Year |
Citation |
Score |
2023 |
Hausrath AC, McEvoy MM. Structural Analyses of the Multicopper Site of CopG Support a Role as a Redox Enzyme. Advances in Experimental Medicine and Biology. PMID 36637718 DOI: 10.1007/5584_2022_753 |
0.417 |
|
2021 |
Gomez-Lugo JJ, Santos BD, Perez-Perez DA, Montfort-Gardeazabal JM, McEvoy MM, Zarate X. Expression and Purification of Recombinant Proteins in Escherichia coli Tagged with the Metal-Binding Proteins SmbP and CusF3H. Methods in Molecular Biology (Clifton, N.J.). 2178: 329-344. PMID 33128759 DOI: 10.1007/978-1-0716-0775-6_22 |
0.378 |
|
2020 |
Hausrath AC, Ramirez NA, Ly AT, McEvoy MM. The bacterial copper-resistance protein CopG contains a cysteine-bridged tetranuclear copper cluster. The Journal of Biological Chemistry. PMID 32571874 DOI: 10.1074/jbc.RA120.013907 |
0.404 |
|
2020 |
Bazzi W, Abou Fayad AG, Nasser A, Haraoui LP, Dewachi O, Abou-Sitta G, Nguyen VK, Abara A, Karah N, Landecker H, Knapp C, McEvoy MM, Zaman MH, Higgins PG, Matar GM. Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in by Selecting for Antibiotic and Heavy Metal Co-resistance Mechanisms. Frontiers in Microbiology. 11: 68. PMID 32117111 DOI: 10.3389/Fmicb.2020.00068 |
0.324 |
|
2019 |
Affandi T, McEvoy MM. Mechanism of metal ion-induced activation of a two-component sensor kinase. The Biochemical Journal. 476: 115-135. PMID 30530842 DOI: 10.1042/BCJ20180577 |
0.476 |
|
2017 |
Santiago AG, Chen TY, Genova LA, Jung W, George Thompson AM, McEvoy MM, Chen P. Adaptor protein mediates dynamic pump assembly for bacterial metal efflux. Proceedings of the National Academy of Sciences of the United States of America. PMID 28607072 DOI: 10.1073/Pnas.1704729114 |
0.427 |
|
2016 |
Affandi T, Issaian AV, McEvoy MM. The Structure of the Periplasmic Sensor Domain of the Histidine Kinase CusS Shows Unusual Metal Ion Coordination at the Dimeric Interface. Biochemistry. PMID 27583660 DOI: 10.1021/Acs.Biochem.6B00707 |
0.569 |
|
2016 |
Cantu-Bustos JE, Vargas-Cortez T, Morones-Ramirez JR, Balderas-Renteria I, Galbraith DW, McEvoy MM, Zarate X. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF. Protein Expression and Purification. 121: 61-5. PMID 26805756 DOI: 10.1016/J.Pep.2016.01.007 |
0.399 |
|
2015 |
Zárate X, McEvoy MM, Vargas-Cortez T, Gómez-Lugo JJ, Barahona CJ, Cárdenas EC, -Treviño AG. Purification of the <i>Drosophila melanogaster</i> Proteins Inscuteable and Staufen Expressed in <i>Escherichia coli</i> Advances in Bioscience and Biotechnology. 6: 485-493. DOI: 10.4236/Abb.2015.67050 |
0.349 |
|
2014 |
Chacón KN, Mealman TD, McEvoy MM, Blackburn NJ. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Proceedings of the National Academy of Sciences of the United States of America. 111: 15373-8. PMID 25313055 DOI: 10.1073/Pnas.1411475111 |
0.585 |
|
2014 |
Gudipaty SA, McEvoy MM. The histidine kinase CusS senses silver ions through direct binding by its sensor domain. Biochimica Et Biophysica Acta. 1844: 1656-61. PMID 24948475 DOI: 10.1016/J.Bbapap.2014.06.001 |
0.515 |
|
2014 |
Padilla-Benavides T, George Thompson AM, McEvoy MM, Argüello JM. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF. The Journal of Biological Chemistry. 289: 20492-501. PMID 24917681 DOI: 10.1074/Jbc.M114.577668 |
0.444 |
|
2014 |
Jayakanthan S, McEvoy MM, Woolf TB. Molecular Dynamics Simulations Helps to Rationalize CopB Mutations and their Relationships to Wilson Disease Biophysical Journal. 106: 583a. DOI: 10.1016/J.Bpj.2013.11.3232 |
