Erwin London - Publications

Chemistry Stony Brook University, Stony Brook, NY, United States 

129 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Li G, Wang Q, Kakuda S, London E. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids. Journal of Lipid Research. PMID 31964764 DOI: 10.1194/jlr.RA119000565  1
2019 Li G, Kakuda S, Suresh P, Canals D, Salamone S, London E. Replacing plasma membrane outer leaflet lipids with exogenous lipid without damaging membrane integrity. Plos One. 14: e0223572. PMID 31589646 DOI: 10.1371/journal.pone.0223572  0.52
2019 Huang Z, Zhang XS, Blaser MJ, London E. Helicobacter pylori lipids can form ordered membrane domains (rafts). Biochimica Et Biophysica Acta. Biomembranes. 183050. PMID 31449801 DOI: 10.1016/j.bbamem.2019.183050  1
2019 Caputo GA, London E. Analyzing Transmembrane Protein and Hydrophobic Helix Topography by Dual Fluorescence Quenching. Methods in Molecular Biology (Clifton, N.J.). 2003: 351-368. PMID 31218625 DOI: 10.1007/978-1-4939-9512-7_15  1
2019 Delle Bovi RJ, Kim J, Suresh P, London E, Miller WT. Sterol structure dependence of insulin receptor and insulin-like growth factor 1 receptor activation. Biochimica Et Biophysica Acta. Biomembranes. PMID 30682326 DOI: 10.1016/j.bbamem.2019.01.009  1
2018 Doktorova M, Heberle FA, Eicher B, Standaert RF, Katsaras J, London E, Pabst G, Marquardt D. Preparation of asymmetric phospholipid vesicles for use as cell membrane models. Nature Protocols. PMID 30190552 DOI: 10.1038/s41596-018-0033-6  0.4
2018 Wang Q, London E. Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles. Biophysical Journal. PMID 30082033 DOI: 10.1016/j.bpj.2018.07.011  1
2018 Toledo A, Huang Z, Coleman JL, London E, Benach JL. Lipid rafts can form in the inner and outer membranes of Borrelia burgdorferi and have different properties and associated proteins. Molecular Microbiology. PMID 29377398 DOI: 10.1111/mmi.13914  1
2018 Zhang X, London E, Raleigh DP. Sterol Structure Strongly Modulates Membrane-IAPP Interactions. Biochemistry. PMID 29373018 DOI: 10.1021/acs.biochem.7b01190  0.56
2018 Toledo A, Huang Z, Benach JL, London E. Analysis of Lipids and Lipid Rafts in Borrelia. Methods in Molecular Biology (Clifton, N.J.). 1690: 69-82. PMID 29032537 DOI: 10.1007/978-1-4939-7383-5_6  1
2017 Kim J, Fukuto HS, Brown DA, Bliska JB, London E. Effects of host cell sterol composition upon internalization of Yersinia pseudotuberculosis and clustered beta-1 integrin. The Journal of Biological Chemistry. PMID 29197826 DOI: 10.1074/jbc.M117.811224  1
2017 Kim J, Singh A, DelPoeta M, Brown DA, London E. The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. Journal of Cell Science. PMID 28655854 DOI: 10.1242/jcs.201731  1
2017 Marquardt D, Heberle FA, Miti T, Eicher B, London E, Katsaras J, Pabst G. (1)H NMR Shows Slow Phospholipid Flip-Flop in Gel and Fluid Bilayers. Langmuir : the Acs Journal of Surfaces and Colloids. PMID 28106399 DOI: 10.1021/acs.langmuir.6b04485  0.4
2017 Zhang X, St Clair JR, London E, Raleigh DP. Islet Amyloid Polypeptide Membrane Interactions: Effects of Membrane Composition. Biochemistry. PMID 28054763 DOI: 10.1021/acs.biochem.6b01016  0.56
2016 Huang Z, Toledo AM, Benach JL, London E. Ordered Membrane Domain-Forming Properties of the Lipids of Borrelia burgdorferi. Biophysical Journal. 111: 2666-2675. PMID 28002743 DOI: 10.1016/j.bpj.2016.11.012  1
2016 Li G, Kim J, Huang Z, St Clair JR, Brown DA, London E. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proceedings of the National Academy of Sciences of the United States of America. PMID 27872310 DOI: 10.1073/pnas.1610705113  1
