Year |
Citation |
Score |
2024 |
Suresh P, London E. MαCD-based plasma membrane outer leaflet lipid exchange in mammalian cells to study insulin receptor activity. Methods in Enzymology. 700: 485-507. PMID 38971611 DOI: 10.1016/bs.mie.2024.03.027 |
0.442 |
|
2023 |
Li B, London E. Inner leaflet cationic lipid increases nucleic acid loading independently of outer leaflet lipid charge in asymmetric liposomes. Methods (San Diego, Calif.). 219: 16-21. PMID 37683900 DOI: 10.1016/j.ymeth.2023.08.015 |
0.403 |
|
2023 |
Yang GS, Wagenknecht-Wiesner A, Yin B, Suresh P, London E, Baird BA, Bag N. Lipid Driven Inter-leaflet Coupling of Plasma Membrane Order Regulates FcεRI Signaling in Mast Cells. Biophysical Journal. PMID 37533258 DOI: 10.1016/j.bpj.2023.07.027 |
0.432 |
|
2023 |
Li MH, Zhang X, London E, Raleigh DP. Impact of Ca on membrane catalyzed IAPP amyloid formation and IAPP induced vesicle leakage. Biochimica Et Biophysica Acta. Biomembranes. 1865: 184161. PMID 37121365 DOI: 10.1016/j.bbamem.2023.184161 |
0.421 |
|
2022 |
London E. Ordered Domain (Raft) Formation in Asymmetric Vesicles and Its Induction upon Loss of Lipid Asymmetry in Artificial and Natural Membranes. Membranes. 12. PMID 36135889 DOI: 10.3390/membranes12090870 |
0.56 |
|
2022 |
Murata M, Matsumori N, Kinoshita M, London E. Molecular substructure of the liquid-ordered phase formed by sphingomyelin and cholesterol: sphingomyelin clusters forming nano-subdomains are a characteristic feature. Biophysical Reviews. 14: 655-678. PMID 35791389 DOI: 10.1007/s12551-022-00967-1 |
0.448 |
|
2022 |
Bag N, London E, Holowka DA, Baird BA. Transbilayer Coupling of Lipids in Cells Investigated by Imaging Fluorescence Correlation Spectroscopy. The Journal of Physical Chemistry. B. 126: 2325-2336. PMID 35294838 DOI: 10.1021/acs.jpcb.2c00117 |
0.477 |
|
2021 |
Kakuda S, Suresh P, Li G, London E. LOSS OF PLASMA MEMBRANE LIPID ASYMMETRY CAN INDUCE ORDERED DOMAIN (RAFT) FORMATION. Journal of Lipid Research. 100155. PMID 34843684 DOI: 10.1016/j.jlr.2021.100155 |
0.564 |
|
2021 |
Bryan AM, You JK, Li G, Kim J, Singh A, Morstein J, Trauner D, Pereira de Sá N, Normile TG, Farnoud AM, London E, Del Poeta M. Cholesterol and sphingomyelin are critical for Fcγ receptor-mediated phagocytosis of Cryptococcus neoformans by macrophages. The Journal of Biological Chemistry. 101411. PMID 34793834 DOI: 10.1016/j.jbc.2021.101411 |
0.483 |
|
2021 |
Li MH, Raleigh DP, London E. Preparation of Asymmetric Vesicles with Trapped CsCl Avoids Osmotic Imbalance, Non-Physiological External Solutions, and Minimizes Leakage. Langmuir : the Acs Journal of Surfaces and Colloids. PMID 34550698 DOI: 10.1021/acs.langmuir.1c01971 |
0.375 |
|
2021 |
Suresh P, London E. Using cyclodextrin-induced lipid substitution to study membrane lipid and ordered membrane domain (raft) function in cells. Biochimica Et Biophysica Acta. Biomembranes. 1864: 183774. PMID 34534531 DOI: 10.1016/j.bbamem.2021.183774 |
0.561 |
|
2021 |
Suresh P, Miller WT, London E. Phospholipid exchange shows insulin receptor activity is supported by both the propensity to form wide bilayers and ordered raft domains. The Journal of Biological Chemistry. 101010. PMID 34324831 DOI: 10.1016/j.jbc.2021.101010 |
0.487 |
|
2021 |
Kakuda S, Li B, London E. Preparation and utility of asymmetric lipid vesicles for studies of perfringolysin O-lipid interactions. Methods in Enzymology. 649: 253-276. PMID 33712189 DOI: 10.1016/bs.mie.2021.01.005 |
0.52 |
|
2020 |
Li B, London E. Preparation and Drug Entrapment Properties of Asymmetric Liposomes Containing Cationic and Anionic Lipids. Langmuir : the Acs Journal of Surfaces and Colloids. PMID 33070610 DOI: 10.1021/acs.langmuir.0c01968 |
0.454 |
|
2020 |
Yano Y, Hanashima S, Tsuchikawa H, Yasuda T, Slotte JP, London E, Murata M. Sphingomyelins and ent-Sphingomyelins Form Homophilic Nano-Subdomains within Liquid Ordered Domains. Biophysical Journal. PMID 32710823 DOI: 10.1016/J.Bpj.2020.06.028 |
0.549 |
|
2020 |
St Clair JW, Kakuda S, London E. Induction of Ordered Lipid Raft Domain Formation by Loss of Lipid Asymmetry. Biophysical Journal. 119: 483-492. PMID 32710822 DOI: 10.1016/J.Bpj.2020.06.030 |
0.567 |
|
2020 |
Li G, Wang Q, Kakuda S, London E. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids. Journal of Lipid Research. PMID 31964764 DOI: 10.1194/Jlr.Ra119000565 |
0.594 |
|
2020 |
Suresh P, London E, Miller WT. Modulation of Insulin Receptor Kinase Activity by Lipid Environment Biophysical Journal. 118: 241a. DOI: 10.1016/J.Bpj.2019.11.1417 |
0.309 |
|
2020 |
Li G, Kakuda S, Li B, Wang Q, London E. Nanodomains Persist to much Higher Temperatures than Large Scale Phase Separation in Giant Plasma Membrane Vesicles and Can Respond Differently to Alterations of Plasma Membrane Lipid Composition Biophysical Journal. 118: 226a-227a. DOI: 10.1016/J.Bpj.2019.11.1342 |
0.489 |
|
2019 |
Li G, Kakuda S, Suresh P, Canals D, Salamone S, London E. Replacing plasma membrane outer leaflet lipids with exogenous lipid without damaging membrane integrity. Plos One. 14: e0223572. PMID 31589646 DOI: 10.1371/Journal.Pone.0223572 |
0.576 |
|
2019 |
Huang Z, Zhang XS, Blaser MJ, London E. Helicobacter pylori lipids can form ordered membrane domains (rafts). Biochimica Et Biophysica Acta. Biomembranes. 183050. PMID 31449801 DOI: 10.1016/J.Bbamem.2019.183050 |
0.556 |
|
2019 |
London E. Membrane Structure-Function Insights from Asymmetric Lipid Vesicles. Accounts of Chemical Research. PMID 31386337 DOI: 10.1021/Acs.Accounts.9B00300 |
0.655 |
|
2019 |
Caputo GA, London E. Analyzing Transmembrane Protein and Hydrophobic Helix Topography by Dual Fluorescence Quenching. Methods in Molecular Biology (Clifton, N.J.). 2003: 351-368. PMID 31218625 DOI: 10.1007/978-1-4939-9512-7_15 |
0.756 |
|
2019 |
