 976-84. PMID 9893993 DOI: 10.1021/Bi981576S  0.503
1998 Malenbaum SE, Collier RJ, London E. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Biochemistry. 37: 17915-22. PMID 9922159 DOI: 10.1021/bi981230h  0.469
1998 Brown DA, London E. Functions of lipid rafts in biological membranes Annual Review of Cell and Developmental Biology. 14: 111-136. PMID 9891780 DOI: 10.1146/Annurev.Cellbio.14.1.111  0.556
1998 Kachel K, Asuncion-Punzalan E, London E. The location of fluorescence probes with charged groups in model membranes Biochimica Et Biophysica Acta - Biomembranes. 1374: 63-76. PMID 9814853 DOI: 10.1016/S0005-2736(98)00126-6  0.551
1998 Malenbaum SE, Merrill AR, London E. Membrane-inserted colicin E1 channel domain: A topological survey by fluorescence quenching suggests that model membrane thickness affects membrane penetration Journal of Natural Toxins. 7: 269-290. PMID 9783264  0.529
1998 Kaiser RD, London E. Determination of the depth of BODIPY probes in model membranes by parallax analysis of fluorescence quenching Biochimica Et Biophysica Acta - Biomembranes. 1375: 13-22. PMID 9767081 DOI: 10.1016/S0005-2736(98)00127-8  0.459
1998 Kachel K, Ren J, Collier RJ, London E. Identifying transmembrane states and defining the membrane insertion boundaries of hydrophobic helices in membrane-inserted diphtheria toxin T domain. The Journal of Biological Chemistry. 273: 22950-6. PMID 9722516 DOI: 10.1074/Jbc.273.36.22950  0.556
1998 Brown DA, London E. Structure and origin of ordered lipid domains in biological membranes Journal of Membrane Biology. 164: 103-114. PMID 9662555 DOI: 10.1007/S002329900397  0.617
1998 Kaiser RD, London E. Location of diphenylhexatriene (DPH) and its derivatives within membranes: Comparison of different fluorescence quenching analyses of membrane depth Biochemistry. 37: 8180-8190. PMID 9609714 DOI: 10.1021/Bi980064A  0.483
1998 Asuncion-Punzalan E, Kachel K, London E. Groups with polar characteristics can locate at both shallow and deep locations in membranes: The behavior of dansyl and related probes Biochemistry. 37: 4603-4611. PMID 9521780 DOI: 10.1021/Bi9726234  0.428
1998 Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown DA. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains Journal of Biological Chemistry. 273: 1150-1157. PMID 9422781 DOI: 10.1074/Jbc.273.2.1150  0.597
1997 Wang Y, Kachel K, Pablo L, London E. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin Biochemistry. 36: 16300-16308. PMID 9405065 DOI: 10.1021/Bi971281Z  0.506
1997 Brown DA, London E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochemical and Biophysical Research Communications. 240: 1-7. PMID 9367871 DOI: 10.1006/Bbrc.1997.7575  0.594
1997 Wang Y, Malenbaum SE, Kachel K, Zhan H, Collier RJ, London E. Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width. The Journal of Biological Chemistry. 272: 25091-8. PMID 9312118 DOI: 10.1074/jbc.272.40.25091  0.506
1997 Lew S, London E. Simple procedure for reversed-phase high-performance liquid chromatographic purification of long hydrophobic peptides that form transmembrane helices. Analytical Biochemistry. 251: 113-6. PMID 9300091 DOI: 10.1006/Abio.1997.2232  0.73
1997 Ahmed SN, Brown DA, London E. On the Origin of Sphingolipid/Cholesterol-Rich Detergent-Insoluble Cell Membranes: Physiological Concentrations of Cholesterol and Sphingolipid Induce Formation of a Detergent-Insoluble, Liquid-Ordered Lipid Phase in Model Membranes Biochemistry. 36: 10944-10953. PMID 9283086 DOI: 10.1021/Bi971167G  0.483
1997 Ren J, Lew S, Wang Z, London E. Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry. 36: 10213-20. PMID 9254619 DOI: 10.1021/Bi9709295  0.549
