Year |
Citation |
Score |
2024 |
Khan YA, White KI, Pfuetzner RA, Singal B, Esquivies L, Mckenzie G, Liu F, DeLong K, Choi UB, Montabana E, Mclaughlin T, Wickner WT, Brunger AT. Sec18 side-loading is essential for universal SNARE recycling across cellular contexts. Biorxiv : the Preprint Server For Biology. PMID 39257774 DOI: 10.1101/2024.08.30.610324 |
0.327 |
|
2024 |
Orr A, Wickner W. Sec18 binds the tethering/SM complex HOPS to engage the Qc-SNARE for membrane fusion. Molecular Biology of the Cell. mbcE24020060. PMID 38536444 DOI: 10.1091/mbc.E24-02-0060 |
0.458 |
|
2023 |
Orr A, Wickner W. MARCKS Effector Domain, a reversible lipid ligand, illuminates late stages of membrane fusion. Molecular Biology of the Cell. 34: ar123. PMID 37672336 DOI: 10.1091/mbc.E23-06-0228 |
0.445 |
|
2023 |
Wickner W, Lopes K, Song H, Rizo J, Orr A. Efficient fusion requires a membrane anchor on the vacuolar Qa-SNARE. Molecular Biology of the Cell. mbcE23020052. PMID 37314849 DOI: 10.1091/mbc.E23-02-0052 |
0.464 |
|
2023 |
Orr A, Wickner W. PI3P Regulates Multiple Stages of Membrane Fusion. Molecular Biology of the Cell. mbcE22100486. PMID 36735517 DOI: 10.1091/mbc.E22-10-0486 |
0.467 |
|
2022 |
Orr A, Wickner W. Sec18 Supports Membrane Fusion by Promoting Sec17 Membrane Association. Molecular Biology of the Cell. mbcE22070274. PMID 36103252 DOI: 10.1091/mbc.E22-07-0274 |
0.463 |
|
2022 |
Orr A, Song H, Wickner W. Fusion with wild-type SNARE domains is controlled by juxtamembrane domains, transmembrane anchors, and Sec17. Molecular Biology of the Cell. mbcE21110583. PMID 35171720 DOI: 10.1091/mbc.E21-11-0583 |
0.387 |
|
2021 |
Song H, Wickner WT. Fusion of tethered membranes can be driven by Sec18/NSF and Sec17/αSNAP without HOPS. Elife. 10. PMID 34698639 DOI: 10.7554/eLife.73240 |
0.483 |
|
2021 |
Torng T, Wickner W. Phosphatidylinositol and phosphatidylinositol-3-phosphate activate HOPS to catalyze SNARE assembly, allowing small headgroup lipids to support the terminal steps of membrane fusion. Molecular Biology of the Cell. mbcE21040191. PMID 34495682 DOI: 10.1091/mbc.E21-07-0373 |
0.442 |
|
2021 |
Song H, Torng TL, Orr AS, Brunger AT, Wickner WT. Sec17/Sec18 can support membrane fusion without help from completion of SNARE zippering. Elife. 10. PMID 33944780 DOI: 10.7554/eLife.67578 |
0.428 |
|
2020 |
Lee M, Wickner W, Song H. A Rab prenyl membrane-anchor allows effector recognition to be regulated by guanine nucleotide. Proceedings of the National Academy of Sciences of the United States of America. PMID 32213587 DOI: 10.1073/pnas.2000923117 |
0.575 |
|
2020 |
Torng T, Song H, Wickner W. Asymmetric Rab activation of vacuolar HOPS to catalyze SNARE complex assembly. Molecular Biology of the Cell. mbcE20010019. PMID 32160129 DOI: 10.1091/mbc.E20-01-0019 |
0.537 |
|
2019 |
Jun Y, Wickner W. Sec17 (α-SNAP) and Sec18 (NSF) restrict membrane fusion to R-SNAREs, Q-SNAREs, and SM proteins from identical compartments. Proceedings of the National Academy of Sciences of the United States of America. PMID 31685636 DOI: 10.1073/pnas.1913985116 |
0.518 |
|
2019 |
Song H, Wickner W. Tethering guides fusion-competent -SNARE assembly. Proceedings of the National Academy of Sciences of the United States of America. PMID 31235584 DOI: 10.1073/pnas.1907640116 |
0.587 |
|
2017 |
Harner M, Wickner W. Assembly of intermediates for rapid membrane fusion. The Journal of Biological Chemistry. PMID 29208657 DOI: 10.1074/jbc.RA117.000791 |
0.585 |
|
2017 |
Song H, Orr AS, Duan M, Merz AJ, Wickner WT. Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes. Elife. 6. PMID 28718762 DOI: 10.7554/Elife.26646 |
0.698 |
|
2017 |
Song H, Wickner W. A Short Region Upstream of the Yeast Vacuolar Qa SNARE Heptad-Repeats Promotes Membrane Fusion through Enhanced SNARE Complex Assembly. Molecular Biology of the Cell. PMID 28637767 DOI: 10.1091/mbc.E17-04-0218 |
0.545 |
|
2017 |
Wickner W, Rizo J. A cascade of multiple proteins and lipids catalyzes membrane fusion. Molecular Biology of the Cell. 28: 707-711. PMID 28292915 DOI: 10.1091/mbc.E16-07-0517 |
0.586 |
|
2017 |
Orr A, Song H, Rusin SF, Kettenbach AN, Wickner W. HOPS catalyzes the interdependent assembly of each vacuolar SNARE into a SNARE complex. Molecular Biology of the Cell. PMID 28148647 DOI: 10.1091/mbc.E16-10-0743 |
0.525 |
|
2017 |
Song H, Orr A, Duan M, Merz AJ, Wickner W. Author response: Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes Elife. DOI: 10.7554/Elife.26646.029 |
0.68 |
|
2016 |
Zick M, Wickner W. Improved reconstitution of yeast vacuole fusion with physiological SNARE concentrations reveals an asymmetric Rab(GTP) requirement. Molecular Biology of the Cell. PMID 27385334 DOI: 10.1091/mbc.E16-04-0230 |
0.546 |
|
2015 |
Baker RW, Jeffrey PD, Zick M, Phillips BP, Wickner WT, Hughson FM. A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science (New York, N.Y.). 349: 1111-4. PMID 26339030 DOI: 10.1126/Science.Aac7906 |
0.462 |
|
2015 |
Zick M, Stroupe C, Orr A, Douville D, Wickner WT. Correction: Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. Elife. 4. PMID 26012539 DOI: 10.7554/eLife.08843 |
0.411 |
|
2015 |
Zick M, Orr A, Schwartz ML, Merz AJ, Wickner WT. Sec17 can trigger fusion of trans-SNARE paired membranes without Sec18. Proceedings of the National Academy of Sciences of the United States of America. 112: E2290-7. PMID 25902545 DOI: 10.1073/Pnas.1506409112 |
0.795 |
|
2015 |
Orr A, Wickner W, Rusin SF, Kettenbach AN, Zick M. Yeast vacuolar HOPS, regulated by its kinase, exploits affinities for acidic lipids and Rab:GTP for membrane binding and to catalyze tethering and fusion. Molecular Biology of the Cell. 26: 305-15. PMID 25411340 DOI: 10.1091/mbc.E14-08-1298 |
0.514 |
|
2014 |
Zick M, Wickner WT. A distinct tethering step is vital for vacuole membrane fusion. Elife. 3: e03251. PMID 25255215 DOI: 10.7554/eLife.03251 |
0.452 |
|
2014 |
Zick M, Stroupe C, Orr A, Douville D, Wickner WT. Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. Elife. 3: e01879. PMID 24596153 DOI: 10.7554/eLife.01879 |