St Clair JW, London E. Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles. Biochimica Et Biophysica Acta. Biomembranes. PMID 30904407 DOI: 10.1016/J.Bbamem.2019.03.012 |
0.561 |
|
2019 |
Delle Bovi RJ, Kim J, Suresh P, London E, Miller WT. Sterol structure dependence of insulin receptor and insulin-like growth factor 1 receptor activation. Biochimica Et Biophysica Acta. Biomembranes. PMID 30682326 DOI: 10.1016/J.Bbamem.2019.01.009 |
0.588 |
|
2019 |
Li B, London E. Preparation of Asymmetric Charged Large Unilamellar Vesicles Containing Both Cationic and Anionic Lipids Biophysical Journal. 116: 80a. DOI: 10.1016/J.Bpj.2018.11.473 |
0.464 |
|
2019 |
Wang Q, London E. The Influence of Lipid Composition Upon Lipid Domain Formation in the Inner Leaflet of Asymmetric Vesicles Using Spin-Labeled Lipids Biophysical Journal. 116: 78a. DOI: 10.1016/J.Bpj.2018.11.464 |
0.551 |
|
2019 |
Li G, Kakuda S, Suresh P, London E. Efficient Replacement of Outer Leaflet Lipids of Plasma Membrane using Exogenous Lipids with Minimal Cell Damage Biophysical Journal. 116: 363a. DOI: 10.1016/J.Bpj.2018.11.1974 |
0.554 |
|
2018 |
Doktorova M, Heberle FA, Eicher B, Standaert RF, Katsaras J, London E, Pabst G, Marquardt D. Preparation of asymmetric phospholipid vesicles for use as cell membrane models. Nature Protocols. PMID 30190552 DOI: 10.1038/S41596-018-0033-6 |
0.771 |
|
2018 |
Wang Q, London E. Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles. Biophysical Journal. PMID 30082033 DOI: 10.1016/J.Bpj.2018.07.011 |
0.581 |
|
2018 |
Toledo A, Huang Z, Coleman JL, London E, Benach JL. Lipid rafts can form in the inner and outer membranes of Borrelia burgdorferi and have different properties and associated proteins. Molecular Microbiology. PMID 29377398 DOI: 10.1111/Mmi.13914 |
0.612 |
|
2018 |
Zhang X, London E, Raleigh DP. Sterol Structure Strongly Modulates Membrane-IAPP Interactions. Biochemistry. PMID 29373018 DOI: 10.1021/Acs.Biochem.7B01190 |
0.564 |
|
2018 |
Toledo A, Huang Z, Benach JL, London E. Analysis of Lipids and Lipid Rafts in Borrelia. Methods in Molecular Biology (Clifton, N.J.). 1690: 69-82. PMID 29032537 DOI: 10.1007/978-1-4939-7383-5_6 |
0.602 |
|
2018 |
Park S, Li B, London E. Expanding the Preparation of Asymmetric Lipid Vesicles to Additional Cyclodextrins and Cationic Lipids Biophysical Journal. 114: 96a. DOI: 10.1016/J.Bpj.2017.11.567 |
0.558 |
|
2017 |
Kim J, Fukuto HS, Brown DA, Bliska JB, London E. Effects of host cell sterol composition upon internalization of Yersinia pseudotuberculosis and clustered beta-1 integrin. The Journal of Biological Chemistry. PMID 29197826 DOI: 10.1074/Jbc.M117.811224 |
0.446 |
|
2017 |
Raj S, Nazemidashtarjandi S, Kim J, Joffe L, Zhang X, Singh A, Mor V, Desmarini D, Djordjevic J, Raleigh DP, Rodrigues ML, London E, Del Poeta M, Farnoud AM. Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans. Biochimica Et Biophysica Acta. PMID 28865794 DOI: 10.1016/J.Bbamem.2017.08.017 |
0.598 |
|
2017 |
Kim J, Singh A, DelPoeta M, Brown DA, London E. The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. Journal of Cell Science. PMID 28655854 DOI: 10.1242/Jcs.201731 |
0.552 |
|
2017 |
Marquardt D, Heberle FA, Miti T, Eicher B, London E, Katsaras J, Pabst G. (1)H NMR Shows Slow Phospholipid Flip-Flop in Gel and Fluid Bilayers. Langmuir : the Acs Journal of Surfaces and Colloids. PMID 28106399 DOI: 10.1021/Acs.Langmuir.6B04485 |
0.673 |
|
2017 |
Zhang X, St Clair JR, London E, Raleigh DP. Islet Amyloid Polypeptide Membrane Interactions: Effects of Membrane Composition. Biochemistry. PMID 28054763 DOI: 10.1021/Acs.Biochem.6B01016 |
0.559 |
|
2017 |
Kim J, Fukuto HS, Bliska JB, London E. Effects of Sterol Substitution in Plasma Membrane of Host Cell upon Internalization of Yersinia Pseudotuberculosis Biophysical Journal. 112: 92a. DOI: 10.1016/J.Bpj.2016.11.539 |
0.608 |
|
2017 |
St Clair JR, Wang Q, London E. Investigating Lipid Domain Formation in Asymmetric Large Unilamellar Vesicles using Förster Resonance Energy Transfer (FRET) Biophysical Journal. 112: 82a. DOI: 10.1016/J.Bpj.2016.11.489 |
0.465 |
|
2016 |
Huang Z, Toledo AM, Benach JL, London E. Ordered Membrane Domain-Forming Properties of the Lipids of Borrelia burgdorferi. Biophysical Journal. 111: 2666-2675. PMID 28002743 DOI: 10.1016/J.Bpj.2016.11.012 |
0.584 |
|
2016 |
Li G, Kim J, Huang Z, St Clair JR, Brown DA, London E. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proceedings of the National Academy of Sciences of the United States of America. PMID 27872310 DOI: 10.1073/Pnas.1610705113 |
0.674 |
|
2016 |
LeBarron J, London E. Highly hydrophilic segments attached to hydrophobic peptides translocate rapidly across membranes. Langmuir : the Acs Journal of Surfaces and Colloids. PMID 27649909 DOI: 10.1021/Acs.Langmuir.6B02597 |
0.573 |
|
2016 |
London E. New Insights into How Cholesterol and Unsaturation Control Lipid Domain Formation. Biophysical Journal. 111: 465-6. PMID 27508431 DOI: 10.1016/J.Bpj.2016.06.037 |
0.539 |
|
2016 |
LeBarron J, London E. Effect of lipid composition and amino acid sequence upon transmembrane peptide-accelerated lipid transleaflet diffusion (flip-flop). Biochimica Et Biophysica Acta. PMID 27131444 DOI: 10.1016/J.Bbamem.2016.04.011 |
0.455 |
|
2016 |
Heberle FA, Marquardt D, Doktorova M, Geier B, Standaert RF, Heftberger P, Kollmitzer B, Nickels JD, Dick RA, Feigenson GW, Katsaras J, London E, Pabst G. Subnanometer Structure of an Asymmetric Model Membrane: Interleaflet Coupling Influences Domain Properties. Langmuir : the Acs Journal of Surfaces and Colloids. 32: 5195-200. PMID 27128636 DOI: 10.1021/Acs.Langmuir.5B04562 |
0.831 |
|
2016 |
Huang Z, London E. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria. Chemistry and Physics of Lipids. PMID 26964703 DOI: 10.1016/J.Chemphyslip.2016.03.002 |
0.608 |
|
2016 |