2016 Heberle FA, Marquardt D, Doktorova M, Geier B, Standaert RF, Heftberger P, Kollmitzer B, Nickels JD, Dick RA, Feigenson GW, Katsaras J, London E, Pabst G. Subnanometer Structure of an Asymmetric Model Membrane: Interleaflet Coupling Influences Domain Properties. Langmuir : the Acs Journal of Surfaces and Colloids. 32: 5195-200. PMID 27128636 DOI: 10.1021/acs.langmuir.5b04562  1
2016 Huang Z, London E. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria. Chemistry and Physics of Lipids. PMID 26964703 DOI: 10.1016/j.chemphyslip.2016.03.002  1
2015 Pathak P, London E. The Effect of Membrane Lipid Composition on the Formation of Lipid Ultrananodomains. Biophysical Journal. 109: 1630-8. PMID 26488654 DOI: 10.1016/j.bpj.2015.08.029  1
2015 Yu H, Takeuchi M, LeBarron J, Kantharia J, London E, Bakker H, Haltiwanger RS, Li H, Takeuchi H. Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nature Chemical Biology. PMID 26414444 DOI: 10.1038/nchembio.1927  1
2015 Farnoud AM, Toledo AM, Konopka JB, Del Poeta M, London E. Raft-like membrane domains in pathogenic microorganisms. Current Topics in Membranes. 75: 233-68. PMID 26015285 DOI: 10.1016/bs.ctm.2015.03.005  1
2015 London E. Membrane fusion: A new role for lipid domains? Nature Chemical Biology. 11: 383-4. PMID 25978994 DOI: 10.1038/nchembio.1812  1
2015 Lin Q, London E. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles. Biophysical Journal. 108: 2212-22. PMID 25954879 DOI: 10.1016/j.bpj.2015.03.056  1
2015 Lin Q, Wang T, Li H, London E. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size. The Journal of Membrane Biology. 248: 517-27. PMID 25850715 DOI: 10.1007/s00232-015-9798-5  1
2015 Kim J, London E. Using Sterol Substitution to Probe the Role of Membrane Domains in Membrane Functions. Lipids. 50: 721-34. PMID 25804641 DOI: 10.1007/s11745-015-4007-y  1
2014 Toledo A, Crowley JT, Coleman JL, LaRocca TJ, Chiantia S, London E, Benach JL. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi. Mbio. 5: e00899-14. PMID 24618252 DOI: 10.1128/mBio.00899-14  1
2014 Lin Q, London E. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry. Plos One. 9: e87903. PMID 24489974 DOI: 10.1371/journal.pone.0087903  1
2014 Lin Q, London E. The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O). The Journal of Biological Chemistry. 289: 5467-78. PMID 24398685 DOI: 10.1074/jbc.M113.533943  1
2013 Lin Q, London E. Transmembrane protein (perfringolysin o) association with ordered membrane domains (rafts) depends upon the raft-associating properties of protein-bound sterol. Biophysical Journal. 105: 2733-42. PMID 24359745 DOI: 10.1016/j.bpj.2013.11.002  1
2013 Huang Z, London E. Effect of cyclodextrin and membrane lipid structure upon cyclodextrin-lipid interaction. Langmuir : the Acs Journal of Surfaces and Colloids. 29: 14631-8. PMID 24175704 DOI: 10.1021/la4031427  1
2013 Son M, London E. The dependence of lipid asymmetry upon polar headgroup structure. Journal of Lipid Research. 54: 3385-93. PMID 24101657 DOI: 10.1194/jlr.M041749  1
2013 Su CY, London E, Sampson NS. Mapping peptide thiol accessibility in membranes using a quaternary ammonium isotope-coded mass tag (ICMT). Bioconjugate Chemistry. 24: 1235-47. PMID 23725486 DOI: 10.1021/bc400171j  1
2013 LaRocca TJ, Pathak P, Chiantia S, Toledo A, Silvius JR, Benach JL, London E. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. Plos Pathogens. 9: e1003353. PMID 23696733 DOI: 10.1371/journal.ppat.1003353  1
