Year |
Citation |
Score |
2013 |
Cockrell GM, Zheng Y, Guo W, Peterson AW, Truong JK, Kantrowitz ER. New paradigm for allosteric regulation of Escherichia coli aspartate transcarbamoylase. Biochemistry. 52: 8036-47. PMID 24138583 DOI: 10.1021/Bi401205N |
0.841 |
|
2013 |
Cockrell GM, Kantrowitz ER. ViewMotions Rainbow: a new method to illustrate molecular motions in proteins. Journal of Molecular Graphics & Modelling. 40: 48-53. PMID 23353585 DOI: 10.1016/J.Jmgm.2012.12.012 |
0.798 |
|
2012 |
Cockrell GM, Kantrowitz ER. Metal ion involvement in the allosteric mechanism of Escherichia coli aspartate transcarbamoylase. Biochemistry. 51: 7128-37. PMID 22906065 DOI: 10.1021/Bi300920M |
0.828 |
|
2012 |
Peterson AW, Cockrell GM, Kantrowitz ER. A second allosteric site in Escherichia coli aspartate transcarbamoylase. Biochemistry. 51: 4776-8. PMID 22667327 DOI: 10.1021/Bi3006219 |
0.84 |
|
2012 |
Guo W, West JM, Dutton AS, Tsuruta H, Kantrowitz ER. Trapping and structure determination of an intermediate in the allosteric transition of aspartate transcarbamoylase. Proceedings of the National Academy of Sciences of the United States of America. 109: 7741-6. PMID 22547808 DOI: 10.1073/Pnas.1119683109 |
0.724 |
|
2012 |
Kantrowitz ER. Allostery and cooperativity in Escherichia coli aspartate transcarbamoylase. Archives of Biochemistry and Biophysics. 519: 81-90. PMID 22198283 DOI: 10.1016/J.Abb.2011.10.024 |
0.542 |
|
2012 |
Lipscomb WN, Kantrowitz ER. Structure and mechanisms of Escherichia coli aspartate transcarbamoylase. Accounts of Chemical Research. 45: 444-53. PMID 22011033 DOI: 10.1021/Ar200166P |
0.795 |
|
2011 |
Harris KM, Cockrell GM, Puleo DE, Kantrowitz ER. Crystallographic snapshots of the complete catalytic cycle of the unregulated aspartate transcarbamoylase from Bacillus subtilis. Journal of Molecular Biology. 411: 190-200. PMID 21663747 DOI: 10.1016/J.Jmb.2011.05.036 |
0.853 |
|
2011 |
Stec B, Roberts MF, Kantrowitz ER. Trapping and visualization of catalytic intermediates Acta Crystallographica Section a Foundations of Crystallography. 67: C80-C80. DOI: 10.1107/S0108767311098059 |
0.479 |
|
2010 |
Mendes KR, Kantrowitz ER. A cooperative Escherichia coli aspartate transcarbamoylase without regulatory subunits . Biochemistry. 49: 7694-703. PMID 20681545 DOI: 10.1021/Bi1010333 |
0.826 |
|
2010 |
Mendes KR, Kantrowitz ER. The pathway of product release from the R state of aspartate transcarbamoylase. Journal of Molecular Biology. 401: 940-8. PMID 20620149 DOI: 10.1016/J.Jmb.2010.07.003 |
0.838 |
|
2010 |
Mendes KR, Martinez JA, Kantrowitz ER. Asymmetric allosteric signaling in aspartate transcarbamoylase. Acs Chemical Biology. 5: 499-506. PMID 20210358 DOI: 10.1021/Cb9003207 |
0.831 |
|
2010 |
Heng S, Harris KM, Kantrowitz ER. Designing inhibitors against fructose 1,6-bisphosphatase: exploring natural products for novel inhibitor scaffolds. European Journal of Medicinal Chemistry. 45: 1478-84. PMID 20116906 DOI: 10.1016/J.Ejmech.2009.12.055 |
0.616 |
|
2009 |
Coudray L, Kantrowitz ER, Montchamp JL. Submicromolar phosphinic inhibitors of Escherichia coli aspartate transcarbamoylase. Bioorganic & Medicinal Chemistry Letters. 19: 900-2. PMID 19097895 DOI: 10.1016/J.Bmcl.2008.11.115 |
0.389 |
|
2009 |
Stieglitz KA, Xia J, Kantrowitz ER. The first high pH structure of Escherichia coli aspartate transcarbamoylase. Proteins. 74: 318-27. PMID 18618694 DOI: 10.1002/Prot.22162 |
0.688 |
|
2008 |
Wang Q, Xia J, Guallar V, Krilov G, Kantrowitz ER. Mechanism of thermal decomposition of carbamoyl phosphate and its stabilization by aspartate and ornithine transcarbamoylases. Proceedings of the National Academy of Sciences of the United States of America. 105: 16918-23. PMID 18971327 DOI: 10.1073/Pnas.0809631105 |
0.673 |
|
2008 |
West JM, Xia J, Tsuruta H, Guo W, O'Day EM, Kantrowitz ER. Time evolution of the quaternary structure of Escherichia coli aspartate transcarbamoylase upon reaction with the natural substrates and a slow, tight-binding inhibitor. Journal of Molecular Biology. 384: 206-18. PMID 18823998 DOI: 10.1016/J.Jmb.2008.09.022 |
0.8 |
|
2008 |
Rabinowitz JD, Hsiao JJ, Gryncel KR, Kantrowitz ER, Feng XJ, Li G, Rabitz H. Dissecting enzyme regulation by multiple allosteric effectors: nucleotide regulation of aspartate transcarbamoylase. Biochemistry. 47: 5881-8. PMID 18454556 DOI: 10.1021/Bi8000566 |
0.407 |
|
2008 |
Vitali J, Colaneri MJ, Kantrowitz E. Crystal structure of the catalytic trimer of Methanococcus jannaschii aspartate transcarbamoylase. Proteins. 71: 1324-34. PMID 18058907 DOI: 10.1002/Prot.21667 |
0.499 |
|
2008 |
Cardia JP, Eldo J, Xia J, O'Day EM, Tsuruta H, Gryncel KR, Kantrowitz ER. Use of L-asparagine and N-phosphonacetyl-L-asparagine to investigate the linkage of catalysis and homotropic cooperativity in E. coli aspartate transcarbomoylase. Proteins. 71: 1088-96. PMID 18004787 DOI: 10.1002/Prot.21760 |
0.824 |
|
2007 |
Stec B, Williams MK, Stieglitz KA, Kantrowitz ER. Comparison of two T-state structures of regulatory-chain mutants of Escherichia coli aspartate transcarbamoylase suggests that His20 and Asp19 modulate the response to heterotropic effectors. Acta Crystallographica. Section D, Biological Crystallography. 63: 1243-53. PMID 18084072 DOI: 10.1107/S0907444907052985 |