0.455 |
|
2013 |
Zick M, Wickner W. The tethering complex HOPS catalyzes assembly of the soluble SNARE Vam7 into fusogenic trans-SNARE complexes. Molecular Biology of the Cell. 24: 3746-53. PMID 24088569 DOI: 10.1091/mbc.E13-07-0419 |
0.58 |
|
2013 |
Karunakaran V, Wickner W. Fusion proteins and select lipids cooperate as membrane receptors for the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Vam7p. The Journal of Biological Chemistry. 288: 28557-66. PMID 23955338 DOI: 10.1074/Jbc.M113.484410 |
0.761 |
|
2012 |
Xu H, Wickner WT. N-terminal domain of vacuolar SNARE Vam7p promotes trans-SNARE complex assembly. Proceedings of the National Academy of Sciences of the United States of America. 109: 17936-41. PMID 23071309 DOI: 10.1073/pnas.1216201109 |
0.314 |
|
2012 |
Zick M, Wickner W. Phosphorylation of the effector complex HOPS by the vacuolar kinase Yck3p confers Rab nucleotide specificity for vacuole docking and fusion. Molecular Biology of the Cell. 23: 3429-37. PMID 22787280 DOI: 10.1091/mbc.E12-04-0279 |
0.484 |
|
2011 |
Xu H, Zick M, Wickner WT, Jun Y. A lipid-anchored SNARE supports membrane fusion. Proceedings of the National Academy of Sciences of the United States of America. 108: 17325-30. PMID 21987819 DOI: 10.1073/pnas.1113888108 |
0.45 |
|
2010 |
Xu H, Wickner W. Phosphoinositides function asymmetrically for membrane fusion, promoting tethering and 3Q-SNARE subcomplex assembly. The Journal of Biological Chemistry. 285: 39359-65. PMID 20937838 DOI: 10.1074/jbc.M110.183111 |
0.428 |
|
2010 |
Wickner W. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annual Review of Cell and Developmental Biology. 26: 115-36. PMID 20521906 DOI: 10.1146/annurev-cellbio-100109-104131 |
0.568 |
|
2010 |
Xu H, Jun Y, Thompson J, Yates J, Wickner W. HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion. The Embo Journal. 29: 1948-60. PMID 20473271 DOI: 10.1038/Emboj.2010.97 |
0.545 |
|
2010 |
Hickey CM, Wickner W. HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly. Molecular Biology of the Cell. 21: 2297-305. PMID 20462954 DOI: 10.1091/Mbc.E10-01-0044 |
0.791 |
|
2009 |
Stroupe C, Hickey CM, Mima J, Burfeind AS, Wickner W. Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components. Proceedings of the National Academy of Sciences of the United States of America. 106: 17626-33. PMID 19826089 DOI: 10.1073/Pnas.0903801106 |
0.799 |
|
2009 |
Mima J, Wickner W. Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion. Proceedings of the National Academy of Sciences of the United States of America. 106: 16191-6. PMID 19805279 DOI: 10.1073/pnas.0908694106 |
0.454 |
|
2009 |
Mima J, Wickner W. Complex lipid requirements for SNARE- and SNARE chaperone-dependent membrane fusion. The Journal of Biological Chemistry. 284: 27114-22. PMID 19654322 DOI: 10.1074/jbc.M109.010223 |
0.484 |
|
2009 |
Hickey CM, Stroupe C, Wickner W. The major role of the Rab Ypt7p in vacuole fusion is supporting HOPS membrane association. The Journal of Biological Chemistry. 284: 16118-25. PMID 19386605 DOI: 10.1074/Jbc.M109.000737 |
0.792 |
|
2008 |
Mima J, Hickey CM, Xu H, Jun Y, Wickner W. Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. The Embo Journal. 27: 2031-42. PMID 18650938 DOI: 10.1038/Emboj.2008.139 |
0.754 |
|
2008 |
Wickner W, Schekman R. Membrane fusion. Nature Structural & Molecular Biology. 15: 658-64. PMID 18618939 DOI: 10.1038/nsmb.1451 |
0.67 |
|
2008 |
Starai VJ, Hickey CM, Wickner W. HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Molecular Biology of the Cell. 19: 2500-8. PMID 18385512 DOI: 10.1091/Mbc.E08-01-0077 |
0.747 |
|
2007 |
Jun Y, Xu H, Thorngren N, Wickner W. Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion. The Embo Journal. 26: 4935-45. PMID 18007597 DOI: 10.1038/sj.emboj.7601915 |
0.547 |
|
2007 |
Starai VJ, Jun Y, Wickner W. Excess vacuolar SNAREs drive lysis and Rab bypass fusion. Proceedings of the National Academy of Sciences of the United States of America. 104: 13551-8. PMID 17699614 DOI: 10.1073/pnas.0704741104 |
0.564 |
|
2007 |
Jun Y, Wickner W. Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proceedings of the National Academy of Sciences of the United States of America. 104: 13010-5. PMID 17664431 DOI: 10.1073/pnas.0700970104 |
0.476 |
|
2007 |
Collins KM, Wickner WT. Trans-SNARE complex assembly and yeast vacuole membrane fusion. Proceedings of the National Academy of Sciences of the United States of America. 104: 8755-60. PMID 17502611 DOI: 10.1073/Pnas.0702290104 |
0.697 |
|
2007 |
Fratti RA, Collins KM, Hickey CM, Wickner W. Stringent 3Q.1R composition of the SNARE 0-layer can be bypassed for fusion by compensatory SNARE mutation or by lipid bilayer modification. The Journal of Biological Chemistry. 282: 14861-7. PMID 17400548 DOI: 10.1074/Jbc.M700971200 |
0.804 |
|
2007 |
Fratti RA, Wickner W. Distinct targeting and fusion functions of the PX and SNARE domains of yeast vacuolar Vam7p. The Journal of Biological Chemistry. 282: 13133-8. PMID 17347148 DOI: 10.1074/Jbc.M700584200 |
0.74 |
|
2006 |
Jun Y, Thorngren N, Starai VJ, Fratti RA, Collins K, Wickner W. Reversible, cooperative reactions of yeast vacuole docking. The Embo Journal. 25: 5260-9. PMID 17082764 DOI: 10.1038/Sj.Emboj.7601413 |
0.812 |
|
2006 |
Xu H, Wickner W. Bem1p is a positive regulator of the homotypic fusion of yeast vacuoles. The Journal of Biological Chemistry. 281: 27158-66. PMID 16854988 DOI: 10.1074/jbc.M605592200 |
0.428 |
|
2006 |
Stroupe C, Collins KM, Fratti RA, Wickner W. Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. The Embo Journal. 25: 1579-89. PMID 16601699 DOI: 10.1038/Sj.Emboj.7601051 |
0.803 |
|
2006 |
Decker BL, Wickner WT. Enolase activates homotypic vacuole fusion and protein transport to the vacuole in yeast. The Journal of Biological Chemistry. 281: 14523-8. PMID 16565073 DOI: 10.1074/jbc.M600911200 |
0.445 |
|
2005 |
Wickner W, Schekman R. Protein translocation across biological membranes. Science (New York, N.Y.). 310: 1452-6. PMID 16322447 DOI: 10.1126/Science.1113752 |