St Clair J, Wang Q, London E. Improved Methods for Preparing Asymmetric Vesicles using Methyl-Alpha-Cyclodextrin Biophysical Journal. 110: 86a. DOI: 10.1016/J.Bpj.2015.11.520 |
0.581 |
|
2016 |
Hyun Kim J, Singh A, Del Poeta M, Brown D, London E. Effects of Sterol Structure and Sterol Ability to form Ordered Membrane Domains upon Cellular Endocytosis Biophysical Journal. 110: 595a. DOI: 10.1016/J.Bpj.2015.11.3176 |
0.63 |
|
2016 |
Huang Z, London E, Benach JL, Toledo A. How Lipid Composition Controls Ordered Membrane Domain (“Raft”) Formation in Membranes of Pathogenic Bacteria Biophysical Journal. 110: 583a-584a. DOI: 10.1016/J.Bpj.2015.11.3118 |
0.607 |
|
2016 |
London E, Brown DA, Huang Z, Kim J, Li G, St Clair J, Wang Q. Lipid Structure and Control of Membrane Ordered Domain Formation And Size by Lipid Composition and Asymmetry in Vitro and in Vivo Biophysical Journal. 110: 342a-343a. DOI: 10.1016/J.Bpj.2015.11.1843 |
0.719 |
|
2015 |
Pathak P, London E. The Effect of Membrane Lipid Composition on the Formation of Lipid Ultrananodomains. Biophysical Journal. 109: 1630-8. PMID 26488654 DOI: 10.1016/J.Bpj.2015.08.029 |
0.776 |
|
2015 |
Farnoud AM, Toledo AM, Konopka JB, Del Poeta M, London E. Raft-like membrane domains in pathogenic microorganisms. Current Topics in Membranes. 75: 233-68. PMID 26015285 DOI: 10.1016/Bs.Ctm.2015.03.005 |
0.567 |
|
2015 |
London E. Membrane fusion: A new role for lipid domains? Nature Chemical Biology. 11: 383-4. PMID 25978994 DOI: 10.1038/Nchembio.1812 |
0.549 |
|
2015 |
Lin Q, London E. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles. Biophysical Journal. 108: 2212-22. PMID 25954879 DOI: 10.1016/J.Bpj.2015.03.056 |
0.574 |
|
2015 |
Lin Q, Wang T, Li H, London E. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size. The Journal of Membrane Biology. 248: 517-27. PMID 25850715 DOI: 10.1007/S00232-015-9798-5 |
0.377 |
|
2015 |
Kim J, London E. Using Sterol Substitution to Probe the Role of Membrane Domains in Membrane Functions. Lipids. 50: 721-34. PMID 25804641 DOI: 10.1007/S11745-015-4007-Y |
0.684 |
|
2015 |
Kohno M, Ghahremani DG, Morales AM, Robertson CL, Ishibashi K, Morgan AT, Mandelkern MA, London ED. Risk-taking behavior: dopamine D2/D3 receptors, feedback, and frontolimbic activity. Cerebral Cortex (New York, N.Y. : 1991). 25: 236-45. PMID 23966584 DOI: 10.1093/Cercor/Bht218 |
0.403 |
|
2015 |
Kim JH, Brown D, London E. Antibody Induced PLAP Endocytosis is Dependent on the Structure and Amount of Sterols in Cellular Plasma Membrane Biophysical Journal. 108: 100a. DOI: 10.1016/J.Bpj.2014.11.573 |
0.572 |
|
2014 |
Toledo A, Crowley JT, Coleman JL, LaRocca TJ, Chiantia S, London E, Benach JL. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi. Mbio. 5: e00899-14. PMID 24618252 DOI: 10.1128/Mbio.00899-14 |
0.576 |
|
2014 |
Lin Q, London E. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry. Plos One. 9: e87903. PMID 24489974 DOI: 10.1371/Journal.Pone.0087903 |
0.612 |
|
2014 |
Lin Q, London E. The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O). The Journal of Biological Chemistry. 289: 5467-78. PMID 24398685 DOI: 10.1074/Jbc.M113.533943 |
0.628 |
|
2013 |
Lin Q, London E. Transmembrane protein (perfringolysin o) association with ordered membrane domains (rafts) depends upon the raft-associating properties of protein-bound sterol. Biophysical Journal. 105: 2733-42. PMID 24359745 DOI: 10.1016/J.Bpj.2013.11.002 |
0.576 |
|
2013 |
Huang Z, London E. Effect of cyclodextrin and membrane lipid structure upon cyclodextrin-lipid interaction. Langmuir : the Acs Journal of Surfaces and Colloids. 29: 14631-8. PMID 24175704 DOI: 10.1021/La4031427 |
0.546 |
|
2013 |
Son M, London E. The dependence of lipid asymmetry upon polar headgroup structure. Journal of Lipid Research. 54: 3385-93. PMID 24101657 DOI: 10.1194/Jlr.M041749 |
0.601 |
|
2013 |
Su CY, London E, Sampson NS. Mapping peptide thiol accessibility in membranes using a quaternary ammonium isotope-coded mass tag (ICMT). Bioconjugate Chemistry. 24: 1235-47. PMID 23725486 DOI: 10.1021/Bc400171J |
0.483 |
|
2013 |
LaRocca TJ, Pathak P, Chiantia S, Toledo A, Silvius JR, Benach JL, London E. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. Plos Pathogens. 9: e1003353. PMID 23696733 DOI: 10.1371/Journal.Ppat.1003353 |
0.777 |
|
2013 |
Chiantia S, London E. Sphingolipids and membrane domains: recent advances. Handbook of Experimental Pharmacology. 33-55. PMID 23579448 DOI: 10.1007/978-3-7091-1368-4_2 |
0.586 |
|
2013 |
Caputo GA, London E. Analyzing transmembrane protein and hydrophobic helix topography by dual fluorescence quenching. Methods in Molecular Biology (Clifton, N.J.). 974: 279-95. PMID 23404281 DOI: 10.1007/978-1-62703-275-9_13 |
0.762 |
|
2013 |
Crowley JT, Toledo AM, LaRocca TJ, Coleman JL, London E, Benach JL. Lipid exchange between Borrelia burgdorferi and host cells. Plos Pathogens. 9: e1003109. PMID 23326230 DOI: 10.1371/Journal.Ppat.1003109 |
0.512 |
|
2013 |
Lin Q, London E. Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O. The Journal of Biological Chemistry. 288: 1340-52. PMID 23150664 DOI: 10.1074/Jbc.M112.415596 |
0.537 |
|
2013 |
Son M, London E. The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure. Journal of Lipid Research. 54: 223-31. PMID 23093551 DOI: 10.1194/Jlr.M032722 |
0.509 |
|
2013 |
LeBarron J, London E. Several Asparagine Residues Flanking a Hydrophobic Helix are required to Block Interconversion between Transmembrane and Non-Transmembrane Configurations Biophysical Journal. 104: 593a. DOI: 10.1016/J.Bpj.2012.11.3296 |
0.494 |
|
2013 |
London E. Both Detergent Effects Upon Domain Size and Transmembrane Protein Length Effects Upon Domain Binding Suggest that Hydrophobic Mismatch can Control the Properties of Ordered Membrane Domains (“Rafts”) Biophysical Journal. 104: 10a. DOI: 10.1016/J.Bpj.2012.11.082 |