0.533 |
|
2007 |
Wang J, Eldo J, Kantrowitz ER. Structural model of the R state of Escherichia coli aspartate transcarbamoylase with substrates bound. Journal of Molecular Biology. 371: 1261-73. PMID 17603076 DOI: 10.1016/J.Jmb.2007.06.011 |
0.553 |
|
2007 |
Eldo J, Heng S, Kantrowitz ER. Design, synthesis, and bioactivity of novel inhibitors of E. coli aspartate transcarbamoylase. Bioorganic & Medicinal Chemistry Letters. 17: 2086-90. PMID 17336518 DOI: 10.1016/J.Bmcl.2006.12.050 |
0.421 |
|
2007 |
Fetler L, Kantrowitz ER, Vachette P. Direct observation in solution of a preexisting structural equilibrium for a mutant of the allosteric aspartate transcarbamoylase. Proceedings of the National Academy of Sciences of the United States of America. 104: 495-500. PMID 17202260 DOI: 10.1073/Pnas.0607641104 |
0.528 |
|
2006 |
Wang J, Kantrowitz ER. Trapping the tetrahedral intermediate in the alkaline phosphatase reaction by substitution of the active site serine with threonine. Protein Science : a Publication of the Protein Society. 15: 2395-401. PMID 17008720 DOI: 10.1110/Ps.062351506 |
0.552 |
|
2006 |
Eldo J, Cardia JP, O'Day EM, Xia J, Tsuruta H, Kantrowitz ER. N-phosphonacetyl-L-isoasparagine a potent and specific inhibitor of Escherichia coli aspartate transcarbamoylase. Journal of Medicinal Chemistry. 49: 5932-8. PMID 17004708 DOI: 10.1021/Jm0607294 |
0.845 |
|
2006 |
Heng S, Stieglitz KA, Eldo J, Xia J, Cardia JP, Kantrowitz ER. T-state inhibitors of E. coli aspartate transcarbamoylase that prevent the allosteric transition. Biochemistry. 45: 10062-71. PMID 16906764 DOI: 10.1021/Bi0601095 |
0.856 |
|
2005 |
Stieglitz KA, Dusinberre KJ, Cardia JP, Tsuruta H, Kantrowitz ER. Structure of the E.coli aspartate transcarbamoylase trapped in the middle of the catalytic cycle. Journal of Molecular Biology. 352: 478-86. PMID 16120448 DOI: 10.1016/J.Jmb.2005.07.046 |
0.844 |
|
2005 |
Stec B, Holtz KM, Wojciechowski CL, Kantrowitz ER. Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme. Acta Crystallographica. Section D, Biological Crystallography. 61: 1072-9. PMID 16041072 DOI: 10.1107/S0907444905014356 |
0.836 |
|
2005 |
Wang J, Stieglitz KA, Cardia JP, Kantrowitz ER. Structural basis for ordered substrate binding and cooperativity in aspartate transcarbamoylase. Proceedings of the National Academy of Sciences of the United States of America. 102: 8881-6. PMID 15951418 DOI: 10.1073/Pnas.0503742102 |
0.807 |
|
2005 |
Wang J, Stieglitz KA, Kantrowitz ER. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Biochemistry. 44: 8378-86. PMID 15938627 DOI: 10.1021/Bi050155P |
0.539 |
|
2005 |
Stieglitz KA, Pastra-Landis SC, Xia J, Tsuruta H, Kantrowitz ER. A single amino acid substitution in the active site of Escherichia coli aspartate transcarbamoylase prevents the allosteric transition. Journal of Molecular Biology. 349: 413-23. PMID 15890205 DOI: 10.1016/J.Jmb.2005.03.073 |
0.773 |
|
2004 |
Stieglitz K, Stec B, Baker DP, Kantrowitz ER. Monitoring the transition from the T to the R state in E.coli aspartate transcarbamoylase by X-ray crystallography: crystal structures of the E50A mutant enzyme in four distinct allosteric states. Journal of Molecular Biology. 341: 853-68. PMID 15288791 DOI: 10.1016/J.Jmb.2004.06.002 |
0.581 |
|
2004 |
Zappa S, Boudrant J, Kantrowitz ER. Pyrococcus abyssi alkaline phosphatase: The dimer is the active form Journal of Inorganic Biochemistry. 98: 575-581. PMID 15041236 DOI: 10.1016/j.jinorgbio.2004.01.009 |
0.332 |
|
2004 |
Alam N, Stieglitz KA, Caban MD, Gourinath S, Tsuruta H, Kantrowitz ER. 240s loop interactions stabilize the T state of Escherichia coli aspartate transcarbamoylase. The Journal of Biological Chemistry. 279: 23302-10. PMID 15014067 DOI: 10.1074/Jbc.M401637200 |
0.609 |
|
2004 |
West JM, Tsuruta H, Kantrowitz ER. A fluorescent probe-labeled Escherichia coli aspartate transcarbamoylase that monitors the allosteric conformational state. The Journal of Biological Chemistry. 279: 945-51. PMID 14581486 DOI: 10.1074/Jbc.M304018200 |
0.672 |
|
2003 |
West JM, Kantrowitz ER. Trapping specific quaternary states of the allosteric enzyme aspartate transcarbamoylase in silica matrix sol-gels. Journal of the American Chemical Society. 125: 9924-5. PMID 12914446 DOI: 10.1021/Ja0360440 |
0.67 |
|
2003 |
Wojciechowski CL, Kantrowitz ER. Glutamic acid residues as metal ligands in the active site of Escherichia coli alkaline phosphatase. Biochimica Et Biophysica Acta. 1649: 68-73. PMID 12818192 DOI: 10.1016/S1570-9639(03)00156-0 |
0.843 |
|
2003 |
Boulanger RR, Kantrowitz ER. Characterization of a monomeric Escherichia coli alkaline phosphatase formed upon a single amino acid substitution. The Journal of Biological Chemistry. 278: 23497-501. PMID 12707276 DOI: 10.1074/Jbc.M301105200 |
0.839 |
|
2002 |
Chan RS, Sakash JB, Macol CP, West JM, Tsuruta H, Kantrowitz ER. The role of intersubunit interactions for the stabilization of the T state of Escherichia coli aspartate transcarbamoylase. The Journal of Biological Chemistry. 277: 49755-60. PMID 12399459 DOI: 10.1074/Jbc.M208919200 |
0.832 |
|
2002 |
Wojciechowski CL, Kantrowitz ER. Altering of the metal specificity of Escherichia coli alkaline phosphatase. The Journal of Biological Chemistry. 277: 50476-81. PMID 12399456 DOI: 10.1074/Jbc.M209326200 |