0.649 |
|
2005 |
Collins KM, Thorngren NL, Fratti RA, Wickner WT. Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. The Embo Journal. 24: 1775-86. PMID 15889152 DOI: 10.1038/Sj.Emboj.7600658 |
0.798 |
|
2005 |
Starai VJ, Thorngren N, Fratti RA, Wickner W. Ion regulation of homotypic vacuole fusion in Saccharomyces cerevisiae. The Journal of Biological Chemistry. 280: 16754-62. PMID 15737991 DOI: 10.1074/Jbc.M500421200 |
0.724 |
|
2004 |
Fratti RA, Jun Y, Merz AJ, Margolis N, Wickner W. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. The Journal of Cell Biology. 167: 1087-98. PMID 15611334 DOI: 10.1083/Jcb.200409068 |
0.821 |
|
2004 |
Jun Y, Fratti RA, Wickner W. Diacylglycerol and its formation by phospholipase C regulate Rab- and SNARE-dependent yeast vacuole fusion. The Journal of Biological Chemistry. 279: 53186-95. PMID 15485855 DOI: 10.1074/Jbc.M411363200 |
0.762 |
|
2004 |
Merz AJ, Wickner WT. Resolution of organelle docking and fusion kinetics in a cell-free assay. Proceedings of the National Academy of Sciences of the United States of America. 101: 11548-53. PMID 15286284 DOI: 10.1073/Pnas.0404583101 |
0.61 |
|
2004 |
Thorngren N, Collins KM, Fratti RA, Wickner W, Merz AJ. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. The Embo Journal. 23: 2765-76. PMID 15241469 DOI: 10.1038/Sj.Emboj.7600286 |
0.832 |
|
2004 |
Merz AJ, Wickner WT. Trans-SNARE interactions elicit Ca2+ efflux from the yeast vacuole lumen. The Journal of Cell Biology. 164: 195-206. PMID 14734531 DOI: 10.1083/Jcb.200310105 |
0.53 |
|
2003 |
Kato M, Wickner W. Vam10p defines a Sec18p-independent step of priming that allows yeast vacuole tethering. Proceedings of the National Academy of Sciences of the United States of America. 100: 6398-403. PMID 12748377 DOI: 10.1073/pnas.1132162100 |
0.366 |
|
2003 |
Wang L, Merz AJ, Collins KM, Wickner W. Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. The Journal of Cell Biology. 160: 365-74. PMID 12566429 DOI: 10.1083/Jcb.200209095 |
0.784 |
|
2002 |
Eitzen G, Wang L, Thorngren N, Wickner W. Remodeling of organelle-bound actin is required for yeast vacuole fusion. The Journal of Cell Biology. 158: 669-79. PMID 12177043 DOI: 10.1083/Jcb.200204089 |
0.507 |
|
2002 |
Seeley ES, Kato M, Margolis N, Wickner W, Eitzen G. Genomic analysis of homotypic vacuole fusion. Molecular Biology of the Cell. 13: 782-94. PMID 11907261 DOI: 10.1091/mbc.01-10-0512 |
0.417 |
|
2002 |
Wickner W. Yeast vacuoles and membrane fusion pathways. The Embo Journal. 21: 1241-7. PMID 11889030 DOI: 10.1093/emboj/21.6.1241 |
0.488 |
|
2002 |
Wang L, Seeley ES, Wickner W, Merz AJ. Vacuole fusion at a ring of vertex docking sites leaves membrane fragments within the organelle. Cell. 108: 357-69. PMID 11853670 DOI: 10.1016/S0092-8674(02)00632-3 |
0.744 |
|
2001 |
Eitzen G, Thorngren N, Wickner W. Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking. The Embo Journal. 20: 5650-6. PMID 11598008 DOI: 10.1093/emboj/20.20.5650 |
0.487 |
|
2001 |
Kato M, Wickner W. Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. The Embo Journal. 20: 4035-40. PMID 11483507 DOI: 10.1093/emboj/20.15.4035 |
0.479 |
|
2001 |
Yahr TL, Wickner WT. Functional reconstitution of bacterial Tat translocation in vitro. The Embo Journal. 20: 2472-9. PMID 11350936 DOI: 10.1093/Emboj/20.10.2472 |
0.741 |
|
2000 |
Eitzen G, Will E, Gallwitz D, Haas A, Wickner W. Sequential action of two GTPases to promote vacuole docking and fusion. The Embo Journal. 19: 6713-20. PMID 11118206 DOI: 10.1093/emboj/19.24.6713 |
0.414 |
|
2000 |
Wickner W, Haas A. Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms. Annual Review of Biochemistry. 69: 247-75. PMID 10966459 DOI: 10.1146/annurev.biochem.69.1.247 |
0.604 |
|
2000 |
Seals DF, Eitzen G, Margolis N, Wickner WT, Price A. A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proceedings of the National Academy of Sciences of the United States of America. 97: 9402-7. PMID 10944212 |
0.368 |
|
2000 |
Yahr TL, Wickner WT. Evaluating the oligomeric state of SecYEG in preprotein translocase. The Embo Journal. 19: 4393-401. PMID 10944122 DOI: 10.1093/Emboj/19.16.4393 |
0.681 |
|
2000 |
Ungermann C, Price A, Wickner W. A new role for a SNARE protein as a regulator of the Ypt7/Rab-dependent stage of docking. Proceedings of the National Academy of Sciences of the United States of America. 97: 8889-91. PMID 10908678 DOI: 10.1073/Pnas.160269997 |
0.656 |
|
2000 |
Wang L, Ungermann C, Wickner W. The docking of primed vacuoles can be reversibly arrested by excess Sec17p (alpha-SNAP). The Journal of Biological Chemistry. 275: 22862-7. PMID 10816559 DOI: 10.1074/Jbc.M001447200 |
0.703 |
|
2000 |
Price A, Seals D, Wickner W, Ungermann C. The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. The Journal of Cell Biology. 148: 1231-8. PMID 10725336 DOI: 10.1083/Jcb.148.6.1231 |
0.649 |
|
2000 |
Price A, Wickner W, Ungermann C. Proteins needed for vesicle budding from the Golgi complex are also required for the docking step of homotypic vacuole fusion. The Journal of Cell Biology. 148: 1223-29. PMID 10725335 DOI: 10.1083/Jcb.148.6.1223 |
0.721 |
|
2000 |
Mayer A, Scheglmann D, Dove S, Glatz A, Wickner W, Haas A. Phosphatidylinositol 4,5-bisphosphate regulates two steps of homotypic vacuole fusion. Molecular Biology of the Cell. 11: 807-17. PMID 10712501 DOI: 10.1091/Mbc.11.3.807 |
0.375 |
|
1999 |
Ungermann C, Wickner W, Xu Z. Vacuole acidification is required for trans-SNARE pairing, LMA1 release, and homotypic fusion. Proceedings of the National Academy of Sciences of the United States of America. 96: 11194-9. PMID 10500153 DOI: 10.1073/Pnas.96.20.11194 |
0.617 |
|
1999 |
Ungermann C, von Mollard GF, Jensen ON, Margolis N, Stevens TH, Wickner W. Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. The Journal of Cell Biology. 145: 1435-42. PMID 10385523 DOI: 10.1083/Jcb.145.7.1435 |
0.622 |
|
1999 |
Duong F, Wickner W. The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits. The Embo Journal. 18: 3263-70. PMID 10369667 DOI: 10.1093/emboj/18.12.3263 |