2013 Chiantia S, London E. Sphingolipids and membrane domains: recent advances. Handbook of Experimental Pharmacology. 33-55. PMID 23579448 DOI: 10.1007/978-3-7091-1368-4_2  1
2013 Caputo GA, London E. Analyzing transmembrane protein and hydrophobic helix topography by dual fluorescence quenching. Methods in Molecular Biology (Clifton, N.J.). 974: 279-95. PMID 23404281 DOI: 10.1007/978-1-62703-275-9_13  1
2013 Crowley JT, Toledo AM, LaRocca TJ, Coleman JL, London E, Benach JL. Lipid exchange between Borrelia burgdorferi and host cells. Plos Pathogens. 9: e1003109. PMID 23326230 DOI: 10.1371/journal.ppat.1003109  1
2013 Lin Q, London E. Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O. The Journal of Biological Chemistry. 288: 1340-52. PMID 23150664 DOI: 10.1074/jbc.M112.415596  1
2013 Son M, London E. The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure. Journal of Lipid Research. 54: 223-31. PMID 23093551 DOI: 10.1194/jlr.M032722  1
2012 Chiantia S, London E. Acyl chain length and saturation modulate interleaflet coupling in asymmetric bilayers: effects on dynamics and structural order. Biophysical Journal. 103: 2311-9. PMID 23283230 DOI: 10.1016/j.bpj.2012.10.033  1
2012 Kaczocha M, Lin Q, Nelson LD, McKinney MK, Cravatt BF, London E, Deutsch DG. Anandamide externally added to lipid vesicles containing trapped fatty acid amide hydrolase (FAAH) is readily hydrolyzed in a sterol-modulated fashion. Acs Chemical Neuroscience. 3: 364-8. PMID 22860204 DOI: 10.1021/cn300001w  1
2012 Chiantia S, Klymchenko AS, London E. A novel leaflet-selective fluorescence labeling technique reveals differences between inner and outer leaflets at high bilayer curvature. Biochimica Et Biophysica Acta. 1818: 1284-90. PMID 22349432 DOI: 10.1016/j.bbamem.2012.02.005  1
2012 Chen Y, London E, Munk M. Cryptography for the million Annual Conference On Innovation and Technology in Computer Science Education, Iticse. 384. DOI: 10.1145/2325296.2325401  0.4
2011 Pathak P, London E. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Biophysical Journal. 101: 2417-25. PMID 22098740 DOI: 10.1016/j.bpj.2011.08.059  1
2011 Cheng HT, London E. Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature. Biophysical Journal. 100: 2671-8. PMID 21641312 DOI: 10.1016/j.bpj.2011.04.048  1
2011 Chiantia S, Schwille P, Klymchenko AS, London E. Asymmetric GUVs prepared by MβCD-mediated lipid exchange: an FCS study. Biophysical Journal. 100: L1-3. PMID 21190650 DOI: 10.1016/j.bpj.2010.11.051  1
2011 Cheng HT, Megha, London E. Preparation and properties of asymmetric vesicles that mimic cell membranes. Effect upon lipid raft formation and transmembrane helix orientation (Journal of Biological Chemistry (2009) 284, (6079-6092)) Journal of Biological Chemistry. 286: 29441. DOI: 10.1074/jbc.A111.806077  1
2010 Nelson LD, Chiantia S, London E. Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity. Biophysical Journal. 99: 3255-63. PMID 21081073 DOI: 10.1016/j.bpj.2010.09.028  1
2010 LaRocca TJ, Crowley JT, Cusack BJ, Pathak P, Benach J, London E, Garcia-Monco JC, Benach JL. Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host & Microbe. 8: 331-42. PMID 20951967 DOI: 10.1016/j.chom.2010.09.001  1
2010 Lai B, Agarwal R, Nelson LD, Swaminathan S, London E. Low pH-induced pore formation by the T domain of botulinum toxin type A is dependent upon NaCl concentration. The Journal of Membrane Biology. 236: 191-201. PMID 20711775 DOI: 10.1007/s00232-010-9292-z  1