0.849 |
|
2002 |
West JM, Tsuruta H, Kantrowitz ER. Stabilization of the R allosteric structure of Escherichia coli aspartate transcarbamoylase by disulfide bond formation. The Journal of Biological Chemistry. 277: 47300-4. PMID 12359710 DOI: 10.1074/Jbc.M209913200 |
0.737 |
|
2002 |
Macol CP, Tsuruta H, Kantrowitz ER. Importance of domain closure for the catalysis and regulation of Escherichia coli aspartate transcarbamoylase. The Journal of Biological Chemistry. 277: 26852-7. PMID 12016227 DOI: 10.1074/Jbc.M203431200 |
0.842 |
|
2002 |
Fetler L, Tauc P, Baker DP, Macol CP, Kantrowitz ER, Vachette P. Replacement of Asp-162 by Ala prevents the cooperative transition by the substrates while enhancing the effect of the allosteric activator ATP on E. coli aspartate transcarbamoylase. Protein Science : a Publication of the Protein Society. 11: 1074-81. PMID 11967364 DOI: 10.1110/Ps.4500102 |
0.859 |
|
2002 |
Wojciechowski CL, Cardia JP, Kantrowitz ER. Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity. Protein Science : a Publication of the Protein Society. 11: 903-11. PMID 11910033 DOI: 10.1110/Ps.4260102 |
0.805 |
|
2002 |
Kelley-Loughnane N, Biolsi SA, Gibson KM, Lu G, Hehir MJ, Phelan P, Kantrowitz ER. Purification, kinetic studies, and homology model of Escherichia coli fructose-1,6-bisphosphatase. Biochimica Et Biophysica Acta. 1594: 6-16. PMID 11825604 DOI: 10.1016/S0167-4838(01)00261-8 |
0.499 |
|
2002 |
Fetler L, Vachette P, Macol CP, Kantrowitz ER. Revisiting the allosteric mechanism of aspartate transcarbamoylase Nature Structural Biology. 9: 87-89. PMID 11813011 DOI: 10.1038/nsb0202-87 |
0.772 |
|
2002 |
Macol CP, Kantrowitz ER, Tsuruta H, Stec B. Response to Fetler and Vachette Nature Structural Biology. 9: 88-89. DOI: 10.1038/Nsb0202-88 |
0.735 |
|
2001 |
Kelley-Loughnane N, Kantrowitz ER. Binding of AMP to two of the four subunits of pig kidney fructose-1,6-bisphosphatase induces the allosteric transition Proteins: Structure, Function and Genetics. 44: 255-261. PMID 11455598 DOI: 10.1002/Prot.1090 |
0.558 |
|
2001 |
Kelley-Loughnane N, Kantrowitz ER. AMP inhibition of pig kidney fructose-1,6-bisphosphatase Biochimica Et Biophysica Acta - Protein Structure and Molecular Enzymology. 1548: 66-71. PMID 11451439 DOI: 10.1016/S0167-4838(01)00218-7 |
0.555 |
|
2001 |
McIninch JK, Kantrowitz ER. Use of silicate sol-gels to trap the R and T quaternary conformational states of pig kidney fructose-1,6-bisphosphatase Biochimica Et Biophysica Acta - Protein Structure and Molecular Enzymology. 1547: 320-328. PMID 11410288 DOI: 10.1016/S0167-4838(01)00203-5 |
0.562 |
|
2001 |
Sakash JB, Williams MK, Tsuruta H, Kantrowitz ER. Domain bridging interactions. A necessary contribution to the function and structure of Escherichia coli aspartate transcarbamoylase. The Journal of Biological Chemistry. 276: 26441-7. PMID 11352920 DOI: 10.1074/Jbc.M103226200 |
0.546 |
|
2001 |
Macol CP, Tsuruta H, Stec B, Kantrowitz ER. Direct structural evidence for a concerted allosteric transition in Escherichia coli aspartate transcarbamoylase. Nature Structural Biology. 8: 423-6. PMID 11323717 DOI: 10.1038/87582 |
0.834 |
|
2000 |
Hehir MJ, Murphy JE, Kantrowitz ER. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: An investigation of intragenic complementation Journal of Molecular Biology. 304: 645-656. PMID 11099386 DOI: 10.1006/Jmbi.2000.4230 |
0.571 |
|
2000 |
Vitali J, Vorobyova T, Webster C, Kantrowitz ER. Crystallization and structure determination of the catalytic trimer of Methanococcus jannaschii aspartate transcarbamoylase Acta Crystallographica Section D: Biological Crystallography. 56: 1061-1063. PMID 10944354 DOI: 10.1107/S0907444900008167 |
0.449 |
|
2000 |
Holtz KM, Catrina IE, Hengge AC, Kantrowitz ER. Mutation of Arg-166 of alkaline phosphatase alters the thio effect but not the transition state for phosphoryl transfer. Implications for the interpretation of thio effects in reactions of phosphatases. Biochemistry. 39: 9451-8. PMID 10924140 DOI: 10.1021/Bi000899X |
0.806 |
|
2000 |
Jin L, Stec B, Kantrowitz ER. A cis-proline to alanine mutant of E. coli aspartate transcarbamoylase: Kinetic studies and three-dimensional crystal structures Biochemistry. 39: 8058-8066. PMID 10891088 DOI: 10.1021/Bi000418+ |
0.626 |
|
2000 |
Sakash JB, Kantrowitz ER. The contribution of individual interchain interactions to the stabilization of the T and R states of Escherichia coli aspartate transcarbamoylase Journal of Biological Chemistry. 275: 28701-28707. PMID 10875936 DOI: 10.1074/Jbc.M005079200 |
0.46 |
|
2000 |
Stec B, Holtz KM, Kantrowitz ER. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Journal of Molecular Biology. 299: 1303-11. PMID 10873454 DOI: 10.1006/Jmbi.2000.3799 |
0.829 |
|
2000 |
Holtz KM, Stec B, Myers JK, Antonelli SM, Widlanski TS, Kantrowitz ER. Alternate modes of binding in two crystal structures of alkaline phosphatase-inhibitor complexes. Protein Science : a Publication of the Protein Society. 9: 907-15. PMID 10850800 DOI: 10.1110/Ps.9.5.907 |
0.811 |
|
2000 |
Hack ES, Vorobyova T, Sakash JB, West JM, Macol CP, Hervé G, Williams MK, Kantrowitz ER. Characterization of the aspartate transcarbamoylase from Methanococcus jannaschii. The Journal of Biological Chemistry. 275: 15820-7. PMID 10748118 DOI: 10.1074/Jbc.M909220199 |