0.388 |
|
1998 |
Ungermann C, Sato K, Wickner W. Defining the functions of trans-SNARE pairs. Nature. 396: 543-8. PMID 9859990 DOI: 10.1038/25069 |
0.701 |
|
1998 |
Eichler J, Wickner W. The SecA subunit of Escherichia coli preprotein translocase is exposed to the periplasm. Journal of Bacteriology. 180: 5776-9. PMID 9791133 DOI: 10.1128/Jb.180.21.5776-5779.1998 |
0.522 |
|
1998 |
Eichler J, Rinard K, Wickner W. Endogenous SecA catalyzes preprotein translocation at SecYEG. The Journal of Biological Chemistry. 273: 21675-81. PMID 9705302 DOI: 10.1074/jbc.273.34.21675 |
0.513 |
|
1998 |
Sato K, Wickner W. Functional reconstitution of ypt7p GTPase and a purified vacuole SNARE complex. Science (New York, N.Y.). 281: 700-2. PMID 9685264 DOI: 10.1126/Science.281.5377.700 |
0.541 |
|
1998 |
Xu Z, Sato K, Wickner W. LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell. 93: 1125-34. PMID 9657146 DOI: 10.1016/S0092-8674(00)81457-9 |
0.392 |
|
1998 |
Ungermann C, Wickner W. Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. The Embo Journal. 17: 3269-76. PMID 9628864 DOI: 10.1093/Emboj/17.12.3269 |
0.693 |
|
1998 |
Duong F, Wickner W. Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function. The Embo Journal. 17: 696-705. PMID 9450995 DOI: 10.1093/emboj/17.3.696 |
0.571 |
|
1998 |
Ungermann C, Nichols BJ, Pelham HR, Wickner W. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. The Journal of Cell Biology. 140: 61-9. PMID 9425154 DOI: 10.1083/Jcb.140.1.61 |
0.62 |
|
1997 |
Duong F, Wickner W. The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. The Embo Journal. 16: 4871-9. PMID 9305629 DOI: 10.1093/emboj/16.16.4871 |
0.507 |
|
1997 |
Duong F, Wickner W. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. The Embo Journal. 16: 2756-68. PMID 9184221 DOI: 10.1093/emboj/16.10.2756 |
0.579 |
|
1997 |
Eichler J, Brunner J, Wickner W. The protease-protected 30 kDa domain of SecA is largely inaccessible to the membrane lipid phase. The Embo Journal. 16: 2188-96. PMID 9171334 DOI: 10.1093/emboj/16.9.2188 |
0.523 |
|
1997 |
Eichler J, Wickner W. Both an N-terminal 65-kDa domain and a C-terminal 30-kDa domain of SecA cycle into the membrane at SecYEG during translocation. Proceedings of the National Academy of Sciences of the United States of America. 94: 5574-81. PMID 9159114 DOI: 10.1073/pnas.94.11.5574 |
0.529 |
|
1997 |
Nichols BJ, Ungermann C, Pelham HR, Wickner WT, Haas A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature. 387: 199-202. PMID 9144293 DOI: 10.1038/387199A0 |
0.685 |
|
1997 |
Mayer A, Wickner W. Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). The Journal of Cell Biology. 136: 307-17. PMID 9015302 DOI: 10.1083/jcb.136.2.307 |
0.399 |
|
1997 |
Xu Z, Mayer A, Muller E, Wickner W. A heterodimer of thioredoxin and I(B)2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. The Journal of Cell Biology. 136: 299-306. PMID 9015301 DOI: 10.1083/jcb.136.2.299 |
0.454 |
|
1996 |
Price A, Economou A, Duong F, Wickner W. Separable ATPase and membrane insertion domains of the SecA subunit of preprotein translocase. The Journal of Biological Chemistry. 271: 31580-4. PMID 8940175 DOI: 10.1074/jbc.271.49.31580 |
0.508 |
|
1996 |
Nicolson T, Conradt B, Wickner W. A truncated form of the Pho80 cyclin of Saccharomyces cerevisiae induces expression of a small cytosolic factor which inhibits vacuole inheritance. Journal of Bacteriology. 178: 4047-51. PMID 8763930 DOI: 10.1128/Jb.178.14.4047-4051.1996 |
0.784 |
|
1996 |
Haas A, Wickner W. Homotypic vacuole fusion requires Sec17p (yeast alpha-SNAP) and Sec18p (yeast NSF). The Embo Journal. 15: 3296-305. PMID 8670830 DOI: 10.1002/J.1460-2075.1996.Tb00694.X |
0.504 |
|
1996 |
Mayer A, Wickner W, Haas A. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell. 85: 83-94. PMID 8620540 DOI: 10.1016/S0092-8674(00)81084-3 |
0.46 |
|
1996 |
Xu Z, Wickner W. Thioredoxin is required for vacuole inheritance in Saccharomyces cerevisiae. The Journal of Cell Biology. 132: 787-94. PMID 8603912 DOI: 10.1083/jcb.132.5.787 |
0.397 |
|
1995 |
Economou A, Pogliano JA, Beckwith J, Oliver DB, Wickner W. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell. 83: 1171-81. PMID 8548804 DOI: 10.1016/0092-8674(95)90143-4 |
0.487 |
|
1995 |
Douville K, Price A, Eichler J, Economou A, Wickner W. SecYEG and SecA are the stoichiometric components of preprotein translocase. The Journal of Biological Chemistry. 270: 20106-11. PMID 7650029 DOI: 10.1074/jbc.270.34.20106 |
0.554 |
|
1995 |
Nicolson TA, Weisman LS, Payne GS, Wickner WT. A truncated form of the Pho80 cyclin redirects the Pho85 kinase to disrupt vacuole inheritance in S. cerevisiae. The Journal of Cell Biology. 130: 835-45. PMID 7642701 DOI: 10.1083/Jcb.130.4.835 |
0.702 |
|
1995 |
Wickner W. The nascent-polypeptide-associated complex: having a "NAC" for fidelity in translocation. Proceedings of the National Academy of Sciences of the United States of America. 92: 9433-4. PMID 7568148 DOI: 10.1073/pnas.92.21.9433 |
0.343 |
|
1995 |
Haas A, Scheglmann D, Lazar T, Gallwitz D, Wickner W. The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. The Embo Journal. 14: 5258-70. PMID 7489715 DOI: 10.1002/J.1460-2075.1995.Tb00210.X |
0.427 |
|
1994 |
Joly JC, Leonard MR, Wickner WT. Subunit dynamics in Escherichia coli preprotein translocase. Proceedings of the National Academy of Sciences of the United States of America. 91: 4703-7. PMID 8197122 DOI: 10.1073/pnas.91.11.4703 |
0.305 |
|
1994 |
Arkowitz RA, Wickner W. SecD and SecF are required for the proton electrochemical gradient stimulation of preprotein translocation. The Embo Journal. 13: 954-63. PMID 8112309 DOI: 10.1002/J.1460-2075.1994.Tb06340.X |
0.711 |
|
1994 |
Economou A, Wickner W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell. 78: 835-43. PMID 8087850 DOI: 10.1016/S0092-8674(94)90582-7 |
0.538 |
|
1994 |