2010 Shahidullah K, Krishnakumar SS, London E. The effect of hydrophilic substitutions and anionic lipids upon the transverse positioning of the transmembrane helix of the ErbB2 (neu) protein incorporated into model membrane vesicles. Journal of Molecular Biology. 396: 209-20. PMID 19931543 DOI: 10.1016/j.jmb.2009.11.037  1
2009 Wang J, London E. The membrane topography of the diphtheria toxin T domain linked to the a chain reveals a transient transmembrane hairpin and potential translocation mechanisms. Biochemistry. 48: 10446-56. PMID 19780588 DOI: 10.1021/bi9014665  1
2009 London E, Shahidullah K. Transmembrane vs. non-transmembrane hydrophobic helix topography in model and natural membranes. Current Opinion in Structural Biology. 19: 464-72. PMID 19665887 DOI: 10.1016/  1
2009 Zhao G, London E. Strong correlation between statistical transmembrane tendency and experimental hydrophobicity scales for identification of transmembrane helices. The Journal of Membrane Biology. 229: 165-8. PMID 19521654 DOI: 10.1007/s00232-009-9178-0  1
2009 Cheng HT, Megha, London E. Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. The Journal of Biological Chemistry. 284: 6079-92. PMID 19129198 DOI: 10.1074/jbc.M806077200  1
2009 Krishnakumar SS, London E. Corrigendum to "The Control of Transmembrane Helix Transverse Position in Membranes by Hydrophilic Residues" [J. Mol. Biol. 374 (2007) 1251-1269] (DOI:10.1016/j.jmb.2007.10.032) Journal of Molecular Biology. 390: 830-833. DOI: 10.1016/j.jmb.2007.10.091  1
2008 Shahidullah K, London E. Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids. Journal of Molecular Biology. 379: 704-18. PMID 18479706 DOI: 10.1016/j.jmb.2008.04.026  1
2008 Lai B, Zhao G, London E. Behavior of the deeply inserted helices in diphtheria toxin T domain: helices 5, 8, and 9 interact strongly and promote pore formation, while helices 6/7 limit pore formation. Biochemistry. 47: 4565-74. PMID 18355037 DOI: 10.1021/bi7025134  1
2008 Drover VA, Nguyen DV, Bastie CC, Darlington YF, Abumrad NA, Pessin JE, London E, Sahoo D, Phillips MC. CD36 mediates both cellular uptake of very long chain fatty acids and their intestinal absorption in mice. The Journal of Biological Chemistry. 283: 13108-15. PMID 18332148 DOI: 10.1074/jbc.M708086200  1
2008 Nelson LD, Johnson AE, London E. How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction. The Journal of Biological Chemistry. 283: 4632-42. PMID 18089559 DOI: 10.1074/jbc.M709483200  1
2008 Zhao G, London E. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: Control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains (Biochemistry (2005) 44, 11, (4488-4498)) Biochemistry. 47: 5258. DOI: 10.1021/bi800558r  1
2008 Krishnakumar SS, London E. Corrigendum to "Effect of Sequence Hydrophobicity and Bilayer Width upon the Minimum Length Required for the Formation of Transmembrane Helices in Membranes" [J. Mol. Biol. 374 (2007), 671-687] (DOI:10.1016/j.jmb.2007.09.037) Journal of Molecular Biology. DOI: 10.1016/j.jmb.2008.09.058  1
2007 Bakht O, London E. Detecting ordered domain formation (lipid rafts) in model membranes using Tempo. Methods in Molecular Biology (Clifton, N.J.). 398: 29-40. PMID 18214372 DOI: 10.1007/978-1-59745-513-8_4  1
2007 Krishnakumar SS, London E. The control of transmembrane helix transverse position in membranes by hydrophilic residues. Journal of Molecular Biology. 374: 1251-69. PMID 17997412 DOI: 10.1016/j.jmb.2007.10.032  1
2007 Krishnakumar SS, London E. Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes. Journal of Molecular Biology. 374: 671-87. PMID 17950311 DOI: 10.1016/j.jmb.2007.09.037  1