0.799 |
|
2000 |
Sakash JB, Tsen A, Kantrowitz ER. The use of nucleotide analogs to evaluate the mechanism of the heterotropic response of Escherichia coli aspartate transcarbamoylase Protein Science. 9: 53-63. PMID 10739247 DOI: 10.1110/Ps.9.1.53 |
0.554 |
|
2000 |
Sakash JB, Chan RS, Tsuruta H, Kantrowitz ER. Three of the six possible intersubunit stabilizing interactions involving Glu-239 are sufficient for restoration of the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase Journal of Biological Chemistry. 275: 752-758. PMID 10625604 DOI: 10.1074/Jbc.275.2.752 |
0.571 |
|
1999 |
Jin L, Stec B, Lipscomb WN, Kantrowitz ER. Insights into the mechanisms of catalysis and heterotropic regulation of Escherichia coli aspartate transcarbamoylase based upon a structure of the enzyme complexed with the bisubstrate analogue N-phosphonacetyl-L-aspartate at 2.1 A. Proteins. 37: 729-42. PMID 10651286 DOI: 10.1002/(Sici)1097-0134(19991201)37:4<729::Aid-Prot21>3.0.Co;2-F |
0.776 |
|
1999 |
Holtz KM, Kantrowitz ER. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis. Febs Letters. 462: 7-11. PMID 10580082 DOI: 10.1016/S0014-5793(99)01448-9 |
0.838 |
|
1999 |
Sträter N, Sun L, Kantrowitz ER, Lipscomb WN. A bicarbonate ion as a general base in the mechanism of peptide hydrolysis by dizinc leucine aminopeptidase. Proceedings of the National Academy of Sciences of the United States of America. 96: 11151-5. PMID 10500145 DOI: 10.1073/Pnas.96.20.11151 |
0.714 |
|
1999 |
Macol C, Dutta M, Stec B, Tsuruta H, Kantrowitz ER. The 80s loop of the catalytic chain of Escherichia coli aspartate transcarbamoylase is critical for catalysis and homotropic cooperativity Protein Science. 8: 1305-1313. PMID 10386880 DOI: 10.1110/Ps.8.6.1305 |
0.865 |
|
1999 |
Martin DC, Pastra-Landis SC, Kantrowitz ER. Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability. Protein Science : a Publication of the Protein Society. 8: 1152-9. PMID 10338026 DOI: 10.1110/Ps.8.5.1152 |
0.65 |
|
1999 |
Holtz KM, Stec B, Kantrowitz ER. A model of the transition state in the alkaline phosphatase reaction. The Journal of Biological Chemistry. 274: 8351-4. PMID 10085061 DOI: 10.1074/Jbc.274.13.8351 |
0.819 |
|
1999 |
Sun L, Martin DC, Kantrowitz ER. Rate-determining step of Escherichia coli alkaline phosphatase altered by the removal of a positive charge at the active center. Biochemistry. 38: 2842-8. PMID 10052956 DOI: 10.1021/Bi981996H |
0.671 |
|
1998 |
Williams MK, Kantrowitz ER. Threonine 82 in the regulatory chain is important for nucleotide affinity and for the allosteric stabilization of Escherichia coli aspartate transcarbamoylase. Biochimica Et Biophysica Acta. 1429: 249-58. PMID 9920401 DOI: 10.1016/S0167-4838(98)00234-9 |
0.62 |
|
1998 |
Williams MK, Stec B, Kantrowitz ER. A single mutation in the regulatory chain of Escherichia coli aspartate transcarbamoylase results in an extreme T-state structure. Journal of Molecular Biology. 281: 121-34. PMID 9680480 DOI: 10.1006/Jmbi.1998.1923 |
0.567 |
|
1998 |
Dutta M, Kantrowitz ER. The influence of the regulatory chain amino acids Glu-62 and Ile-12 on the heterotropic properties of Escherichia coli aspartate transcarbamoylase Biochemistry. 37: 8653-8658. PMID 9628727 DOI: 10.1021/Bi980456H |
0.5 |
|
1998 |
Tsuruta H, Vachette P, Kantrowitz ER. Direct observation of an altered quaternary-structure transition in a mutant aspartate transcarbamoylase Proteins: Structure, Function and Genetics. 31: 383-390. PMID 9626698 DOI: 10.1002/(Sici)1097-0134(19980601)31:4<383::Aid-Prot5>3.0.Co;2-J |
0.595 |
|
1998 |
Stec B, Hehir MJ, Brennan C, Nolte M, Kantrowitz ER. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: Insights into the catalytic mechanism without the nucleophile Ser102 Journal of Molecular Biology. 277: 647-662. PMID 9533886 DOI: 10.1006/Jmbi.1998.1635 |
0.599 |
|
1998 |
Sakash JB, Kantrowitz ER. The N-terminus of the regulatory chain of Escherichia coli aspartate transcarbamoylase is important for both nucleotide binding and heterotropic effects Biochemistry. 37: 281-288. PMID 9425049 DOI: 10.1021/Bi972102G |
0.482 |
|
1997 |
Widlanski TS, Myers JK, Stec B, Holtz KM, Kantrowitz ER. The road less travelled: taming phosphatases. Chemistry & Biology. 4: 489-92. PMID 9263635 DOI: 10.1016/S1074-5521(97)90319-7 |
0.74 |
|
1997 |
Murphy JE, Stec B, Ma L, Kantrowitz ER. Trapping and visualization of a covalent enzyme-phosphate intermediate Nature Structural Biology. 4: 618-622. PMID 9253408 DOI: 10.1038/Nsb0897-618 |
0.566 |
|
1997 |
Sun L, Kantrowitz ER, Galley WC. Room temperature phosphorescence study of phosphate binding in Escherichia coli alkaline phosphatase. European Journal of Biochemistry / Febs. 245: 32-9. PMID 9128721 DOI: 10.1111/J.1432-1033.1997.00032.X |
0.564 |
|
1997 |
Lu G, Giroux EL, Kantrowitz ER. Importance of the dimer-dimer interface for allosteric signal transduction and AMP cooperativity of pig kidney fructose-1,6- bisphosphatase: Site-specific mutagenesis studies of Glu-192 and Asp-187 residues on the 190's loop Journal of Biological Chemistry. 272: 5076-5081. PMID 9030572 DOI: 10.1074/Jbc.272.8.5076 |
0.547 |
|
1996 |