Douville K, Leonard M, Brundage L, Nishiyama K, Tokuda H, Mizushima S, Wickner W. Band 1 subunit of Escherichia coli preportein translocase and integral membrane export factor P12 are the same protein. The Journal of Biological Chemistry. 269: 18705-7. PMID 8034620 |
0.39 |
|
1994 |
Conradt B, Haas A, Wickner W. Determination of four biochemically distinct, sequential stages during vacuole inheritance in vitro. The Journal of Cell Biology. 126: 99-110. PMID 8027190 DOI: 10.1083/Jcb.126.1.99 |
0.659 |
|
1994 |
Haas A, Conradt B, Wickner W. G-protein ligands inhibit in vitro reactions of vacuole inheritance. The Journal of Cell Biology. 126: 87-97. PMID 8027189 DOI: 10.1083/Jcb.126.1.87 |
0.757 |
|
1994 |
Wickner WT. How ATP drives proteins across membranes. Science (New York, N.Y.). 266: 1197-8. PMID 7973701 |
0.45 |
|
1993 |
Bassilana M, Wickner W. Purified Escherichia coli preprotein translocase catalyzes multiple cycles of precursor protein translocation. Biochemistry. 32: 2626-30. PMID 8448119 DOI: 10.1021/Bi00061A021 |
0.567 |
|
1993 |
Joly JC, Wickner W. The SecA and SecY subunits of translocase are the nearest neighbors of a translocating preprotein, shielding it from phospholipids. The Embo Journal. 12: 255-63. PMID 8428583 DOI: 10.1002/J.1460-2075.1993.Tb05651.X |
0.509 |
|
1993 |
Arkowitz RA, Joly JC, Wickner W. Translocation can drive the unfolding of a preprotein domain. The Embo Journal. 12: 243-53. PMID 8428582 DOI: 10.1002/J.1460-2075.1993.Tb05650.X |
0.763 |
|
1992 |
Weisman LS, Wickner W. Molecular characterization of VAC1, a gene required for vacuole inheritance and vacuole protein sorting. The Journal of Biological Chemistry. 267: 618-23. PMID 1730622 |
0.581 |
|
1992 |
Schiebel E, Wickner W. Preprotein translocation creates a halide anion permeability in the Escherichia coli plasma membrane. The Journal of Biological Chemistry. 267: 7505-10. PMID 1559988 |
0.691 |
|
1992 |
Brundage L, Fimmel CJ, Mizushima S, Wickner W. SecY, SecE, and band 1 form the membrane-embedded domain of Escherichia coli preprotein translocase. The Journal of Biological Chemistry. 267: 4166-70. PMID 1531482 |
0.372 |
|
1992 |
Bassilana M, Arkowitz RA, Wickner W. The role of the mature domain of proOmpA in the translocation ATPase reaction. The Journal of Biological Chemistry. 267: 25246-50. PMID 1460025 |
0.688 |
|
1992 |
Conradt B, Shaw J, Vida T, Emr S, Wickner W. In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae. The Journal of Cell Biology. 119: 1469-79. PMID 1334958 DOI: 10.1083/Jcb.119.6.1469 |
0.769 |
|
1991 |
Shaw JM, Wickner WT. vac2: a yeast mutant which distinguishes vacuole segregation from Golgi-to-vacuole protein targeting. The Embo Journal. 10: 1741-8. PMID 2050111 |
0.518 |
|
1991 |
Hendrick JP, Wickner W. SecA protein needs both acidic phospholipids and SecY/E protein for functional high-affinity binding to the Escherichia coli plasma membrane. The Journal of Biological Chemistry. 266: 24596-600. PMID 1837025 |
0.495 |
|
1991 |
Driessen AJ, Brundage L, Hendrick JP, Schiebel E, Wickner W. Preprotein translocase of Escherichia coli: solubilization, purification, and reconstitution of the integral membrane subunits SecY/E. Methods in Cell Biology. 34: 147-65. PMID 1834920 DOI: 10.1016/S0091-679X(08)61679-9 |
0.672 |
|
1991 |
Wickner W, Driessen AJ, Hartl FU. The enzymology of protein translocation across the Escherichia coli plasma membrane. Annual Review of Biochemistry. 60: 101-24. PMID 1831965 DOI: 10.1146/Annurev.Bi.60.070191.000533 |
0.78 |
|
1991 |
Driessen AJ, Wickner W. Proton transfer is rate-limiting for translocation of precursor proteins by the Escherichia coli translocase. Proceedings of the National Academy of Sciences of the United States of America. 88: 2471-5. PMID 1826054 DOI: 10.1073/Pnas.88.6.2471 |
0.398 |
|
1991 |
Schiebel E, Driessen AJ, Hartl FU, Wickner W. Delta mu H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell. 64: 927-39. PMID 1825804 DOI: 10.1016/0092-8674(91)90317-R |
0.76 |
|
1990 |
Guthrie B, Wickner W. Trigger factor depletion or overproduction causes defective cell division but does not block protein export. Journal of Bacteriology. 172: 5555-62. PMID 2211496 DOI: 10.1128/Jb.172.10.5555-5562.1990 |
0.382 |
|
1990 |
Lecker SH, Driessen AJ, Wickner W. ProOmpA contains secondary and tertiary structure prior to translocation and is shielded from aggregation by association with SecB protein. The Embo Journal. 9: 2309-14. PMID 2192862 DOI: 10.1002/J.1460-2075.1990.Tb07402.X |
0.482 |
|
1990 |
Hartl FU, Lecker S, Schiebel E, Hendrick JP, Wickner W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell. 63: 269-79. PMID 2170023 DOI: 10.1016/0092-8674(90)90160-G |
0.8 |
|
1990 |
Brundage L, Hendrick JP, Schiebel E, Driessen AJ, Wickner W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell. 62: 649-57. PMID 2167176 DOI: 10.1016/0092-8674(90)90111-Q |
0.704 |
|
1990 |
Lill R, Dowhan W, Wickner W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell. 60: 271-80. PMID 2153463 DOI: 10.1016/0092-8674(90)90742-W |
0.702 |
|
1990 |
Driessen AJ, Wickner W. Solubilization and functional reconstitution of the protein-translocation enzymes of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 87: 3107-11. PMID 2139227 DOI: 10.1073/Pnas.87.8.3107 |
0.524 |
|
1990 |
Weisman LS, Emr SD, Wickner WT. Mutants of Saccharomyces cerevisiae that block intervacuole vesicular traffic and vacuole division and segregation. Proceedings of the National Academy of Sciences of the United States of America. 87: 1076-80. PMID 1689059 DOI: 10.1073/Pnas.87.3.1076 |
0.55 |
|
1989 |
Wickner W. Secretion and membrane assembly. Trends in Biochemical Sciences. 14: 280-3. PMID 2672449 DOI: 10.1016/0968-0004(89)90064-9 |
0.548 |
|
1989 |
Cunningham K, Wickner WT. Detergent disruption of bacterial inner membranes and recovery of protein translocation activity. Proceedings of the National Academy of Sciences of the United States of America. 86: 8673-7. PMID 2554324 DOI: 10.1073/Pnas.86.22.8673 |
0.484 |
|
1989 |