2007 Bakht O, Pathak P, London E. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms. Biophysical Journal. 93: 4307-18. PMID 17766350 DOI: 10.1529/biophysj.107.114967  1
2007 London E. Using model membrane-inserted hydrophobic helices to study the equilibrium between transmembrane and nontransmembrane states. The Journal of General Physiology. 130: 229-32. PMID 17635963 DOI: 10.1085/jgp.200709842  1
2007 Megha, Sawatzki P, Kolter T, Bittman R, London E. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts). Biochimica Et Biophysica Acta. 1768: 2205-12. PMID 17574203 DOI: 10.1016/j.bbamem.2007.05.007  1
2007 Bakht O, Delgado J, Amat-Guerri F, Acuña AU, London E. The phenyltetraene lysophospholipid analog PTE-ET-18-OMe as a fluorescent anisotropy probe of liquid ordered membrane domains (lipid rafts) and ceramide-rich membrane domains. Biochimica Et Biophysica Acta. 1768: 2213-21. PMID 17573036 DOI: 10.1016/j.bbamem.2007.05.008  1
2007 Fujita K, Krishnakumar SS, Franco D, Paul AV, London E, Wimmer E. Membrane topography of the hydrophobic anchor sequence of poliovirus 3A and 3AB proteins and the functional effect of 3A/3AB membrane association upon RNA replication. Biochemistry. 46: 5185-99. PMID 17417822 DOI: 10.1021/bi6024758  1
2006 Wu Z, Jakes KS, Samelson-Jones BS, Lai B, Zhao G, London E, Finkelstein A. Protein translocation by bacterial toxin channels: a comparison of diphtheria toxin and colicin Ia. Biophysical Journal. 91: 3249-56. PMID 16905612 DOI: 10.1529/biophysj.106.085753  1
2006 Zhao G, London E. An amino acid "transmembrane tendency" scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity. Protein Science : a Publication of the Protein Society. 15: 1987-2001. PMID 16877712 DOI: 10.1110/ps.062286306  1
2006 White D, Musse AA, Wang J, London E, Merrill AR. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain. The Journal of Biological Chemistry. 281: 32375-84. PMID 16854987 DOI: 10.1074/jbc.M605880200  1
2006 Wang J, Rosconi MP, London E. Topography of the hydrophilic helices of membrane-inserted diphtheria toxin T domain: TH1-TH3 as a hydrophilic tether. Biochemistry. 45: 8124-34. PMID 16800637 DOI: 10.1021/bi060587f  1
2006 Megha, Bakht O, London E. Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders. The Journal of Biological Chemistry. 281: 21903-13. PMID 16735517 DOI: 10.1074/jbc.M600395200  1
2006 Musse AA, Wang J, Deleon GP, Prentice GA, London E, Merrill AR. Scanning the membrane-bound conformation of helix 1 in the colicin E1 channel domain by site-directed fluorescence labeling. The Journal of Biological Chemistry. 281: 885-95. PMID 16299381 DOI: 10.1074/jbc.M511140200  1
2005 London E. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochimica Et Biophysica Acta. 1746: 203-20. PMID 16225940 DOI: 10.1016/j.bbamcr.2005.09.002  1
2005 Ryndak MB, Chung H, London E, Bliska JB. Role of predicted transmembrane domains for type III translocation, pore formation, and signaling by the Yersinia pseudotuberculosis YopB protein. Infection and Immunity. 73: 2433-43. PMID 15784589 DOI: 10.1128/IAI.73.4.2433-2443.2005  1
2005 Zhao G, London E. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains. Biochemistry. 44: 4488-98. PMID 15766279 DOI: 10.1021/bi047705o  1
2005 Shogomori H, Hammond AT, Ostermeyer-Fay AG, Barr DJ, Feigenson GW, London E, Brown DA. Palmitoylation and intracellular domain interactions both contribute to raft targeting of linker for activation of T cells. The Journal of Biological Chemistry. 280: 18931-42. PMID 15753089 DOI: 10.1074/jbc.M500247200  1