Aucoin JM, Pishko EJ, Baker DP, Kantrowitz ER. Engineered complementation in Escherichia coli aspartate transcarbamoylase. Heterotropic regulation by quaternary structure stabilization Journal of Biological Chemistry. 271: 29865-29869. PMID 8939927 DOI: 10.1074/Jbc.271.47.29865 |
0.569 |
|
1996 |
Lu G, Stec B, Giroux EL, Kantrowitz ER. Evidence for an active T-state pig kidney fructose 1,6-bisphosphatase: Interface residue Lys-42 is important for allosteric inhibition and AMP cooperativity Protein Science. 5: 2333-2342. PMID 8931152 DOI: 10.1002/Pro.5560051120 |
0.606 |
|
1996 |
Baker DP, Fetler L, Vachette P, Kantrowitz ER. The allosteric activator ATP induces a substrate-dependent alteration of the quaternary structure of a mutant aspartate transcarbamoylase impaired in active site closure Protein Science. 5: 2276-2286. PMID 8931146 DOI: 10.1002/Pro.5560051114 |
0.622 |
|
1996 |
Stec B, Abraham R, Giroux E, Kantrowitz ER. Crystal structures of the active site mutant (Arg-243 → Ala) in the T and R allosteric states of pig kidney fructose-1,6-bisphosphatase expressed in Escherichia coli Protein Science. 5: 1541-1553. PMID 8844845 DOI: 10.1002/Pro.5560050810 |
0.643 |
|
1996 |
Ma L, Kantrowitz ER. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412 → Gln) at one of the zinc binding sites Biochemistry. 35: 2394-2402. PMID 8652582 DOI: 10.1021/Bi9523421 |
0.614 |
|
1996 |
Tibbitts TT, Murphy JE, Kantrowitz ER. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase Journal of Molecular Biology. 257: 700-715. PMID 8648634 DOI: 10.1006/Jmbi.1996.0195 |
0.554 |
|
1996 |
Kelley N, Giroux EL, Lu G, Kantrowitz ER. Glutamic acid residue 98 Is critical for catalysis in pig kidney fructose-1,6-bisphosphatase 1 Biochemical and Biophysical Research Communications. 219: 848-852. PMID 8645268 DOI: 10.1006/Bbrc.1996.0321 |
0.572 |
|
1996 |
Stec B, Lu G, Abraham R, Giroux E, Williams MK, Kantrowitz ER. Toward the allosteric mechanism of fructose-1,6-bisphosphatase: X-ray structures and kinetics of mutant enzymes Acta Crystallographica Section a Foundations of Crystallography. 52: C138-C138. DOI: 10.1107/S0108767396093695 |
0.51 |
|
1995 |
Baker DP, Aucoin JM, Williams MK, deMello LA, Kantrowitz ER. Overexpression and purification of the trimeric aspartate transcarbamoylase from Bacillus subtilis. Protein Expression and Purification. 6: 679-84. PMID 8535162 DOI: 10.1006/Prep.1995.1089 |
0.49 |
|
1995 |
Ma L, Tibbitts TT, Kantrowitz ER. Escherichia coli alkaline phosphatase: X-ray structural studies of a mutant enzyme (His-412 → Asn) at one of the catalytically important zinc binding sites Protein Science. 4: 1498-1506. PMID 8520475 DOI: 10.1002/Pro.5560040807 |
0.591 |
|
1995 |
Bong Ho Lee, Ley BW, Kantrowitz ER, O'Leary MH, Wedler FC. Domain closure in the catalytic chains of Escherichia coli aspartate transcarbamoylase influences the kinetic mechanism Journal of Biological Chemistry. 270: 15620-15627. PMID 7797560 DOI: 10.1074/Jbc.270.26.15620 |
0.594 |
|
1995 |
Baker DP, Fetler L, Keiser RT, Vachette P, Kantrowitz ER. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase Protein Science. 4: 258-267. PMID 7757014 DOI: 10.1002/Pro.5560040212 |
0.613 |
|
1995 |
Wedler FC, Ley BW, Lee BH, O'Leary MH, Kantrowitz ER. L-aspartate association contributes to rate limitation and induction of the T → R transition in Escherichia coli aspartate transcarbamoylase: Equilibrium exchanges and kinetic isotope effects with a Vmax-enhanced mutant, Asp-236 → Ala Journal of Biological Chemistry. 270: 9725-9733. PMID 7730350 DOI: 10.1074/Jbc.270.17.9725 |
0.517 |
|
1995 |
Lu G, Williams MK, Giroux EL, Kantrowitz ER. Fructose-1,6-bisphosphatase: arginine-22 is involved in stabilization of the T allosteric state. Biochemistry. 34: 13272-7. PMID 7577911 DOI: 10.1021/Bi00041A002 |
0.582 |
|
1995 |
Murphy JE, Tibbitts TT, Kantrowitz ER. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases Journal of Molecular Biology. 253: 604-617. PMID 7473737 DOI: 10.1006/Jmbi.1995.0576 |
0.599 |
|
1994 |
Kantrowitz ER. Probing the role of histidine-372 in zinc binding and the catalytic mechanism of escherichia coli alkaline phosphatase by site-specific mutagenesis Biochemistry®. 33: 2279-2284. PMID 8117685 DOI: 10.1021/Bi00174A039 |
0.595 |
|
1994 |
Dembowski NJ, Kantrowitz ER. The use of alanine scanning mutagenesis to determine the role of the n-terminus of the regulatory chain in the heterotropic mechanism of Escherichia coli aspartate transcarbamoylase Protein Engineering, Design and Selection. 7: 673-679. PMID 8073037 DOI: 10.1093/Protein/7.5.673 |
0.576 |
|
1994 |
Murphy JE, Kantrowitz ER. Why are mammalian alkaline phosphatases much more active than bacterial alkaline phosphatases? Molecular Microbiology. 12: 351-357. PMID 8065256 DOI: 10.1111/J.1365-2958.1994.Tb01024.X |
0.537 |
|
1994 |
Ma L, Kantrowitz ER. Mutations at histidine 412 alter zinc binding and eliminate transferase activity in Escherichia coli alkaline phosphatase Journal of Biological Chemistry. 269: 31614-31619. PMID 7989332 |
0.485 |
|
1994 |
Giroux E, Williams MK, Kantrowitz ER. Shared active sites of fructose-1,6-bisphosphatase. Arginine 243 mediates substrate binding and fructose 2,6-bisphosphate inhibition. The Journal of Biological Chemistry. 269: 31404-9. PMID 7989306 |
0.51 |
|
1994 |