Cunningham K, Wickner W. Specific recognition of the leader region of precursor proteins is required for the activation of translocation ATPase of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 86: 8630-4. PMID 2554321 DOI: 10.1073/Pnas.86.22.8630 |
0.481 |
|
1989 |
San Millan JL, Boyd D, Dalbey R, Wickner W, Beckwith J. Use of phoA fusions to study the topology of the Escherichia coli inner membrane protein leader peptidase. Journal of Bacteriology. 171: 5536-41. PMID 2551889 DOI: 10.1128/jb.171.10.5536-5541.1989 |
0.715 |
|
1989 |
Lill R, Cunningham K, Brundage LA, Ito K, Oliver D, Wickner W. SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. The Embo Journal. 8: 961-6. PMID 2542029 DOI: 10.1002/J.1460-2075.1989.Tb03458.X |
0.712 |
|
1989 |
Cunningham K, Lill R, Crooke E, Rice M, Moore K, Wickner W, Oliver D. SecA protein, a peripheral protein of the Escherichia coli plasma membrane, is essential for the functional binding and translocation of proOmpA. The Embo Journal. 8: 955-9. PMID 2542028 DOI: 10.1002/J.1460-2075.1989.Tb03457.X |
0.709 |
|
1989 |
Lecker S, Lill R, Ziegelhoffer T, Georgopoulos C, Bassford PJ, Kumamoto CA, Wickner W. Three pure chaperone proteins of Escherichia coli--SecB, trigger factor and GroEL--form soluble complexes with precursor proteins in vitro. The Embo Journal. 8: 2703-9. PMID 2531087 |
0.613 |
|
1988 |
von Heijne G, Wickner W, Dalbey RE. The cytoplasmic domain of Escherichia coli leader peptidase is a "translocation poison" sequence. Proceedings of the National Academy of Sciences of the United States of America. 85: 3363-6. PMID 3285342 DOI: 10.1073/Pnas.85.10.3363 |
0.733 |
|
1988 |
Wickner W. Mechanisms of membrane assembly: general lessons from the study of M13 coat protein and Escherichia coli leader peptidase. Biochemistry. 27: 1081-6. PMID 3284576 DOI: 10.1021/Bi00404A001 |
0.487 |
|
1988 |
Dalbey RE, Wickner W. Characterization of the internal signal-anchor domain of Escherichia coli leader peptidase. The Journal of Biological Chemistry. 263: 404-8. PMID 3275645 |
0.605 |
|
1988 |
Crooke E, Brundage L, Rice M, Wickner W. ProOmpA spontaneously folds in a membrane assembly competent state which trigger factor stabilizes. The Embo Journal. 7: 1831-5. PMID 3049077 DOI: 10.1002/J.1460-2075.1988.Tb03015.X |
0.544 |
|
1988 |
Lill R, Crooke E, Guthrie B, Wickner W. The "trigger factor cycle" includes ribosomes, presecretory proteins, and the plasma membrane. Cell. 54: 1013-8. PMID 3046750 DOI: 10.1016/0092-8674(88)90116-X |
0.71 |
|
1988 |
Moore KE, Dalbey RE, Wickner W. In vitro insertion of leader peptidase into Escherichia coli membrane vesicles. Journal of Bacteriology. 170: 4395-8. PMID 3045096 DOI: 10.1128/Jb.170.9.4395-4398.1988 |
0.749 |
|
1988 |
Weisman LS, Wickner W. Intervacuole exchange in the yeast zygote: a new pathway in organelle communication. Science (New York, N.Y.). 241: 589-91. PMID 3041591 DOI: 10.1126/Science.3041591 |
0.608 |
|
1988 |
Crooke E, Guthrie B, Lecker S, Lill R, Wickner W. ProOmpA is stabilized for membrane translocation by either purified E. coli trigger factor or canine signal recognition particle. Cell. 54: 1003-11. PMID 2843289 DOI: 10.1016/0092-8674(88)90115-8 |
0.681 |
|
1987 |
Dalbey RE, Wickner W. Leader peptidase of Escherichia coli: critical role of a small domain in membrane assembly. Science (New York, N.Y.). 235: 783-7. PMID 3544218 |
0.671 |
|
1987 |
Dalbey RE, Kuhn A, Wickner W. The internal signal sequence of Escherichia coli leader peptidase is necessary, but not sufficient, for its rapid membrane assembly. The Journal of Biological Chemistry. 262: 13241-5. PMID 3308874 |
0.654 |
|
1987 |
Crooke E, Wickner W. Trigger factor: a soluble protein that folds pro-OmpA into a membrane-assembly-competent form. Proceedings of the National Academy of Sciences of the United States of America. 84: 5216-20. PMID 3299381 DOI: 10.1073/Pnas.84.15.5216 |
0.53 |
|
1987 |
Kuhn A, Kreil G, Wickner W. Recombinant forms of M13 procoat with an OmpA leader sequence or a large carboxy-terminal extension retain their independence of secY function. The Embo Journal. 6: 501-5. PMID 3034592 DOI: 10.1002/J.1460-2075.1987.Tb04781.X |
0.572 |
|
1987 |
Weisman LS, Bacallao R, Wickner W. Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. The Journal of Cell Biology. 105: 1539-47. PMID 2444598 DOI: 10.1083/Jcb.105.4.1539 |
0.592 |
|
1986 |
Kuhn A, Kreil G, Wickner W. Both hydrophobic domains of M13 procoat are required to initiate membrane insertion. The Embo Journal. 5: 3681-5. PMID 3549284 DOI: 10.1002/J.1460-2075.1986.Tb04699.X |
0.553 |
|
1986 |
Dalbey RE, Wickner W. The role of the polar, carboxyl-terminal domain of Escherichia coli leader peptidase in its translocation across the plasma membrane. The Journal of Biological Chemistry. 261: 13844-9. PMID 3531212 |
0.673 |
|
1986 |
Kuhn A, Wickner W, Kreil G. The cytoplasmic carboxy terminus of M13 procoat is required for the membrane insertion of its central domain. Nature. 322: 335-9. PMID 3526160 DOI: 10.1038/322335a0 |
0.524 |
|
1986 |
Dierstein R, Wickner W. Requirements for substrate recognition by bacterial leader peptidase. The Embo Journal. 5: 427-31. PMID 3519209 DOI: 10.1002/J.1460-2075.1986.Tb04228.X |
0.436 |
|
1986 |
Bacallao R, Crooke E, Shiba K, Wickner W, Ito K. The secY protein can act post-translationally to promote bacterial protein export. The Journal of Biological Chemistry. 261: 12907-10. PMID 3017993 |
0.39 |
|
1986 |
Geller BL, Movva NR, Wickner W. Both ATP and the electrochemical potential are required for optimal assembly of pro-OmpA into Escherichia coli inner membrane vesicles. Proceedings of the National Academy of Sciences of the United States of America. 83: 4219-22. PMID 2872675 DOI: 10.1073/Pnas.83.12.4219 |
0.535 |
|
1985 |
Kuhn A, Wickner W. Isolation of mutants in M13 coat protein that affect its synthesis, processing, and assembly into phage. The Journal of Biological Chemistry. 260: 15907-13. PMID 4066698 |
0.323 |
|
1985 |
Wickner WT, Lodish HF. Multiple mechanisms of protein insertion into and across membranes. Science (New York, N.Y.). 230: 400-7. PMID 4048938 DOI: 10.1126/Science.4048938 |