0.498 |
|
2012 |
Chiantia S, London E. Acyl chain length and saturation modulate interleaflet coupling in asymmetric bilayers: effects on dynamics and structural order. Biophysical Journal. 103: 2311-9. PMID 23283230 DOI: 10.1016/J.Bpj.2012.10.033 |
0.434 |
|
2012 |
Kaczocha M, Lin Q, Nelson LD, McKinney MK, Cravatt BF, London E, Deutsch DG. Anandamide externally added to lipid vesicles containing trapped fatty acid amide hydrolase (FAAH) is readily hydrolyzed in a sterol-modulated fashion. Acs Chemical Neuroscience. 3: 364-8. PMID 22860204 DOI: 10.1021/Cn300001W |
0.562 |
|
2012 |
Chiantia S, Klymchenko AS, London E. A novel leaflet-selective fluorescence labeling technique reveals differences between inner and outer leaflets at high bilayer curvature. Biochimica Et Biophysica Acta. 1818: 1284-90. PMID 22349432 DOI: 10.1016/J.Bbamem.2012.02.005 |
0.493 |
|
2012 |
LeBarron J, London E. Effect of Hydrophobic Peptide Sequence upon Peptide-Dependent Acceleration of Lipid Flip-Flop Biophysical Journal. 102: 80a. DOI: 10.1016/J.Bpj.2011.11.464 |
0.505 |
|
2012 |
LaRocca TJ, Pathak P, Chiantia S, Silvius JR, Benach JL, London E. Lipid Raft Formation and Properties are Necessary and Sufficient to Explain the Properties of Membrane Domains in B. Burgdorferi and are Necessary for its Membrane Integrity Biophysical Journal. 102: 27a. DOI: 10.1016/J.Bpj.2011.11.174 |
0.739 |
|
2012 |
Lin Q, London E. The Effect of Hydrophobic Match on Transmembrane Protein Raft Affinity Biophysical Journal. 102: 295a-296a. DOI: 10.1016/J.Bpj.2011.11.1636 |
0.568 |
|
2012 |
Bhattacharjee D, London E. Control of Transverse Position of the Notch Transmembrane Helix by Amino Acid Sequence: Effect on γ-Secretase Mediated Cleavage and Activity of Notch Biophysical Journal. 102: 267a. DOI: 10.1016/J.Bpj.2011.11.1471 |
0.377 |
|
2012 |
Chiantia S, London E. Inter-Leaflet Coupling and Domain Formation in Asymmetric Giant Unilamellar Vesicles Biophysical Journal. 102: 295a. DOI: 10.1016/J.Bpj.2010.12.393 |
0.596 |
|
2011 |
Pathak P, London E. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Biophysical Journal. 101: 2417-25. PMID 22098740 DOI: 10.1016/J.Bpj.2011.08.059 |
0.741 |
|
2011 |
Cheng HT, London E. Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature. Biophysical Journal. 100: 2671-8. PMID 21641312 DOI: 10.1016/J.Bpj.2011.04.048 |
0.774 |
|
2011 |
Chiantia S, Schwille P, Klymchenko AS, London E. Asymmetric GUVs prepared by MβCD-mediated lipid exchange: an FCS study. Biophysical Journal. 100: L1-3. PMID 21190650 DOI: 10.1016/J.Bpj.2010.11.051 |
0.431 |
|
2011 |
Cheng HT, Megha, London E. Preparation and properties of asymmetric vesicles that mimic cell membranes. Effect upon lipid raft formation and transmembrane helix orientation (Journal of Biological Chemistry (2009) 284, (6079-6092)) Journal of Biological Chemistry. 286: 29441. DOI: 10.1074/jbc.A111.806077 |
0.846 |
|
2011 |
Pathak P, London E. Triton X −100 and TM Helices Increase Ordered Domain (lipid Raft) Size Biophysical Journal. 100: 337a. DOI: 10.1016/J.Bpj.2010.12.2046 |
0.743 |
|
2011 |
Son MJ, London E. Extending Techniques to Prepare Asymmetric Vesicles to Additional Lipid Compositions: Lipid Structure Affects the Ability to Maintain Lipid Asymmetry Biophysical Journal. 100: 337a. DOI: 10.1016/J.Bpj.2010.12.2045 |
0.742 |
|
2010 |
Nelson LD, Chiantia S, London E. Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity. Biophysical Journal. 99: 3255-63. PMID 21081073 DOI: 10.1016/J.Bpj.2010.09.028 |
0.571 |
|
2010 |
LaRocca TJ, Crowley JT, Cusack BJ, Pathak P, Benach J, London E, Garcia-Monco JC, Benach JL. Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host & Microbe. 8: 331-42. PMID 20951967 DOI: 10.1016/J.Chom.2010.09.001 |
0.717 |
|
2010 |
Lai B, Agarwal R, Nelson LD, Swaminathan S, London E. Low pH-induced pore formation by the T domain of botulinum toxin type A is dependent upon NaCl concentration. The Journal of Membrane Biology. 236: 191-201. PMID 20711775 DOI: 10.1007/S00232-010-9292-Z |
0.517 |
|
2010 |
Shahidullah K, Krishnakumar SS, London E. The effect of hydrophilic substitutions and anionic lipids upon the transverse positioning of the transmembrane helix of the ErbB2 (neu) protein incorporated into model membrane vesicles. Journal of Molecular Biology. 396: 209-20. PMID 19931543 DOI: 10.1016/J.Jmb.2009.11.037 |
0.845 |
|
2010 |
Chiantia S, Schwille P, London E. Protein-Lipid Interaction and Domain Formation in Asymmetric Membranes Biophysical Journal. 98: 668a. DOI: 10.1016/J.Bpj.2009.12.3667 |
0.642 |
|
2009 |
Wang J, London E. The membrane topography of the diphtheria toxin T domain linked to the a chain reveals a transient transmembrane hairpin and potential translocation mechanisms. Biochemistry. 48: 10446-56. PMID 19780588 DOI: 10.1021/Bi9014665 |
0.647 |
|
2009 |
London E, Shahidullah K. Transmembrane vs. non-transmembrane hydrophobic helix topography in model and natural membranes. Current Opinion in Structural Biology. 19: 464-72. PMID 19665887 DOI: 10.1016/J.Sbi.2009.07.007 |
0.843 |
|
2009 |
Zhao G, London E. Strong correlation between statistical transmembrane tendency and experimental hydrophobicity scales for identification of transmembrane helices. The Journal of Membrane Biology. 229: 165-8. PMID 19521654 DOI: 10.1007/S00232-009-9178-0 |
0.455 |
|
2009 |
Cheng HT, Megha, London E. Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. The Journal of Biological Chemistry. 284: 6079-92. PMID 19129198 DOI: 10.1074/Jbc.M806077200 |
0.87 |
|
2009 |
Krishnakumar SS, London E. Corrigendum to "The Control of Transmembrane Helix Transverse Position in Membranes by Hydrophilic Residues" [J. Mol. Biol. 374 (2007) 1251-1269] (DOI:10.1016/j.jmb.2007.10.032) Journal of Molecular Biology. 390: 830-833. DOI: 10.1016/J.Jmb.2007.10.091 |