0.323 |
|
2012 |
Mealman TD, Blackburn NJ, McEvoy MM. Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli. Current Topics in Membranes. 69: 163-96. PMID 23046651 DOI: 10.1016/B978-0-12-394390-3.00007-0 |
0.587 |
|
2012 |
Mealman TD, Zhou M, Affandi T, Chacón KN, Aranguren ME, Blackburn NJ, Wysocki VH, McEvoy MM. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF. Biochemistry. 51: 6767-75. PMID 22812620 DOI: 10.1021/Bi300596A |
0.631 |
|
2012 |
Jayakanthan S, Roberts SA, Weichsel A, Argüello JM, McEvoy MM. Conformations of the apo-, substrate-bound and phosphate-bound ATP-binding domain of the Cu(II) ATPase CopB illustrate coupling of domain movement to the catalytic cycle. Bioscience Reports. 32: 443-53. PMID 22663904 DOI: 10.1042/Bsr20120048 |
0.696 |
|
2012 |
Gudipaty SA, Larsen AS, Rensing C, McEvoy MM. Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. Fems Microbiology Letters. 330: 30-7. PMID 22348296 DOI: 10.1111/J.1574-6968.2012.02529.X |
0.493 |
|
2011 |
Kim EH, Nies DH, McEvoy MM, Rensing C. Switch or funnel: how RND-type transport systems control periplasmic metal homeostasis. Journal of Bacteriology. 193: 2381-7. PMID 21398536 DOI: 10.1128/Jb.01323-10 |
0.649 |
|
2011 |
Mealman TD, Bagai I, Singh P, Goodlett DR, Rensing C, Zhou H, Wysocki VH, McEvoy MM. Interactions between CusF and CusB identified by NMR spectroscopy and chemical cross-linking coupled to mass spectrometry. Biochemistry. 50: 2559-66. PMID 21323389 DOI: 10.1021/Bi102012J |
0.736 |
|
2010 |
Conroy O, Kim EH, McEvoy MM, Rensing C. Differing ability to transport nonmetal substrates by two RND-type metal exporters. Fems Microbiology Letters. 308: 115-22. PMID 20497225 DOI: 10.1111/J.1574-6968.2010.02006.X |
0.691 |
|
2010 |
Kim EH, Rensing C, McEvoy MM. Chaperone-mediated copper handling in the periplasm. Natural Product Reports. 27: 711-9. PMID 20442961 DOI: 10.1039/B906681K |
0.693 |
|
2009 |
Kim EH, Charpentier X, Torres-Urquidy O, McEvoy MM, Rensing C. The metal efflux island of Legionella pneumophila is not required for survival in macrophages and amoebas. Fems Microbiology Letters. 301: 164-70. PMID 19895645 DOI: 10.1111/J.1574-6968.2009.01813.X |
0.661 |
|
2009 |
Quaranta D, McEvoy MM, Rensing C. Site-directed mutagenesis identifies a molecular switch involved in copper sensing by the histidine kinase CinS in Pseudomonas putida KT2440. Journal of Bacteriology. 191: 5304-11. PMID 19542288 DOI: 10.1128/Jb.00551-09 |
0.401 |
|
2009 |
Loftin IR, Blackburn NJ, McEvoy MM. Tryptophan Cu(I)-pi interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 14: 905-12. PMID 19381697 DOI: 10.1007/S00775-009-0503-Y |
0.528 |
|
2008 |
Bagai I, Rensing C, Blackburn NJ, McEvoy MM. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Biochemistry. 47: 11408-14. PMID 18847219 DOI: 10.1021/Bi801638M |
0.752 |
|
2007 |
Loftin IR, Franke S, Blackburn NJ, McEvoy MM. Unusual Cu(I)/Ag(I) coordination of Escherichia coli CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy. Protein Science : a Publication of the Protein Society. 16: 2287-93. PMID 17893365 DOI: 10.1110/Ps.073021307 |
0.48 |
|
2007 |
Bagai I, Liu W, Rensing C, Blackburn NJ, McEvoy MM. Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system. The Journal of Biological Chemistry. 282: 35695-702. PMID 17893146 DOI: 10.1074/Jbc.M703937200 |
0.767 |
|
2006 |