Baker DP, Stebbins JW, DeSena E, Kantrowitz ER. Glutamic acid 86 is important for positioning the 80's loop and arginine 54 at the active site of Escherichia coli aspartate transcarbamoylase and for the structural stabilization of the C1-C2 interface Journal of Biological Chemistry. 269: 24608-24614. PMID 7929132 |
0.453 |
|
1994 |
Tibbitts TT, Xu X, Kantrowitz ER. Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp-369 → Asn): A mechanism involving one zinc per active site Protein Science. 3: 2005-2014. PMID 7703848 DOI: 10.1002/Pro.5560031113 |
0.566 |
|
1994 |
Tauc P, Keiser RT, Kantrowitz ER, Vachette P. Glu-50 in the catalytic chain of Escherichia coli aspartate transcarbamoylase plays a crucial role in the stability of the R quaternary structure Protein Science. 3: 1998-2004. PMID 7703847 DOI: 10.1002/Pro.5560031112 |
0.617 |
|
1993 |
Dembowski NJ, Kantrowitz ER. Overproduction and purification of the regulatory subunit of Escherichia coli aspartate transcarbamoylase. Protein Engineering. 6: 123-7. PMID 8433966 DOI: 10.1093/protein/6.1.123 |
0.301 |
|
1993 |
Murphy JE, Xu X, Kantrowitz ER. Conversion of a magnesium binding site into a zinc binding site by a single amino acid substitution in Escherichia coli alkaline phosphatase Journal of Biological Chemistry. 268: 21497-21500. PMID 8407998 DOI: 10.2210/Pdb1Anh/Pdb |
0.541 |
|
1993 |
Chaidaroglou A, Kantrowitz ER. The Ala-161→Thr Substitution in Escherichia coli Alkaline Phosphatase Does Not Result in Loss of Enzymatic Activity Although the Homologous Mutation in Humans Causes Hypophosphatasia Biochemical and Biophysical Research Communications. 193: 1104-1109. PMID 8323535 DOI: 10.1006/Bbrc.1993.1739 |
0.484 |
|
1993 |
Xu X, Kantrowitz ER. Binding of magnesium in a mutant escherichia coli alkaline phosphatase changes the rate-determining step in the reaction mechanism Biochemistry. 32: 10683-10691. PMID 8104481 DOI: 10.1021/Bi00091A019 |
0.558 |
|
1993 |
Baker DP, Kantrowitz ER. The conserved residues glutamate-37, aspartate-100, and arginine-269 are important for the structural stabilization of Escherichia coli aspartate transcarbamoylase Biochemistry. 32: 10150-10158. PMID 8104480 DOI: 10.1021/Bi00089A034 |
0.548 |
|
1992 |
Zhang Y, Kantrowitz ER. Probing the regulatory site of Escherichia coli aspartate transcarbamoylase by site-specific mutagenesis Biochemistry. 31: 792-798. PMID 1731936 DOI: 10.1021/Bi00118A022 |
0.588 |
|
1992 |
Xu X, Kantrowitz ER. The importance of aspartate 327 for catalysis and zinc binding in Escherichia coli alkaline phosphatase Journal of Biological Chemistry. 267: 16244-16251. PMID 1644810 |
0.486 |
|
1992 |
Newton CJ, Stevens RC, Kantrowitz ER. Importance of a conserved residue, aspartate-162, for the function of Escherichia coli aspartate transcarbamoylase Biochemistry®. 31: 3026-3032. PMID 1550826 DOI: 10.1021/Bi00126A026 |
0.704 |
|
1992 |
Stebbins JW, Kantrowitz ER. Conversion of the noncooperative Bacillus subtilis aspartate transcarbamoylase into a cooperative enzyme by a single amino acid substitution Biochemistry. 31: 2328-2332. PMID 1540588 DOI: 10.1021/Bi00123A017 |
0.588 |
|
1992 |
Williams MK, Kantrowitz ER. Isolation and sequence analysis of the cDNA for pig kidney fructose 1,6-bisphosphatase. Proceedings of the National Academy of Sciences of the United States of America. 89: 3080-2. PMID 1313579 DOI: 10.1073/Pnas.89.7.3080 |
0.379 |
|
1992 |
Stebbins JW, Robertson DE, Roberts MF, Stevens RC, Lipscomb WN, Kantrowitz ER. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study. Protein Science : a Publication of the Protein Society. 1: 1435-46. PMID 1303763 DOI: 10.1002/Pro.5560011105 |
0.848 |
|
1991 |
Zhang Y, Kantrowitz ER. The synergistic inhibition of Escherichia coli aspartate carbamoyltransferase by UTP in the presence of CTP is due to the binding of UTP to the low affinity CTP sites Journal of Biological Chemistry. 266: 22154-22158. PMID 1939236 |
0.453 |
|
1991 |
Xu X, Kantrowitz ER. A water-mediated salt link in the catalytic site of Escherichia coli alkaline phosphatase may influence activity. Biochemistry. 30: 7789-96. PMID 1907846 DOI: 10.1021/Bi00245A018 |
0.56 |
|
1991 |
Xu W, Kantrowitz ER. Function of serine-52 and serine-80 in the catalytic mechanism of escherichia coli aspartate transcarbamoylase Biochemistry. 30: 2535-2542. PMID 1900434 DOI: 10.1021/Bi00223A034 |
0.585 |
|
1991 |
Stevens RC, Chook YM, Cho CY, Lipscomb WN, Kantrowitz ER. Escherichia coli aspartate carbamoyltransferase: the probing of crystal structure analysis via site-specific mutagenesis. Protein Engineering. 4: 391-408. PMID 1881865 DOI: 10.1093/Protein/4.4.391 |
0.823 |
|
1990 |
Stebbins JW, Zhang Y, Kantrowitz ER. Importance of Residues Arg-167 and Gin-231 in both the allosteric and catalytic mechanisms of Escherichia coli aspartate transcarbamoylase Biochemistry. 29: 3821-3827. PMID 2191720 DOI: 10.1021/Bi00468A003 |
0.593 |
|
1990 |
Kantrowitz ER, Lipscomb WN. Escherichia coli aspartate transcarbamoylase: the molecular basis for a concerted allosteric transition. Trends in Biochemical Sciences. 15: 53-9. PMID 2186515 DOI: 10.1016/0968-0004(90)90176-C |
0.774 |
|
1990 |
Newton CJ, Kantrowitz ER. Importance of domain closure for homotropic cooperativity in Escherichia coli aspartate transcarbamylase Biochemistry. 29: 1444-1451. PMID 2185840 DOI: 10.1021/Bi00458A015 |