1996 Paliwal R, London E. Comparison of the conformation, hydrophobicity, and model membrane interactions of diphtheria toxin to those of formaldehyde-treated toxin (diphtheria toxoid): formaldehyde stabilization of the native conformation inhibits changes that allow membrane insertion. Biochemistry. 35: 2374-9. PMID 8652579 DOI: 10.1021/Bi952469Q  0.46
1996 Tortorella D, Sesardic D, Dawes CS, London E. Immunochemical analysis shows all three domains of diphtheria toxin penetrate across model membranes. The Journal of Biological Chemistry. 270: 27446-52. PMID 7499201 DOI: 10.1074/Jbc.270.46.27446  0.492
1996 Tortorella D, Sesardic D, Dawes CS, London E. Immunochemical analysis of the structure of diphtheria toxin shows all three domains undergo structural changes at low pH. The Journal of Biological Chemistry. 270: 27439-45. PMID 7499200 DOI: 10.1074/Jbc.270.46.27439  0.378
1996 Kachel K, Asuncion-Punzalan E, London E. Anchoring of tryptophan and tyrosine analogs at the hydrocarbon-polar boundary in model membrane vesicles: parallax analysis of fluorescence quenching induced by nitroxide-labeled phospholipids. Biochemistry. 34: 15475-9. PMID 7492549 DOI: 10.1021/Bi00047A012  0.593
1995 Schroeder R, London E, Brown D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proceedings of the National Academy of Sciences of the United States of America. 91: 12130-4. PMID 7991596 DOI: 10.1073/Pnas.91.25.12130  0.567
1995 Asuncion-Punzalan E, London E. Control of the depth of molecules within membranes by polar groups: determination of the location of anthracene-labeled probes in model membranes by parallax analysis of nitroxide-labeled phospholipid induced fluorescence quenching. Biochemistry. 34: 11460-6. PMID 7547874 DOI: 10.1021/Bi00036A019  0.542
1994 Tortorella D, London E. Method for efficient pelleting of small unilamellar model membrane vesicles. Analytical Biochemistry. 217: 176-80. PMID 8203744 DOI: 10.1006/Abio.1994.1106  0.475
1994 London E. Analyzing the structure of polypeptides in membranes by fluorescence quenching Biophysical Journal. 67: 1368-1369. PMID 7819479 DOI: 10.1016/S0006-3495(94)80612-5  0.504
1993 Abrams FS, London E. Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry. 32: 10826-31. PMID 8399232 DOI: 10.1021/Bi00091A038  0.463
1993 Tortorella D, Ulbrandt ND, London E. Simple centrifugation method for efficient pelleting of both small and large unilamellar vesicles that allows convenient measurement of protein binding. Biochemistry. 32: 9181-8. PMID 8369285 DOI: 10.1021/Bi00086A025  0.517
1993 London E. How bacterial protein toxins enter cells; the role of partial unfolding in membrane translocation. Molecular Microbiology. 6: 3277-82. PMID 1484483 DOI: 10.1111/J.1365-2958.1992.Tb02195.X  0.471
1992 Abrams FS, Chattopadhyay A, London E. Determination of the location of fluorescent probes attached to fatty acids using parallax analysis of fluorescence quenching: effect of carboxyl ionization state and environment on depth. Biochemistry. 31: 5322-5327. PMID 1606156 DOI: 10.1021/Bi00138A011  0.574
1992 Abrams FS, London E. Calibration of the parallax fluorescence quenching method for determination of membrane penetration depth: refinement and comparison of quenching by spin-labeled and brominated lipids. Biochemistry. 31: 5312-22. PMID 1606155 DOI: 10.1021/Bi00138A010  0.499
1992 London E. Diphtheria toxin: membrane interaction and membrane translocation. Biochimica Et Biophysica Acta. 1113: 25-51. PMID 1550860 DOI: 10.1016/0304-4157(92)90033-7  0.512
1991 Jiang JX, Abrams FS, London E. Folding changes in membrane-inserted diphtheria toxin that may play important roles in its translocation Biochemistry. 30: 3857-3864. PMID 1850289 DOI: 10.1021/Bi00230A008  0.628