0.458 |
|
1985 |
Dierstein R, Wickner W. The leader region of pre-maltose binding protein binds amphiphiles. A model for self-assembly in protein export. The Journal of Biological Chemistry. 260: 15919-24. PMID 3905799 |
0.307 |
|
1985 |
Kuhn A, Wickner W. Conserved residues of the leader peptide are essential for cleavage by leader peptidase. The Journal of Biological Chemistry. 260: 15914-8. PMID 3905798 |
0.333 |
|
1985 |
Geller BL, Wickner W. M13 procoat inserts into liposomes in the absence of other membrane proteins. The Journal of Biological Chemistry. 260: 13281-5. PMID 3902814 |
0.507 |
|
1985 |
Wolfe PB, Rice M, Wickner W. Effects of two sec genes on protein assembly into the plasma membrane of Escherichia coli. The Journal of Biological Chemistry. 260: 1836-41. PMID 3881443 |
0.464 |
|
1985 |
Dalbey RE, Wickner W. Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. The Journal of Biological Chemistry. 260: 15925-31. PMID 2999144 |
0.71 |
|
1985 |
Geller BL, Wickner W. Coliphage M13 procoat translocates through a lipid bilayer without the use of other membrane-bound or soluble proteins Federation Proceedings. 44: No. 446. |
0.398 |
|
1984 |
Ohno-Iwashita Y, Wolfe P, Ito K, Wickner W. Processing of preproteins by liposomes bearing leader peptidase Biochemistry. 23: 6178-6184. PMID 6395892 DOI: 10.1021/Bi00320A044 |
0.553 |
|
1984 |
Wolfe PB, Wickner W. Bacterial leader peptidase, a membrane protein without a leader peptide, uses the same export pathway as pre-secretory proteins Cell. 36: 1067-1072. PMID 6368003 DOI: 10.1016/0092-8674(84)90056-4 |
0.565 |
|
1983 |
Wickner W, Sudate T, Zimmermann R, Ito K. [5] Pulse-labeling studies of membrane assembly and protein secretion in intact cells: M13 coat protein Methods in Enzymology. 97: 57-61. PMID 6361482 DOI: 10.1016/0076-6879(83)97118-5 |
0.356 |
|
1983 |
Wolfe PB, Zwizinski C, Wickner W. (3] Purification and characterization of leader peptidase from Escherichia coli Methods in Enzymology. 97: 40-46. PMID 6361480 DOI: 10.1016/0076-6879(83)97116-1 |
0.548 |
|
1983 |
Watts C, Goodman JM, Silver P, Wickner W. Analysis of M13 procoat assembly into membranes in vitro. Methods in Enzymology. 97: 130-8. PMID 6361469 DOI: 10.1016/0076-6879(83)97126-4 |
0.775 |
|
1983 |
Watts C, Wickner W, Zimmermann R. M13 procoat and a pre-immunoglobulin share processing specificity but use different membrane receptor mechanisms Proceedings of the National Academy of Sciences of the United States of America. 80: 2809-2813. PMID 6344069 DOI: 10.1073/Pnas.80.10.2809 |
0.442 |
|
1983 |
Silver P, Wickner W. Genetic mapping of the Escherichia coli leader (signal) peptidase gene (lep): A new approach for determining the map position of a cloned gene Journal of Bacteriology. 154: 569-572. PMID 6341355 |
0.407 |
|
1983 |
Zimmermann R, Wickner W. Energetics and intermediates of the assembly of protein OmpA into the outer membrane of Escherichia coli Journal of Biological Chemistry. 258: 3920-3925. PMID 6339491 |
0.457 |
|
1983 |
Ohno Iwashita Y, Wickner W. Reconstriction of rapid and asymmetric assembly of M13 procoat protein into liposomes which have bacterial leader peptidase Journal of Biological Chemistry. 258: 1895-1900. PMID 6337146 |
0.43 |
|
1983 |
Sudate T, Silver P, Wickner W. [4] Molecular genetics of Escherichia coli leader peptidase Methods in Enzymology. 97: 46-57. PMID 6318034 DOI: 10.1016/0076-6879(83)97117-3 |
0.613 |
|
1983 |
Wolfe PB, Wickner W, Goodman JM. Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. The Journal of Biological Chemistry. 258: 12073-80. PMID 6311837 |
0.638 |
|
1983 |
Wickner W. M13 coat protein as a model of membrane assembly Trends in Biochemical Sciences. 8: 90-94. DOI: 10.1016/0968-0004(83)90257-8 |
0.559 |
|
1982 |
Zimmermann R, Watts C, Wickner W. The biosynthesis of membrane-bound M13 coat protein. Energetics and assembly intermediates Journal of Biological Chemistry. 257: 6529-6536. PMID 7042715 |
0.345 |
|
1982 |
Zwizinski C, Wickner W. The purification of M13 procoat, a membrane protein precursor Embo Journal. 1: 573-578. PMID 6765231 DOI: 10.1002/J.1460-2075.1982.Tb01210.X |
0.451 |
|
1982 |
Wolfe PB, Silver P, Wickner W. The isolation of homogeneous leader peptidase from a strain of Escherichia coli which overproduces the enzyme Journal of Biological Chemistry. 257: 7898-7902. PMID 6282859 |
0.534 |
|
1981 |
Goodman JM, Watts C, Wickner W. Membrane assembly: posttranslational insertion of M13 procoat protein into E. coli membranes and its proteolytic conversion to coat protein in vitro. Cell. 24: 437-41. PMID 7237555 DOI: 10.1016/0092-8674(81)90334-2 |
0.729 |
|
1981 |
Watts C, Silver P, Wickner W. Membrane assembly from purified components. II. Assembly of M13 procoat into liposomes reconstituted with purified leader peptidase Cell. 25: 347-353. PMID 7026043 DOI: 10.1016/0092-8674(81)90053-2 |
0.691 |
|
1981 |
Silver P, Watts C, Wickner W. Membrane assembly from purified components. I. Isolated M13 procoat does not require ribosomes or soluble proteins for processing by membranes Cell. 25: 341-345. PMID 7026042 DOI: 10.1016/0092-8674(81)90052-0 |
0.675 |
|
1981 |
Date T, Wickner WT. Procoat, the precursor of M13 coat protein, inserts post-translationally into the membrane of cells infected by wild-type virus Journal of Virology. 37: 1087-1089. PMID 7014926 |
0.351 |
|
1981 |
Zwizinski C, Date T, Wickner W. Leader peptidase is found in both the inner and outer membranes of Escherichia coli Journal of Biological Chemistry. 256: 3593-3597. PMID 7009614 |
0.433 |
|
1981 |
Date T, Wickner W. Isolation of the Escherichia coli leader peptidase gene and effects of leader peptidase overproduction in vivo Proceedings of the National Academy of Sciences of the United States of America. 78: 6106-6110. PMID 6273848 |
0.395 |
|
1980 |
Silver P, Wickner WT. Role of M13 gene 1 protein in filamentous virus assembly Journal of Virology. 35: 256-258. PMID 7411692 DOI: 10.1128/Jvi.35.1.256-258.1980 |
0.474 |
|
1980 |