0.585 |
|
1990 |
Newton CJ, Kantrowitz ER. The regulatory subunit of Escherichia coli aspartate carbamoyltransferase may influence homotropic cooperativity and heterotropic interactions by a direct interaction with the loop containing residues 230-245 of the catalytic chain Proceedings of the National Academy of Sciences of the United States of America. 87: 2309-2313. PMID 2179954 |
0.483 |
|
1990 |
Dembowski NJ, Newton CJ, Kantrowitz ER. Function of serine-171 in domain closure, cooperativity, and catalysis in Escherichia coli aspartate transcarbamoylase Biochemistry. 29: 3716-3723. PMID 2111165 DOI: 10.1021/Bi00467A018 |
0.6 |
|
1990 |
Tauc P, Vachette P, Middleton SA, Kantrowitz ER. Structural consequences of the replacement of Glu239 by Gln in the catalytic chain ofEscherichia coli aspartate transcarbamylase Journal of Molecular Biology. 214: 327-335. PMID 1973463 DOI: 10.1016/0022-2836(90)90164-H |
0.587 |
|
1989 |
Gouaux JE, Lipscomb WN, Middleton SA, Kantrowitz ER. Structure of a single amino acid mutant of aspartate carbamoyltransferase at 2.5-A resolution: implications for the cooperative mechanism. Biochemistry. 28: 1798-803. PMID 2719935 DOI: 10.1021/Bi00430A056 |
0.85 |
|
1989 |
Chaidaroglou A, Kantrowitz ER. Alteration of aspartate 101 in the active site of Escherichia coli alkaline phosphatase enhances the catalytic activity Protein Engineering, Design and Selection. 3: 127-132. PMID 2687845 DOI: 10.1093/Protein/3.2.127 |
0.562 |
|
1989 |
Wedler FC, Hsuanyu Y, Kantrowitz ER, Middleton SA. Regulatory behavior of Escherichia coli aspartate transcarbamylase altered by site-specific mutation of Tyr240 → Phe in the catalytic chain Journal of Biological Chemistry. 264: 17266-17274. PMID 2677002 |
0.385 |
|
1989 |
Hsuanyu Y, Wedler FC, Kantrowitz ER, Middleton SA. Site-specific mutation of Tyr240 → Phe in the catalytic chain of Escherichia coli aspartate transcarbamylase. Consequences for kinetic mechanism Journal of Biological Chemistry. 264: 17259-17265. PMID 2677001 |
0.354 |
|
1989 |
Stebbins JW, Xu W, Kantrowitz ER. Three residues involved in binding and catalysis in the carbamyl phosphate binding site of Escherichia coli aspartate transcarbamylase Biochemistry. 28: 2592-2600. PMID 2659074 DOI: 10.1021/Bi00432A037 |
0.579 |
|
1989 |
Middleton SA, Stebbins JW, Kantrowitz ER. A loop involving catalytic chain residues 230-245 is essential for the stabilization of both allosteric forms of Escherichia coli aspartate transcarbamylase Biochemistry. 28: 1617-1626. PMID 2655696 DOI: 10.1021/Bi00430A029 |
0.606 |
|
1989 |
Cherfils J, Sweet RM, Middleton SA, Kantrowitz ER, Tauc P, Vachette P. Structural consequences of a one atom mutation on aspartate transcarbamylase from E. coli Febs Letters. 247: 361-366. PMID 2653863 DOI: 10.1016/0014-5793(89)81371-7 |
0.48 |
|
1989 |
Hsuanyu Y, Wedler FC, Middleton SA, Kantrowitz ER. Kinetic consequences of site-specific mutation of Glu-239 → Gln in E. coli aspartate transcarbamylase: comparison with catalytic subunits and Phe-240 mutant enzyme Biochimica Et Biophysica Acta (Bba)/Protein Structure and Molecular. 995: 54-58. PMID 2647154 DOI: 10.1016/0167-4838(89)90232-X |
0.556 |
|
1989 |
Stebbins JW, Kantrowitz ER. The importance of the link between Glu204 of the catalytic chain and Arg130 of the regulatory chain for the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase Journal of Biological Chemistry. 264: 14860-14864. PMID 2570069 |
0.48 |
|
1989 |
Xu W, Kantrowitz ER. Function of threonine-55 in the carbamoyl phosphate binding site of Escherichia coli aspartate transcarbamoylase Biochemistry. 28: 9937-9943. PMID 2515892 DOI: 10.1021/Bi00452A010 |
0.562 |
|
1989 |
Zhang Y, Kantrowitz ER. Lysine-60 in the regulatory chain of Escherichia coli aspartate transcarbamoylase is important for the discrimination between CTP and ATP Biochemistry. 28: 7313-7318. PMID 2510822 DOI: 10.1021/Bi00444A025 |
0.58 |
|
1988 |
Ladjimi MM, Kantrowitz ER. A possible model for the concerted allosteric transition in Escherichia coli aspartate transcarbamylase as deduced from site-directed mutagenesis studies Biochemistry. 27: 276-283. PMID 3280019 DOI: 10.1021/Bi00401A042 |
0.565 |
|
1988 |
Ladjimi MM, Middleton SA, Kelleher KS, Kantrowitz ER. Relationship between domain closure and binding, catalysis, and regulation in Escherichia coli aspartate transcarbamylase Biochemistry. 27: 268-276. PMID 3280018 DOI: 10.1021/Bi00401A041 |
0.533 |
|
1988 |
Middleton SA, Kantrowitz ER. Function of arginine-234 and aspartic acid-271 in domain closure, cooperativity, and catalysis in Escherichia coli aspartate transcarbamylase Biochemistry. 27: 8653-8660. PMID 3146350 DOI: 10.1021/Bi00423A022 |
0.598 |
|
1988 |
Zhang Y, Ladjimi MM, Kantrowitz ER. Site-directed mutagenesis of a residue located in the regulatory site of Escherichia coli aspartate transcarbamoylase. Involvement of lysine 94 in effector binding and the allosteric mechanism Journal of Biological Chemistry. 263: 1320-1324. PMID 3121627 |
0.508 |
|
1988 |
Chaidaroglou A, Brezinski DJ, Middleton SA, Kantrowitz ER. Function of arginine-166 in the active site of Escherichia coli alkaline phosphatase Biochemistry. 27: 8338-8343. PMID 3072019 DOI: 10.1021/Bi00422A008 |
0.571 |
|
1988 |