0.495 |
|
2009 |
Pathak P, London E. Unsaturated Phosphatidylcholine Acyl Chain Structure Affects the Size of Ordered Nanodomains (Lipid Rafts) Formed by Sphingomyelin and Cholesterol Biophysical Journal. 96: 363a. DOI: 10.1016/J.Bpj.2008.12.1955 |
0.734 |
|
2009 |
Shahidullah K, London E. Control of Hydrophobic Helix Topography in Membranes by Lipid Composition Biophysical Journal. 96: 1a-2a. DOI: 10.1016/J.Bpj.2008.12.011 |
0.862 |
|
2008 |
Shahidullah K, London E. Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids. Journal of Molecular Biology. 379: 704-18. PMID 18479706 DOI: 10.1016/J.Jmb.2008.04.026 |
0.86 |
|
2008 |
Lai B, Zhao G, London E. Behavior of the deeply inserted helices in diphtheria toxin T domain: helices 5, 8, and 9 interact strongly and promote pore formation, while helices 6/7 limit pore formation. Biochemistry. 47: 4565-74. PMID 18355037 DOI: 10.1021/Bi7025134 |
0.462 |
|
2008 |
Nelson LD, Johnson AE, London E. How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction. The Journal of Biological Chemistry. 283: 4632-42. PMID 18089559 DOI: 10.1074/Jbc.M709483200 |
0.61 |
|
2008 |
Zhao G, London E. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: Control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains (Biochemistry (2005) 44, 11, (4488-4498)) Biochemistry. 47: 5258. DOI: 10.1021/bi800558r |
0.54 |
|
2008 |
Krishnakumar SS, London E. Corrigendum to "Effect of Sequence Hydrophobicity and Bilayer Width upon the Minimum Length Required for the Formation of Transmembrane Helices in Membranes" [J. Mol. Biol. 374 (2007), 671-687] (DOI:10.1016/j.jmb.2007.09.037) Journal of Molecular Biology. DOI: 10.1016/J.Jmb.2008.09.058 |
0.524 |
|
2007 |
Bakht O, London E. Detecting ordered domain formation (lipid rafts) in model membranes using Tempo. Methods in Molecular Biology (Clifton, N.J.). 398: 29-40. PMID 18214372 DOI: 10.1007/978-1-59745-513-8_4 |
0.84 |
|
2007 |
Krishnakumar SS, London E. The control of transmembrane helix transverse position in membranes by hydrophilic residues. Journal of Molecular Biology. 374: 1251-69. PMID 17997412 DOI: 10.1016/J.Jmb.2007.10.032 |
0.471 |
|
2007 |
Krishnakumar SS, London E. Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes. Journal of Molecular Biology. 374: 671-87. PMID 17950311 DOI: 10.1016/J.Jmb.2007.09.037 |
0.516 |
|
2007 |
Bakht O, Pathak P, London E. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms. Biophysical Journal. 93: 4307-18. PMID 17766350 DOI: 10.1529/Biophysj.107.114967 |
0.827 |
|
2007 |
London E. Using model membrane-inserted hydrophobic helices to study the equilibrium between transmembrane and nontransmembrane states. The Journal of General Physiology. 130: 229-32. PMID 17635963 DOI: 10.1085/Jgp.200709842 |
0.508 |
|
2007 |
Megha, Sawatzki P, Kolter T, Bittman R, London E. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts). Biochimica Et Biophysica Acta. 1768: 2205-12. PMID 17574203 DOI: 10.1016/J.Bbamem.2007.05.007 |
0.765 |
|
2007 |
Bakht O, Delgado J, Amat-Guerri F, Acuña AU, London E. The phenyltetraene lysophospholipid analog PTE-ET-18-OMe as a fluorescent anisotropy probe of liquid ordered membrane domains (lipid rafts) and ceramide-rich membrane domains. Biochimica Et Biophysica Acta. 1768: 2213-21. PMID 17573036 DOI: 10.1016/J.Bbamem.2007.05.008 |
0.832 |
|
2007 |
Fujita K, Krishnakumar SS, Franco D, Paul AV, London E, Wimmer E. Membrane topography of the hydrophobic anchor sequence of poliovirus 3A and 3AB proteins and the functional effect of 3A/3AB membrane association upon RNA replication. Biochemistry. 46: 5185-99. PMID 17417822 DOI: 10.1021/Bi6024758 |
0.533 |
|
2007 |
London E. Advances in understanding of lipid raft structure Gbm Annual Spring Meeting Mosbach 2007. 2007. DOI: 10.1240/sav_gbm_2007_m_001684 |
0.369 |
|
2006 |
Wu Z, Jakes KS, Samelson-Jones BS, Lai B, Zhao G, London E, Finkelstein A. Protein translocation by bacterial toxin channels: a comparison of diphtheria toxin and colicin Ia. Biophysical Journal. 91: 3249-56. PMID 16905612 DOI: 10.1529/Biophysj.106.085753 |
0.517 |
|
2006 |
Zhao G, London E. An amino acid "transmembrane tendency" scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity. Protein Science : a Publication of the Protein Society. 15: 1987-2001. PMID 16877712 DOI: 10.1110/Ps.062286306 |
0.41 |
|
2006 |
White D, Musse AA, Wang J, London E, Merrill AR. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain. The Journal of Biological Chemistry. 281: 32375-84. PMID 16854987 DOI: 10.1074/Jbc.M605880200 |
0.711 |
|
2006 |
Wang J, Rosconi MP, London E. Topography of the hydrophilic helices of membrane-inserted diphtheria toxin T domain: TH1-TH3 as a hydrophilic tether. Biochemistry. 45: 8124-34. PMID 16800637 DOI: 10.1021/Bi060587F |
0.82 |
|
2006 |
Megha, Bakht O, London E. Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders. The Journal of Biological Chemistry. 281: 21903-13. PMID 16735517 DOI: 10.1074/Jbc.M600395200 |
0.822 |
|
2006 |
Musse AA, Wang J, Deleon GP, Prentice GA, London E, Merrill AR. Scanning the membrane-bound conformation of helix 1 in the colicin E1 channel domain by site-directed fluorescence labeling. The Journal of Biological Chemistry. 281: 885-95. PMID 16299381 DOI: 10.1074/Jbc.M511140200 |
0.7 |
|
2005 |
London E. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochimica Et Biophysica Acta. 1746: 203-20. PMID 16225940 DOI: 10.1016/J.Bbamcr.2005.09.002 |
0.606 |
|
2005 |
Ryndak MB, Chung H, London E, Bliska JB. Role of predicted transmembrane domains for type III translocation, pore formation, and signaling by the Yersinia pseudotuberculosis YopB protein. Infection and Immunity. 73: 2433-43. PMID 15784589 DOI: 10.1128/Iai.73.4.2433-2443.2005 |
0.469 |
|
2005 |
Zhao G, London E. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains. Biochemistry. 44: 4488-98. PMID 15766279 DOI: 10.1021/Bi047705O |