Wickner W. Assembly of proteins into membranes Science. 210: 861-868. PMID 7001628 DOI: 10.1126/Science.7001628 |
0.556 |
|
1980 |
Date T, Goodman JM, Wickner WT. Procoat, the precursor of M13 coat protein, requires an electrochemical potential for membrane insertion. Proceedings of the National Academy of Sciences of the United States of America. 77: 4669-73. PMID 7001463 DOI: 10.1073/Pnas.77.8.4669 |
0.687 |
|
1980 |
Zwizinski C, Wickner W. Purification and characterization of leader (signal) peptidase from Escherichia coli Journal of Biological Chemistry. 255: 7973-7977. PMID 6995457 |
0.409 |
|
1980 |
Wickner W, Ito K, Mandel G, Bates M, Nokelainen M, Zwizinski C. The three lives of M13 coat protein: a virion capsid, an integral membrane protein, and a soluble cytoplasmic proprotein. Annals of the New York Academy of Sciences. 343: 384-90. PMID 6994558 DOI: 10.1111/J.1749-6632.1980.Tb47267.X |
0.672 |
|
1980 |
Ito K, Date T, Wickner W. Synthesis, assembly into the cytoplasmic membrane, and proteolytic processing of the precursor of coliphage M13 coat protein Journal of Biological Chemistry. 255: 2123-2130. PMID 6986388 |
0.382 |
|
1980 |
Date T, Zwizinski C, Ludmerer S, Wickner W. Mechanisms of membrane assembly: Effects of energy poisons on the conversion of soluble M13 coliphage procoat to membrane-bound coat protein Proceedings of the National Academy of Sciences of the United States of America. 77: 827-831. PMID 6928682 DOI: 10.1073/Pnas.77.2.827 |
0.535 |
|
1979 |
Wickner W. Interactions of melittin, a preprotein model, with detergents Biochemistry. 18: 4177-4181. PMID 486416 |
0.366 |
|
1979 |
Ito K, Mandel G, Wickner W. Soluble precursor of an integral membrane protein: synthesis of procoat protein in Escherichia coli infected with bacteriophage M13. Proceedings of the National Academy of Sciences of the United States of America. 76: 1199-203. PMID 375229 DOI: 10.1073/Pnas.76.3.1199 |
0.697 |
|
1979 |
Mandel G, Wickner W. Translational and post-translational cleavage of M13 procoat protein: extracts of both the cytoplasmic and outer membranes of Escherichia coli contain leader peptidase activity. Proceedings of the National Academy of Sciences of the United States of America. 76: 236-40. PMID 370824 DOI: 10.1073/Pnas.76.1.236 |
0.699 |
|
1979 |
Wickner W. The assembly of proteins into biological membranes: The membrane trigger hypothesis Annual Review of Biochemistry. 48: 23-45. PMID 224802 DOI: 10.1146/Annurev.Bi.48.070179.000323 |
0.547 |
|
1978 |
Wickner W, Mandel G, Zwizinski C, Bates M, Killick T. Synthesis of phage M13 coat protein and its assembly into membranes in vitro. Proceedings of the National Academy of Sciences of the United States of America. 75: 1754-8. PMID 273906 DOI: 10.1073/pnas.75.4.1754 |
0.712 |
|
1977 |
Zwizinski C, Wickner W. Studies of asymmetric membrane assembly Bba - Biomembranes. 471: 169-176. PMID 921977 DOI: 10.1016/0005-2736(77)90247-4 |
0.529 |
|
1977 |
Wickner WT. Role of hydrophobic forces in membrane protein asymmetry Biochemistry. 16: 254-258. PMID 836786 |
0.394 |
|
1977 |
Wickner W, Killick T. Membrane associated assembly of M13 phage in extracts of virus infected Escherichia coli Proceedings of the National Academy of Sciences of the United States of America. 74: 505-509. PMID 15248 DOI: 10.1073/Pnas.74.2.505 |
0.457 |
|
1976 |
Wickner W. Asymmetric orientation of phage M13 coat protein in Escherichia coli cytoplasmic membranes and in synthetic lipid vesicles. Proceedings of the National Academy of Sciences of the United States of America. 73: 1159-63. PMID 772680 DOI: 10.1073/PNAS.73.4.1159 |
0.499 |
|
1976 |
Wickner W. Fractionation of membrane vesicles from coliphage M13-infected Escherichia coli. Journal of Bacteriology. 127: 162-7. PMID 132427 DOI: 10.1128/JB.127.1.162-167.1976 |
0.45 |
|
1976 |
Wickner W. Asymmetric orientation of a phage coat protein in cytoplasmic membrane of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 72: 4749-53. PMID 54916 DOI: 10.1073/PNAS.72.12.4749 |
0.505 |
|
1974 |
Wickner W, Kornberg A. A novel form of RNA polymerase from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 71: 4425-8. PMID 4612517 DOI: 10.1073/Pnas.71.11.4425 |
0.468 |
|
1974 |
Wickner W, Kornberg A. A holoenzyme form of deoxyribonucleic acid polymerase III. Isolation and properties. The Journal of Biological Chemistry. 249: 6244-9. PMID 4608499 |
0.393 |
|
1974 |
Dowhan W, Wickner WT, Kennedy EP. Purification and properties of phosphatidylserine decarboxylase from Escherichia coli. The Journal of Biological Chemistry. 249: 3079-84. PMID 4598120 |
0.482 |
|
1973 |
Wickner W, Schekman R, Geider K, Kornberg A. A new form of DNA polymerase 3 and a copolymerase replicate a long, single-stranded primer-template. Proceedings of the National Academy of Sciences of the United States of America. 70: 1764-7. PMID 4578443 DOI: 10.1073/Pnas.70.6.1764 |
0.608 |
|
1973 |
Wickner W, Kornberg A. DNA polymerase 3 star requires ATP to start synthesis on a primed DNA. Proceedings of the National Academy of Sciences of the United States of America. 70: 3679-83. PMID 4519657 DOI: 10.1073/Pnas.70.12.3679 |
0.49 |
|
1972 |
Schekman R, Wickner W, Westergaard O, Brutlag D, Geider K, Bertsch LL, Kornberg A. Initiation of DNA synthesis: synthesis of phiX174 replicative form requires RNA synthesis resistant to rifampicin. Proceedings of the National Academy of Sciences of the United States of America. 69: 2691-5. PMID 4560696 DOI: 10.1073/Pnas.69.9.2691 |
0.674 |
|
1972 |
Wickner W, Brutlag D, Schekman R, Kornberg A. RNA synthesis initiates in vitro conversion of M13 DNA to its replicative form. Proceedings of the National Academy of Sciences of the United States of America. 69: 965-9. PMID 4554537 DOI: 10.1073/Pnas.69.4.965 |
0.688 |
|
1972 |
Raetz CR, Hirschberg CB, Dowhan W, Wickner WT, Kennedy EP. A membrane-bound pyrophosphatase in Escherichia coli catalyzing the hydrolysis of cytidine diphosphate-diglyceride. The Journal of Biological Chemistry. 247: 2245-7. PMID 4335869 |
0.736 |
|
Show low-probability matches. |