2005 Hayashibara M, London E. Topography of diphtheria toxin A chain inserted into lipid vesicles. Biochemistry. 44: 2183-96. PMID 15697244 DOI: 10.1021/bi0482093  1
2004 Rosconi MP, Zhao G, London E. Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: at low pH, helices 8 and 9 form a transmembrane hairpin but helices 5-7 form stable nonclassical inserted segments on the cis side of the bilayer. Biochemistry. 43: 9127-39. PMID 15248770 DOI: 10.1021/bi049354j  1
2004 Caputo GA, London E. Position and ionization state of Asp in the core of membrane-inserted alpha helices control both the equilibrium between transmembrane and nontransmembrane helix topography and transmembrane helix positioning. Biochemistry. 43: 8794-806. PMID 15236588 DOI: 10.1021/bi049696p  1
2004 Wang J, Megha, London E. Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. Biochemistry. 43: 1010-8. PMID 14744146 DOI: 10.1021/bi035696y  1
2004 Megha, London E. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. The Journal of Biological Chemistry. 279: 9997-10004. PMID 14699154 DOI: 10.1074/jbc.M309992200  1
2003 Fastenberg ME, Shogomori H, Xu X, Brown DA, London E. Exclusion of a transmembrane-type peptide from ordered-lipid domains (rafts) detected by fluorescence quenching: extension of quenching analysis to account for the effects of domain size and domain boundaries. Biochemistry. 42: 12376-90. PMID 14567699 DOI: 10.1021/bi034718d  1
2003 Lew S, Caputo GA, London E. The effect of interactions involving ionizable residues flanking membrane-inserted hydrophobic helices upon helix-helix interaction. Biochemistry. 42: 10833-42. PMID 12962508 DOI: 10.1021/bi034929i  1
2003 Caputo GA, London E. Cumulative effects of amino acid substitutions and hydrophobic mismatch upon the transmembrane stability and conformation of hydrophobic alpha-helices. Biochemistry. 42: 3275-85. PMID 12641459 DOI: 10.1021/bi026697d  1
2003 Caputo GA, London E. Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic alpha-helix locations within membranes. Biochemistry. 42: 3265-74. PMID 12641458 DOI: 10.1021/bi026696l  1
2002 London E. Insights into lipid raft structure and formation from experiments in model membranes. Current Opinion in Structural Biology. 12: 480-6. PMID 12163071 DOI: 10.1016/S0959-440X(02)00351-2  1
2002 Hammond K, Caputo GA, London E. Interaction of the membrane-inserted diphtheria toxin T domain with peptides and its possible implications for chaperone-like T domain behavior. Biochemistry. 41: 3243-53. PMID 11863463 DOI: 10.1021/bi011163i  1
2002 Rosconi MP, London E. Topography of helices 5-7 in membrane-inserted diphtheria toxin T domain: identification and insertion boundaries of two hydrophobic sequences that do not form a stable transmembrane hairpin. The Journal of Biological Chemistry. 277: 16517-27. PMID 11859081 DOI: 10.1074/jbc.M200442200  1
2002 Dhanvantari S, Arnaoutova I, Snell CR, Steinbach PJ, Hammond K, Caputo GA, London E, Loh YP. Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion. Biochemistry. 41: 52-60. PMID 11772002 DOI: 10.1021/bi015698n  1
2002 London E, Ladokhin AS. Measuring the depth of amino acid residues in membrane-inserted peptides by fluorescence quenching Current Topics in Membranes. 52: 89-115.  1
2001 Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide Journal of Biological Chemistry. 276: 33540-33546. PMID 11432870 DOI: 10.1074/jbc.M104776200  1
2000 London E, Brown DA. Insolubility of lipids in Triton X-100: Physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts) Biochimica Et Biophysica Acta - Biomembranes. 1508: 182-195. PMID 11090825 DOI: 10.1016/S0304-4157(00)00007-1  1