1990 Kieleczawa J, Zhao JM, Luongo CL, Dong LY, London E. The effect of high pH upon diphtheria toxin conformation and model membrane association: role of partial unfolding. Archives of Biochemistry and Biophysics. 282: 214-20. PMID 2241144 DOI: 10.1016/0003-9861(90)90107-A  0.355
1989 London E, Luongo CL. Domain-specific bias in arginine/lysine usage by protein toxins. Biochemical and Biophysical Research Communications. 160: 333-9. PMID 2496688 DOI: 10.1016/0006-291X(89)91660-4  0.393
1988 Zhao JM, London E. Localization of the active site of diphtheria toxin. Biochemistry. 27: 3398-403. PMID 3390439 DOI: 10.1021/Bi00409A041  0.308
1988 Chung LA, London E. Interaction of diphtheria toxin with model membranes. Biochemistry. 27: 1245-53. PMID 3365385 DOI: 10.1021/Bi00404A026  0.506
1988 Chattopadhyay A, London E. Spectroscopic and ionization properties of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids in model membranes Bba - Biomembranes. 938: 24-34. PMID 3337814 DOI: 10.1016/0005-2736(88)90118-6  0.689
1987 Chattopadhyay A, London E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry. 26: 39-45. PMID 3030403 DOI: 10.1021/Bi00375A006  0.608
1986 Blewitt MG, Chung LA, London E. Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration. Biochemistry. 24: 5458-64. PMID 4074708 DOI: 10.1021/Bi00341A027  0.325
1986 London E. A fluorescence-based detergent binding assay for protein hydrophobicity. Analytical Biochemistry. 154: 57-63. PMID 3706737 DOI: 10.1016/0003-2697(86)90495-1  0.341
1986 Zhao JM, London E. Similarity of the conformation of diphtheria toxin at high temperature to that in the membrane-penetrating low-pH state. Proceedings of the National Academy of Sciences of the United States of America. 83: 2002-6. PMID 3457371 DOI: 10.1073/Pnas.83.7.2002  0.301
1984 Blewitt MG, Zhao J, McKeever B, Sarma R, London E. Fluorescence characterization of the low pH-induced change in diphtheria toxin conformation: effect of salt. Biochemical and Biophysical Research Communications. 120: 286-290. PMID 6712698 DOI: 10.1016/0006-291X(84)91446-3  0.321
1984 Chattopadhyay A, London E. Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge Analytical Biochemistry. 139: 408-412. PMID 6476378 DOI: 10.1016/0003-2697(84)90026-5  0.526
1984 LONDON E, ZHAO J, CHATTOPADHYAY A, BLEWITT MG, MCKEEVER B, SARMA R. Fluorescence Quenching by a Brominated Detergent: Application to Diphtheria Toxin Structure Annals of the New York Academy of Sciences. 435: 558-559. DOI: 10.1111/J.1749-6632.1984.Tb13882.X  0.532
1982 London E. Investigation of membrane structure using fluorescence quenching by spin-labels. A review of recent studies. Molecular and Cellular Biochemistry. 45: 181-8. PMID 6289077 DOI: 10.1007/BF00230086  0.406
1982 Bayley H, Höjeberg B, Huang K, Khorana HG, Liao M, Lind C, London E. [10] Delipidation, renaturation, and reconstitution of bacteriorhodopsin Methods in Enzymology. 88: 74-81. DOI: 10.1016/0076-6879(82)88013-0  0.779
1981 London E, Feigenson GW. Fluorescence quenching in model membranes. 2. Determination of the local lipid environment of the calcium adenosinetriphosphatase from sarcoplasmic reticulum Biochemistry. 20: 1939-1948. PMID 6452901 DOI: 10.1021/Bi00510A033  0.718
1981 London E, Feigenson GW. Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid Biochemistry. 20: 1932-1938. PMID 6261807 DOI: 10.1021/Bi00510A032  0.673
1981 London E, Feigenson GW. Fluorescence quenching in model membranes An analysis of the local phospholipid environments of diphenylhexatriene and gramicidin A′ Bba - Biomembranes. 649: 89-97. DOI: 10.1016/0005-2736(81)90012-2  0.639
1978 London E, Feigenson GW. A convenient and sensitive fluorescence assay for phospholipid vesicles using diphenylhexatriene Analytical Biochemistry. 88: 203-211. PMID 696996 DOI: 10.1016/0003-2697(78)90412-8  0.585
Show low-probability matches.