Xu W, Pitts MA, Middleton SA, Kelleher KS, Kantrowitz ER. Propagation of allosteric changes through the catalytic-regulatory interface of Escherichia coli aspartate transcarbamylase. Biochemistry. 27: 5507-15. PMID 3052579 DOI: 10.1021/Bi00415A018 |
0.534 |
|
1988 |
Kantrowitz ER, Lipscomb WN. Escherichia coli aspartate transcarbamylase: the relation between structure and function. Science (New York, N.Y.). 241: 669-74. PMID 3041592 DOI: 10.1126/Science.3041592 |
0.773 |
|
1987 |
Ladjimi MM, Kantrowitz ER. Catalytic-regulatory subunit interactions and allosteric effects in aspartate transcarbamylase Journal of Biological Chemistry. 262: 312-318. PMID 3539935 |
0.477 |
|
1986 |
Smith KA, Nowlan SF, Middleton SA, O'Donovan C, Kantrowitz ER. Involvement of tryptophan 209 in the allosteric interactions of Escherichia coli aspartate transcarbamylase using single amino acid substitution mutants Journal of Molecular Biology. 189: 227-238. PMID 3537306 DOI: 10.1016/0022-2836(86)90393-1 |
0.553 |
|
1986 |
Middleton SA, Kantrowitz ER. Importance of the loop at residues 230-245 in the allosteric interactions of Escherichia coli aspartate carbamoyltransferase Proceedings of the National Academy of Sciences of the United States of America. 83: 5866-5870. PMID 3526342 DOI: 10.1073/Pnas.83.16.5866 |
0.571 |
|
1985 |
Nowlan SF, Kantrowitz ER. Superproduction and rapid purification of Escherichia coli aspartate transcarbamylase and its catalytic subunit under extreme derepression of the pyrimidine pathway Journal of Biological Chemistry. 260: 14712-14716. PMID 3902838 |
0.302 |
|
1985 |
West TP, Maldonado I, Kantrowitz ER. Affinity and hydrophobic chromatography of Escherichia coli aspartate transcarbamoylase Bba - General Subjects. 839: 32-39. PMID 3884051 DOI: 10.1016/0304-4165(85)90178-3 |
0.407 |
|
1983 |
Nowlan SF, Kantrowitz ER. Identification of a trans-acting regulatory factor involved in the control of the pyrimidine pathway in E. coli Mgg Molecular &Amp; General Genetics. 192: 264-271. PMID 6358797 DOI: 10.1007/Bf00327676 |
0.355 |
|
1983 |
Silver RS, Daigneault JP, Teague PD, Kantrowitz ER. Analysis of two purified mutants of Escherichia coli aspartate transcarbamylase with single amino acid substitutions Journal of Molecular Biology. 168: 729-745. PMID 6350607 DOI: 10.1016/S0022-2836(83)80072-2 |
0.561 |
|
1982 |
Kuo LC, Lipscomb WN, Kantrowitz ER. Zn(II)-induced cooperativity of Escherichia coli ornithine transcarbamoylase. Proceedings of the National Academy of Sciences of the United States of America. 79: 2250-4. PMID 7048313 DOI: 10.1073/Pnas.79.7.2250 |
0.741 |
|
1981 |
Dinur D, Kantrowitz ER, Hajdu J. Reaction of Woodward's reagent K with pancreatic porcine phospholipase A2: Modification of an essential carboxylate residue Biochemical and Biophysical Research Communications. 100: 785-792. PMID 7271782 DOI: 10.1016/S0006-291X(81)80243-4 |
0.357 |
|
1981 |
Kantrowitz ER, Reed HW, Ferraro RA, Daigneault JP. Analysis of mutant Escherichia coli aspartate transcarbamylases isolated from a series of suppressed pyrB nonsense strains. Journal of Molecular Biology. 153: 569-87. PMID 7040688 DOI: 10.1016/0022-2836(81)90408-3 |
0.544 |
|
1981 |
Fortin AF, Hauber JM, Kantrowitz ER. Comparison of the essential arginine residue in Escherichia coli ornithine and aspartate transcarbamylases Bba - Enzymology. 662: 8-14. PMID 7030401 DOI: 10.1016/0005-2744(81)90216-3 |
0.575 |
|
1980 |
Vensel LA, Kantrowitz ER. An essential arginine residue in porcine phospholipiase A2 Journal of Biological Chemistry. 255: 7306-7310. PMID 7391083 |
0.326 |
|
1980 |
Kantrowitz ER, Foote J, Reed HW, Vensel LA. Isolation and preliminary characterization of single amino acid substitution mutants of aspartate carbamoyltransferase. Proceedings of the National Academy of Sciences of the United States of America. 77: 3249-53. PMID 6997873 DOI: 10.1073/Pnas.77.6.3249 |
0.461 |
|
1980 |
Foote J, Ikeda DM, Kantrowitz ER. The role of tryptophan in aspartate transcarbamylase Journal of Biological Chemistry. 255: 5154-5158. PMID 6989823 |
0.491 |
|
1980 |
Kantrowitz ER, Pastra-Landis SC, Lipscomb WN. E. coli aspartate transcarbamylase: Part I: Catalytic and regulatory functions Trends in Biochemical Sciences. 5: 124-128. DOI: 10.1016/0968-0004(80)90053-5 |
0.701 |
|
1980 |
Kantrowitz ER, Pastra-Landis SC, Lipscomb WN. E. coli aspartate transcarbamylase: Part II: Structure and allosteric interactions Trends in Biochemical Sciences. 5: 150-153. DOI: 10.1016/0968-0004(80)90011-0 |
0.725 |
|
1977 |
Kantrowitz ER, Jacobsberg LB, Landfear SM, Lipscomb WN. Interaction of tetraiodofluorescein with a modified form of aspartate transcarbamylase. Proceedings of the National Academy of Sciences of the United States of America. 74: 111-4. PMID 319454 DOI: 10.1073/Pnas.74.1.111 |
0.737 |
|
1976 |
Kantrowitz ER, Lipscomb WN. An essential arginine residue at the active site of aspartate transcarbamylase Journal of Biological Chemistry. 251: 2688-2695. PMID 4457 |
0.339 |
|
1973 |
Jacobsberg LB, Kantrowitz ER, McMurray CH, Lipscomb WN. The interaction of tetraiodofluorescein with aspartate transcarbamylase Biochemical and Biophysical Research Communications. 55: 1255-1261. PMID 4589305 DOI: 10.1016/S0006-291X(73)80029-4 |
0.732 |
|
Show low-probability matches. |