2000 London E, Brown DA, Xu X. Fluorescence quenching assay of sphingolipid/phospholipid phase separation in model membranes Methods in Enzymology. 312: 272-290. PMID 11070878  1
2000 Lew S, Ren J, London E. The effects of polar and/or ionizable residues in the core and flanking regions of hydrophobic helices on transmembrane conformation and oligomerization. Biochemistry. 39: 9632-40. PMID 10933779 DOI: 10.1021/bi000694o  1
2000 Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts Journal of Biological Chemistry. 275: 17221-17224. PMID 10770957 DOI: 10.1074/jbc.R000005200  1
2000 Xu X, London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation Biochemistry. 39: 843-849. PMID 10653627 DOI: 10.1021/bi992543v  1
1999 Sharpe JC, Kachel K, London E. The effects of inhibitors upon pore formation by diphtheria toxin and diphtheria toxin T domain Journal of Membrane Biology. 171: 223-233. PMID 10501830 DOI: 10.1007/s002329900573  1
1999 Sharpe JC, London E. Diphtheria toxin forms pores of different sizes depending on its concentration in membranes: Probable relationship to oligomerization Journal of Membrane Biology. 171: 209-221. PMID 10501829 DOI: 10.1007/s002329900572  1
1999 Ren J, Kachel K, Kim H, Malenbaum SE, Collier RJ, London E. Interaction of diphtheria toxin T domain with molten globule-like proteins and its implications for translocation. Science (New York, N.Y.). 284: 955-7. PMID 10320374 DOI: 10.1126/science.284.5416.955  1
1999 Ren J, Lew S, Wang J, London E. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Biochemistry. 38: 5905-12. PMID 10231543 DOI: 10.1021/bi982942a  1
1999 Ren J, Sharpe JC, Collier RJ, London E. Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin. Biochemistry. 38: 976-84. PMID 9893993 DOI: 10.1021/bi981576s  1
1998 Malenbaum SE, Collier RJ, London E. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Biochemistry. 37: 17915-22. PMID 9922159 DOI: 10.1021/bi981230h  1
1998 Brown DA, London E. Functions of lipid rafts in biological membranes Annual Review of Cell and Developmental Biology. 14: 111-136. PMID 9891780 DOI: 10.1146/annurev.cellbio.14.1.111  1
1998 Kachel K, Asuncion-Punzalan E, London E. The location of fluorescence probes with charged groups in model membranes Biochimica Et Biophysica Acta - Biomembranes. 1374: 63-76. PMID 9814853 DOI: 10.1016/S0005-2736(98)00126-6  1
1998 Malenbaum SE, Merrill AR, London E. Membrane-inserted colicin E1 channel domain: A topological survey by fluorescence quenching suggests that model membrane thickness affects membrane penetration Journal of Natural Toxins. 7: 269-290. PMID 9783264  1
1998 Kaiser RD, London E. Determination of the depth of BODIPY probes in model membranes by parallax analysis of fluorescence quenching Biochimica Et Biophysica Acta - Biomembranes. 1375: 13-22. PMID 9767081 DOI: 10.1016/S0005-2736(98)00127-8  1
1998 Kachel K, Ren J, Collier RJ, London E. Identifying transmembrane states and defining the membrane insertion boundaries of hydrophobic helices in membrane-inserted diphtheria toxin T domain. The Journal of Biological Chemistry. 273: 22950-6. PMID 9722516 DOI: 10.1074/jbc.273.36.22950  1
1998 Brown DA, London E. Structure and origin of ordered lipid domains in biological membranes Journal of Membrane Biology. 164: 103-114. PMID 9662555 DOI: 10.1007/s002329900397  1
1998 Kaiser RD, London E. Location of diphenylhexatriene (DPH) and its derivatives within membranes: Comparison of different fluorescence quenching analyses of membrane depth Biochemistry. 37: 8180-8190. PMID 9609714 DOI: 10.1021/bi980064a  1