Kittleson JT, Loftin IR, Hausrath AC, Engelhardt KP, Rensing C, McEvoy MM. Periplasmic metal-resistance protein CusF exhibits high affinity and specificity for both CuI and AgI. Biochemistry. 45: 11096-102. PMID 16964970 DOI: 10.1021/Bi0612622 |
0.506 |
|
2005 |
Loftin IR, Franke S, Roberts SA, Weichsel A, Héroux A, Montfort WR, Rensing C, McEvoy MM. A novel copper-binding fold for the periplasmic copper resistance protein CusF. Biochemistry. 44: 10533-40. PMID 16060662 DOI: 10.1021/Bi050827B |
0.487 |
|
2005 |
Astashkin AV, Raitsimring AM, Walker FA, Rensing C, McEvoy MM. Characterization of the copper(II) binding site in the pink copper binding protein CusF by electron paramagnetic resonance spectroscopy. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 10: 221-30. PMID 15770503 DOI: 10.1007/S00775-005-0631-Y |
0.399 |
|
2004 |
Dyer CM, Quillin ML, Campos A, Lu J, McEvoy MM, Hausrath AC, Westbrook EM, Matsumura P, Matthews BW, Dahlquist FW. Structure of the constitutively active double mutant CheYD13K Y106W alone and in complex with a FliM peptide. Journal of Molecular Biology. 342: 1325-35. PMID 15351654 DOI: 10.1016/J.Jmb.2004.07.084 |
0.41 |
|
2000 |
Halkides CJ, McEvoy MM, Casper E, Matsumura P, Volz K, Dahlquist FW. The 1.9 A resolution crystal structure of phosphono-CheY, an analogue of the active form of the response regulator, CheY. Biochemistry. 39: 5280-6. PMID 10819997 DOI: 10.1021/Bi9925524 |
0.318 |
|
1999 |
McEvoy MM, Bren A, Eisenbach M, Dahlquist FW. Identification of the binding interfaces on CheY for two of its targets, the phosphatase CheZ and the flagellar switch protein fliM. Journal of Molecular Biology. 289: 1423-33. PMID 10373376 DOI: 10.1006/Jmbi.1999.2830 |
0.382 |
|
1998 |
McEvoy MM, Hausrath AC, Randolph GB, Remington SJ, Dahlquist FW. Two binding modes reveal flexibility in kinase/response regulator interactions in the bacterial chemotaxis pathway. Proceedings of the National Academy of Sciences of the United States of America. 95: 7333-8. PMID 9636149 DOI: 10.1073/Pnas.95.13.7333 |
0.42 |
|
1997 |
McEvoy MM, Dahlquist FW. Phosphohistidines in bacterial signaling. Current Opinion in Structural Biology. 7: 793-7. PMID 9434897 DOI: 10.1016/S0959-440X(97)80148-0 |
0.361 |
|
1997 |
McEvoy MM, de la Cruz AF, Dahlquist FW. Large modular proteins by NMR. Nature Structural Biology. 4: 9. PMID 8989314 DOI: 10.1038/Nsb0197-9 |
0.311 |
|
1996 |
McEvoy MM, Muhandiram DR, Kay LE, Dahlquist FW. Structure and dynamics of a CheY-binding domain of the chemotaxis kinase CheA determined by nuclear magnetic resonance spectroscopy. Biochemistry. 35: 5633-40. PMID 8639521 DOI: 10.1021/Bi952707H |
0.442 |
|
1996 |
Zhou H, McEvoy MM, Lowry DF, Swanson RV, Simon MI, Dahlquist FW. Phosphotransfer and CheY-binding domains of the histidine autokinase CheA are joined by a flexible linker. Biochemistry. 35: 433-43. PMID 8555213 DOI: 10.1021/Bi951960E |
0.332 |
|
1995 |
McEvoy MM, Zhou H, Roth AF, Lowry DF, Morrison TB, Kay LE, Dahlquist FW. Nuclear magnetic resonance assignments and global fold of a CheY-binding domain in CheA, the chemotaxis-specific kinase of Escherichia coli. Biochemistry. 34: 13871-80. PMID 7577981 DOI: 10.1021/Bi00042A019 |
0.35 |
|
1995 |
Swanson RV, Lowry DF, Matsumura P, McEvoy MM, Simon MI, Dahlquist FW. Localized perturbations in CheY structure monitored by NMR identify a CheA binding interface. Nature Structural Biology. 2: 906-10. PMID 7552716 DOI: 10.1038/Nsb1095-906 |
0.41 |
|
Show low-probability matches. |