0.585 |
|
2005 |
Shogomori H, Hammond AT, Ostermeyer-Fay AG, Barr DJ, Feigenson GW, London E, Brown DA. Palmitoylation and intracellular domain interactions both contribute to raft targeting of linker for activation of T cells. The Journal of Biological Chemistry. 280: 18931-42. PMID 15753089 DOI: 10.1074/Jbc.M500247200 |
0.725 |
|
2005 |
Hayashibara M, London E. Topography of diphtheria toxin A chain inserted into lipid vesicles. Biochemistry. 44: 2183-96. PMID 15697244 DOI: 10.1021/Bi0482093 |
0.579 |
|
2004 |
Rosconi MP, Zhao G, London E. Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: at low pH, helices 8 and 9 form a transmembrane hairpin but helices 5-7 form stable nonclassical inserted segments on the cis side of the bilayer. Biochemistry. 43: 9127-39. PMID 15248770 DOI: 10.1021/Bi049354J |
0.847 |
|
2004 |
Caputo GA, London E. Position and ionization state of Asp in the core of membrane-inserted alpha helices control both the equilibrium between transmembrane and nontransmembrane helix topography and transmembrane helix positioning. Biochemistry. 43: 8794-806. PMID 15236588 DOI: 10.1021/Bi049696P |
0.722 |
|
2004 |
Wang J, Megha, London E. Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. Biochemistry. 43: 1010-8. PMID 14744146 DOI: 10.1021/Bi035696Y |
0.826 |
|
2004 |
Megha, London E. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. The Journal of Biological Chemistry. 279: 9997-10004. PMID 14699154 DOI: 10.1074/Jbc.M309992200 |
0.817 |
|
2003 |
Fastenberg ME, Shogomori H, Xu X, Brown DA, London E. Exclusion of a transmembrane-type peptide from ordered-lipid domains (rafts) detected by fluorescence quenching: extension of quenching analysis to account for the effects of domain size and domain boundaries. Biochemistry. 42: 12376-90. PMID 14567699 DOI: 10.1021/Bi034718D |
0.55 |
|
2003 |
Lew S, Caputo GA, London E. The effect of interactions involving ionizable residues flanking membrane-inserted hydrophobic helices upon helix-helix interaction. Biochemistry. 42: 10833-42. PMID 12962508 DOI: 10.1021/Bi034929I |
0.797 |
|
2003 |
Caputo GA, London E. Cumulative effects of amino acid substitutions and hydrophobic mismatch upon the transmembrane stability and conformation of hydrophobic alpha-helices. Biochemistry. 42: 3275-85. PMID 12641459 DOI: 10.1021/Bi026697D |
0.709 |
|
2003 |
Caputo GA, London E. Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic alpha-helix locations within membranes. Biochemistry. 42: 3265-74. PMID 12641458 DOI: 10.1021/Bi026696L |
0.766 |
|
2002 |
London E. Insights into lipid raft structure and formation from experiments in model membranes. Current Opinion in Structural Biology. 12: 480-6. PMID 12163071 DOI: 10.1016/S0959-440X(02)00351-2 |
0.629 |
|
2002 |
Hammond K, Caputo GA, London E. Interaction of the membrane-inserted diphtheria toxin T domain with peptides and its possible implications for chaperone-like T domain behavior. Biochemistry. 41: 3243-53. PMID 11863463 DOI: 10.1021/Bi011163I |
0.736 |
|
2002 |
Rosconi MP, London E. Topography of helices 5-7 in membrane-inserted diphtheria toxin T domain: identification and insertion boundaries of two hydrophobic sequences that do not form a stable transmembrane hairpin. The Journal of Biological Chemistry. 277: 16517-27. PMID 11859081 DOI: 10.1074/Jbc.M200442200 |
0.835 |
|
2002 |
Dhanvantari S, Arnaoutova I, Snell CR, Steinbach PJ, Hammond K, Caputo GA, London E, Loh YP. Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion. Biochemistry. 41: 52-60. PMID 11772002 DOI: 10.1021/Bi015698N |
0.779 |
|
2002 |
London E, Ladokhin AS. Measuring the depth of amino acid residues in membrane-inserted peptides by fluorescence quenching Current Topics in Membranes. 52: 89-115. DOI: 10.1016/S1063-5823(02)52006-8 |
0.529 |
|
2001 |
Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide Journal of Biological Chemistry. 276: 33540-33546. PMID 11432870 DOI: 10.1074/Jbc.M104776200 |
0.593 |
|
2000 |
London E, Brown DA. Insolubility of lipids in Triton X-100: Physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts) Biochimica Et Biophysica Acta - Biomembranes. 1508: 182-195. PMID 11090825 DOI: 10.1016/S0304-4157(00)00007-1 |
0.633 |
|
2000 |
London E, Brown DA, Xu X. Fluorescence quenching assay of sphingolipid/phospholipid phase separation in model membranes Methods in Enzymology. 312: 272-290. PMID 11070878 DOI: 10.1016/S0076-6879(00)12915-5 |
0.477 |
|
2000 |
Lew S, Ren J, London E. The effects of polar and/or ionizable residues in the core and flanking regions of hydrophobic helices on transmembrane conformation and oligomerization. Biochemistry. 39: 9632-40. PMID 10933779 DOI: 10.1021/Bi000694O |
0.789 |
|
2000 |
Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts Journal of Biological Chemistry. 275: 17221-17224. PMID 10770957 DOI: 10.1074/Jbc.R000005200 |
0.542 |
|
2000 |
Xu X, London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation Biochemistry. 39: 843-849. PMID 10653627 DOI: 10.1021/Bi992543V |
0.569 |
|
1999 |
Sharpe JC, Kachel K, London E. The effects of inhibitors upon pore formation by diphtheria toxin and diphtheria toxin T domain Journal of Membrane Biology. 171: 223-233. PMID 10501830 DOI: 10.1007/s002329900573 |
0.386 |
|
1999 |
Sharpe JC, London E. Diphtheria toxin forms pores of different sizes depending on its concentration in membranes: Probable relationship to oligomerization Journal of Membrane Biology. 171: 209-221. PMID 10501829 DOI: 10.1007/S002329900572 |
0.519 |
|
1999 |
Ren J, Kachel K, Kim H, Malenbaum SE, Collier RJ, London E. Interaction of diphtheria toxin T domain with molten globule-like proteins and its implications for translocation. Science (New York, N.Y.). 284: 955-7. PMID 10320374 DOI: 10.1126/Science.284.5416.955 |
0.474 |