1998 Asuncion-Punzalan E, Kachel K, London E. Groups with polar characteristics can locate at both shallow and deep locations in membranes: The behavior of dansyl and related probes Biochemistry. 37: 4603-4611. PMID 9521780 DOI: 10.1021/bi9726234  1
1998 Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown DA. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains Journal of Biological Chemistry. 273: 1150-1157. PMID 9422781 DOI: 10.1074/jbc.273.2.1150  1
1997 Wang Y, Kachel K, Pablo L, London E. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin Biochemistry. 36: 16300-16308. PMID 9405065 DOI: 10.1021/bi971281z  1
1997 Wang Y, Malenbaum SE, Kachel K, Zhan H, Collier RJ, London E. Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width. The Journal of Biological Chemistry. 272: 25091-8. PMID 9312118 DOI: 10.1074/jbc.272.40.25091  0.56
1997 Lew S, London E. Simple procedure for reversed-phase high-performance liquid chromatographic purification of long hydrophobic peptides that form transmembrane helices. Analytical Biochemistry. 251: 113-6. PMID 9300091 DOI: 10.1006/abio.1997.2232  0.64
1997 Ren J, Lew S, Wang Z, London E. Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry. 36: 10213-20. PMID 9254619 DOI: 10.1021/bi9709295  0.64
1997 Sharoe JC, London E. Pore formation by whole diphtheria toxin and isolated translocation domain Faseb Journal. 11: A906.  1
1991 Jiang JX, Abrams FS, London E. Folding changes in membrane-inserted diphtheria toxin that may play important roles in its translocation Biochemistry. 30: 3857-3864. PMID 1850289 DOI: 10.1021/bi00230a008  1
1990 Kieleczawa J, Zhao JM, Luongo CL, Dong LY, London E. The effect of high pH upon diphtheria toxin conformation and model membrane association: role of partial unfolding. Archives of Biochemistry and Biophysics. 282: 214-20. PMID 2241144 DOI: 10.1016/0003-9861(90)90107-A  0.44
1989 London E, Luongo CL. Domain-specific bias in arginine/lysine usage by protein toxins. Biochemical and Biophysical Research Communications. 160: 333-9. PMID 2496688 DOI: 10.1016/0006-291X(89)91660-4  0.44
1988 Chattopadhyay A, London E. Spectroscopic and ionization properties of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids in model membranes Bba - Biomembranes. 938: 24-34. PMID 3337814 DOI: 10.1016/0005-2736(88)90118-6  1
1987 Chattopadhyay A, London E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry. 26: 39-45. PMID 3030403 DOI: 10.1021/bi00375a006  0.4
1984 Chattopadhyay A, London E. Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge Analytical Biochemistry. 139: 408-412. PMID 6476378 DOI: 10.1016/0003-2697(84)90026-5  1
1981 London E, Feigenson GW. Fluorescence quenching in model membranes. 2. Determination of the local lipid environment of the calcium adenosinetriphosphatase from sarcoplasmic reticulum Biochemistry. 20: 1939-1948. PMID 6452901 DOI: 10.1021/bi00510a033  1
1981 London E, Feigenson GW. Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid Biochemistry. 20: 1932-1938. PMID 6261807 DOI: 10.1021/bi00510a032  1
1981 London E, Feigenson GW. Fluorescence quenching in model membranes An analysis of the local phospholipid environments of diphenylhexatriene and gramicidin A′ Bba - Biomembranes. 649: 89-97. DOI: 10.1016/0005-2736(81)90012-2  1
1978 London E, Feigenson GW. A convenient and sensitive fluorescence assay for phospholipid vesicles using diphenylhexatriene Analytical Biochemistry. 88: 203-211. PMID 696996 DOI: 10.1016/0003-2697(78)90412-8  1
Show low-probability matches.