|
1999 |
Ren J, Lew S, Wang J, London E. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Biochemistry. 38: 5905-12. PMID 10231543 DOI: 10.1021/Bi982942A |
0.643 |
|
1999 |
Ren J, Sharpe JC, Collier RJ, London E. Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin. Biochemistry. 38: 976-84. PMID 9893993 DOI: 10.1021/Bi981576S |
0.499 |
|
1998 |
Malenbaum SE, Collier RJ, London E. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Biochemistry. 37: 17915-22. PMID 9922159 DOI: 10.1021/bi981230h |
0.464 |
|
1998 |
Brown DA, London E. Functions of lipid rafts in biological membranes Annual Review of Cell and Developmental Biology. 14: 111-136. PMID 9891780 DOI: 10.1146/Annurev.Cellbio.14.1.111 |
0.557 |
|
1998 |
Kachel K, Asuncion-Punzalan E, London E. The location of fluorescence probes with charged groups in model membranes Biochimica Et Biophysica Acta - Biomembranes. 1374: 63-76. PMID 9814853 DOI: 10.1016/S0005-2736(98)00126-6 |
0.552 |
|
1998 |
Malenbaum SE, Merrill AR, London E. Membrane-inserted colicin E1 channel domain: A topological survey by fluorescence quenching suggests that model membrane thickness affects membrane penetration Journal of Natural Toxins. 7: 269-290. PMID 9783264 |
0.528 |
|
1998 |
Kaiser RD, London E. Determination of the depth of BODIPY probes in model membranes by parallax analysis of fluorescence quenching Biochimica Et Biophysica Acta - Biomembranes. 1375: 13-22. PMID 9767081 DOI: 10.1016/S0005-2736(98)00127-8 |
0.461 |
|
1998 |
Kachel K, Ren J, Collier RJ, London E. Identifying transmembrane states and defining the membrane insertion boundaries of hydrophobic helices in membrane-inserted diphtheria toxin T domain. The Journal of Biological Chemistry. 273: 22950-6. PMID 9722516 DOI: 10.1074/Jbc.273.36.22950 |
0.553 |
|
1998 |
Brown DA, London E. Structure and origin of ordered lipid domains in biological membranes Journal of Membrane Biology. 164: 103-114. PMID 9662555 DOI: 10.1007/S002329900397 |
0.617 |
|
1998 |
Kaiser RD, London E. Location of diphenylhexatriene (DPH) and its derivatives within membranes: Comparison of different fluorescence quenching analyses of membrane depth Biochemistry. 37: 8180-8190. PMID 9609714 DOI: 10.1021/Bi980064A |
0.485 |
|
1998 |
Asuncion-Punzalan E, Kachel K, London E. Groups with polar characteristics can locate at both shallow and deep locations in membranes: The behavior of dansyl and related probes Biochemistry. 37: 4603-4611. PMID 9521780 DOI: 10.1021/Bi9726234 |
0.429 |
|
1998 |
Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown DA. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains Journal of Biological Chemistry. 273: 1150-1157. PMID 9422781 DOI: 10.1074/Jbc.273.2.1150 |
0.599 |
|
1997 |
Wang Y, Kachel K, Pablo L, London E. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin Biochemistry. 36: 16300-16308. PMID 9405065 DOI: 10.1021/Bi971281Z |
0.507 |
|
1997 |
Brown DA, London E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochemical and Biophysical Research Communications. 240: 1-7. PMID 9367871 DOI: 10.1006/Bbrc.1997.7575 |
0.594 |
|
1997 |
Wang Y, Malenbaum SE, Kachel K, Zhan H, Collier RJ, London E. Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width. The Journal of Biological Chemistry. 272: 25091-8. PMID 9312118 DOI: 10.1074/jbc.272.40.25091 |
0.503 |
|
1997 |
Lew S, London E. Simple procedure for reversed-phase high-performance liquid chromatographic purification of long hydrophobic peptides that form transmembrane helices. Analytical Biochemistry. 251: 113-6. PMID 9300091 DOI: 10.1006/Abio.1997.2232 |
0.726 |
|
1997 |
Ahmed SN, Brown DA, London E. On the Origin of Sphingolipid/Cholesterol-Rich Detergent-Insoluble Cell Membranes: Physiological Concentrations of Cholesterol and Sphingolipid Induce Formation of a Detergent-Insoluble, Liquid-Ordered Lipid Phase in Model Membranes Biochemistry. 36: 10944-10953. PMID 9283086 DOI: 10.1021/Bi971167G |
0.485 |
|
1997 |
Ren J, Lew S, Wang Z, London E. Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry. 36: 10213-20. PMID 9254619 DOI: 10.1021/Bi9709295 |
0.549 |
|
1996 |
Paliwal R, London E. Comparison of the conformation, hydrophobicity, and model membrane interactions of diphtheria toxin to those of formaldehyde-treated toxin (diphtheria toxoid): formaldehyde stabilization of the native conformation inhibits changes that allow membrane insertion. Biochemistry. 35: 2374-9. PMID 8652579 DOI: 10.1021/Bi952469Q |
0.459 |
|
1996 |
Tortorella D, Sesardic D, Dawes CS, London E. Immunochemical analysis shows all three domains of diphtheria toxin penetrate across model membranes. The Journal of Biological Chemistry. 270: 27446-52. PMID 7499201 DOI: 10.1074/Jbc.270.46.27446 |
0.49 |
|
1996 |
Tortorella D, Sesardic D, Dawes CS, London E. Immunochemical analysis of the structure of diphtheria toxin shows all three domains undergo structural changes at low pH. The Journal of Biological Chemistry. 270: 27439-45. PMID 7499200 DOI: 10.1074/Jbc.270.46.27439 |
0.375 |
|
1996 |
Kachel K, Asuncion-Punzalan E, London E. Anchoring of tryptophan and tyrosine analogs at the hydrocarbon-polar boundary in model membrane vesicles: parallax analysis of fluorescence quenching induced by nitroxide-labeled phospholipids. Biochemistry. 34: 15475-9. PMID 7492549 DOI: 10.1021/Bi00047A012 |
0.593 |
|
1995 |
Schroeder R, London E, Brown D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proceedings of the National Academy of Sciences of the United States of America. 91: 12130-4. PMID 7991596 DOI: 10.1073/Pnas.91.25.12130 |
0.569 |
|
1995 |
Asuncion-Punzalan E, London E. Control of the depth of molecules within membranes by polar groups: determination of the location of anthracene-labeled probes in model membranes by parallax analysis of nitroxide-labeled phospholipid induced fluorescence quenching. Biochemistry. 34: 11460-6. PMID 7547874 DOI: 10.1021/Bi00036A019 |
0.544 |
|
1994 |
Tortorella D, London E. Method for efficient pelleting of small unilamellar model membrane vesicles. Analytical Biochemistry. 217: 176-80. PMID 8203744 DOI: 10.1006/Abio.1994.1106 |
0.476 |
|
1994 |
London E. Analyzing the structure of polypeptides in membranes by fluorescence quenching Biophysical Journal. 67: 1368-1369. PMID 7819479 DOI: 10.1016/S0006-3495(94)80612-5 |
0.505 |
|
1993 |
Abrams FS, London E. Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry. 32: 10826-31. PMID 8399232 DOI: 10.1021/Bi00091A038 |
0.464 |
|
1993 |
Tortorella D, Ulbrandt ND, London E. Simple centrifugation method for efficient pelleting of both small and large unilamellar vesicles that allows convenient measurement of protein binding. Biochemistry. 32: 9181-8. PMID 8369285 DOI: 10.1021/Bi00086A025 |
0.518 |
|
1993 |
London E. How bacterial protein toxins enter cells; the role of partial unfolding in membrane translocation. Molecular Microbiology. 6: 3277-82. PMID 1484483 DOI: 10.1111/J.1365-2958.1992.Tb02195.X |
0.471 |
|
1992 |
Abrams FS, Chattopadhyay A, London E. Determination of the location of fluorescent probes attached to fatty acids using parallax analysis of fluorescence quenching: effect of carboxyl ionization state and environment on depth. Biochemistry. 31: 5322-5327. PMID 1606156 DOI: 10.1021/Bi00138A011 |
0.572 |
|
1992 |
Abrams FS, London E. Calibration of the parallax fluorescence quenching method for determination of membrane penetration depth: refinement and comparison of quenching by spin-labeled and brominated lipids. Biochemistry. 31: 5312-22. PMID 1606155 DOI: 10.1021/Bi00138A010 |
0.5 |
|
1992 |
London E. Diphtheria toxin: membrane interaction and membrane translocation. Biochimica Et Biophysica Acta. 1113: 25-51. PMID 1550860 DOI: 10.1016/0304-4157(92)90033-7 |
0.512 |
|
1991 |
Jiang JX, Abrams FS, London E. Folding changes in membrane-inserted diphtheria toxin that may play important roles in its translocation Biochemistry. 30: 3857-3864. PMID 1850289 DOI: 10.1021/Bi00230A008 |
0.623 |
|
1990 |
Kieleczawa J, Zhao JM, Luongo CL, Dong LY, London E. The effect of high pH upon diphtheria toxin conformation and model membrane association: role of partial unfolding. Archives of Biochemistry and Biophysics. 282: 214-20. PMID 2241144 DOI: 10.1016/0003-9861(90)90107-A |
0.353 |
|
1989 |
London E, Luongo CL. Domain-specific bias in arginine/lysine usage by protein toxins. Biochemical and Biophysical Research Communications. 160: 333-9. PMID 2496688 DOI: 10.1016/0006-291X(89)91660-4 |
0.392 |
|
1988 |
Zhao JM, London E. Localization of the active site of diphtheria toxin. Biochemistry. 27: 3398-403. PMID 3390439 DOI: 10.1021/Bi00409A041 |
0.307 |
|
1988 |
Chung LA, London E. Interaction of diphtheria toxin with model membranes. Biochemistry. 27: 1245-53. PMID 3365385 DOI: 10.1021/Bi00404A026 |
0.507 |
|
1988 |
Chattopadhyay A, London E. Spectroscopic and ionization properties of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids in model membranes Bba - Biomembranes. 938: 24-34. PMID 3337814 DOI: 10.1016/0005-2736(88)90118-6 |
0.688 |
|
1987 |
Chattopadhyay A, London E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry. 26: 39-45. PMID 3030403 DOI: 10.1021/Bi00375A006 |
0.606 |
|
1986 |
Blewitt MG, Chung LA, London E. Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration. Biochemistry. 24: 5458-64. PMID 4074708 DOI: 10.1021/Bi00341A027 |
0.324 |
|
1986 |
London E. A fluorescence-based detergent binding assay for protein hydrophobicity. Analytical Biochemistry. 154: 57-63. PMID 3706737 DOI: 10.1016/0003-2697(86)90495-1 |
0.342 |
|
1984 |
Blewitt MG, Zhao J, McKeever B, Sarma R, London E. Fluorescence characterization of the low pH-induced change in diphtheria toxin conformation: effect of salt. Biochemical and Biophysical Research Communications. 120: 286-290. PMID 6712698 DOI: 10.1016/0006-291X(84)91446-3 |
0.32 |
|
1984 |
Chattopadhyay A, London E. Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge Analytical Biochemistry. 139: 408-412. PMID 6476378 DOI: 10.1016/0003-2697(84)90026-5 |
0.524 |
|
1984 |
LONDON E, ZHAO J, CHATTOPADHYAY A, BLEWITT MG, MCKEEVER B, SARMA R. Fluorescence Quenching by a Brominated Detergent: Application to Diphtheria Toxin Structure Annals of the New York Academy of Sciences. 435: 558-559. DOI: 10.1111/J.1749-6632.1984.Tb13882.X |
0.53 |
|
1982 |
London E. Investigation of membrane structure using fluorescence quenching by spin-labels. A review of recent studies. Molecular and Cellular Biochemistry. 45: 181-8. PMID 6289077 DOI: 10.1007/BF00230086 |
0.408 |
|
1982 |
Bayley H, Höjeberg B, Huang K, Khorana HG, Liao M, Lind C, London E. [10] Delipidation, renaturation, and reconstitution of bacteriorhodopsin Methods in Enzymology. 88: 74-81. DOI: 10.1016/0076-6879(82)88013-0 |
0.779 |
|
1981 |
London E, Feigenson GW. Fluorescence quenching in model membranes. 2. Determination of the local lipid environment of the calcium adenosinetriphosphatase from sarcoplasmic reticulum Biochemistry. 20: 1939-1948. PMID 6452901 DOI: 10.1021/Bi00510A033 |
0.719 |
|
1981 |
London E, Feigenson GW. Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid Biochemistry. 20: 1932-1938. PMID 6261807 DOI: 10.1021/Bi00510A032 |
0.673 |
|
1981 |
London E, Feigenson GW. Fluorescence quenching in model membranes An analysis of the local phospholipid environments of diphenylhexatriene and gramicidin A′ Bba - Biomembranes. 649: 89-97. DOI: 10.1016/0005-2736(81)90012-2 |
0.64 |
|
1978 |
London E, Feigenson GW. A convenient and sensitive fluorescence assay for phospholipid vesicles using diphenylhexatriene Analytical Biochemistry. 88: 203-211. PMID 696996 DOI: 10.1016/0003-2697(78)90412-8 |
0.586 |
|
Show low-probability matches. |